
Robotics: Science and Systems 2023
Daegu, Republic of Korea, July 10-July 14, 2023

1

Graph Attention Multi-Agent Fleet Autonomy
for Advanced Air Mobility

Malintha Fernando, Ransalu Senanayake, Heeyoul Choi, Martin Swany

Abstract—Autonomous mobility is emerging as a new dis-
ruptive mode of urban transportation for moving cargo and
passengers. However, designing scalable autonomous fleet coordi-
nation schemes to accommodate fast-growing mobility systems is
challenging primarily due to the increasing heterogeneity of the
fleets, time-varying demand patterns, service area expansions,
and communication limitations. We introduce the concept of
partially observable advanced air mobility games to coordinate
a fleet of aerial vehicles by accounting for the heterogeneity of
the interacting agents and the self-interested nature inherent
to commercial mobility fleets. To model the complex interac-
tions among the agents and the observation uncertainty in the
mobility networks, we propose a novel heterogeneous graph
attention encoder-decoder (HetGAT Enc-Dec) neural network-
based stochastic policy. We train the policy by leveraging
deep multi-agent reinforcement learning, allowing decentralized
decision-making for the agents using their local observations.
Through extensive experimentation, we show that the learned
policy generalizes to various fleet compositions, demand patterns,
and observation topologies. Further, fleets operating under the
HetGAT Enc-Dec policy outperform other state-of-the-art graph
neural network policies by achieving the highest fleet reward and
fulfillment ratios in on-demand mobility networks.

I. INTRODUCTION

The latest advancements in aerial robotics and battery
technologies are paving the way for Advanced Air Mobility
(AAM): a new disruptive mode of transportation that focuses
on moving cargo and passengers using electric-powered Un-
manned Aerial Vehicles (UAV) operating at low altitudes
over short distances [1]. With an appealing node-to-node
navigation structure that overreaches already exhausted and
poorly maintained path-based ground transportation networks,
AAM is currently emerging as a sustainable and efficient
alternative to solve the last-mile delivery problem in retail and
logistics sectors [2].

Thanks to their vast operational space, superior maneu-
verability, relative affordability, efficiency, and state-of-the-art
collision-avoiding capabilities, the AAM fleets face lesser risks
in scaling than their ground-based counterparts across a wide

Malintha Fernando, Heeyoul Choi, and Martin Swany are with the
Luddy School of Informatics, Computing, and Engineering at Indiana Uni-
versity, Bloomngton, IN, 47401, USA. E-mail:ccfernan@iu.edu,
hchoi@handong.edu, swany@iu.edu

Ransalu Senanayake is with Stanford University, CA, 94305, USA. E-
mail:ransalu@stanford.edu.

This research was partly funded by the National Institute of Standards
and Technology (NIST) through the grant 70NANB21H037.

Heeyoul Choi would like to acknowledge the support from IITP grant
of Korea (No. 2018-0-00749) and Basic Science Research Program through
NRF of Korea (2022R1A2C1012633).

We also thank Lilly Endowment, Inc., for its support to Indiana Univer-
sity Pervasive Technology Institute.

On-Demand Mobility Network

Heteregeneous Interaction Graph (HIG)
Vehicle Trajectory Planning

Genaralizable
Stochastic Policy

Vehicle Partial
Observations

ClientDepotAutonomous Vehicle

Centralized Learning with
Decentralized Execution

Heterogeneous Enc-Dec
Graph Attention Network

Policy Gradient
Reinforcement Learning

Fig. 1. The overview of the presented approach. The on-demand mobility
network has multiple service-providing depots, UAV agents, and clients
corresponding to three meta-types. The red, green, and black lines represent
interactions between the each meta-type entity. The nodes and edges of the
local Heterogeneous Interaction Graph (HIG) correspond to interacting entities
and their semantic relations within one’s observation range. We represent the
each meta-type node in yellow, green, and blue colors. The Heterogeneous
Graph Attention Encoder-Decoder (HetGAT Enc-Dec) neural network directly
operates on the HIG to compute a stochastic policy for decentralized decision-
making. Drones flying digital arts: DALL-E, OpenAI ©.

range of novel commercial applications. However, the existing
centrally controlled air traffic systems are significantly limited
in their ability to cater to the rapidly growing UAV market,
thus onboard, autonomous decision-making approaches appeal
increasingly for coordinating UAV fleets in a decentralized
manner [1], [3]. Delegating the high-level decision-making in
real-world commercial AAM applications yet poses numerous
challenges; the dynamic fleet sizes, stochastic communication,
maximizing returns in high owner-to-vehicle affinity, and het-
erogeneity within the mobility networks, to name a few.

We formulate AAM as a partially observable stochastic
game (POSG) that is inherently decentralized and enables
self-interested autonomous vehicle agents to make high-level
decisions by accounting for the time-varying heterogeneous
interactions within a complex mobility system. Fig. 1 shows
the interactions among different entities in a mobility net-
work considered in this work; a heterogeneous UAV fleet,
depots populating various payloads, and destination clients.
Compared to existing work, where the mobile agents are
fully-cooperative [4] or coordinated by a central policy [5],
the game-theoretic formulation captures the revenue-seeking

behavior of the high-affinity commercial fleets, i.e., taxi fleets.
This formulation notably leads to a more practical general-
sum game, where the agents’ rewards are related arbitrarily,
thus, mixed cooperative-competitive in nature, as opposed to
fully-cooperative or fully-competitive games with either shared
or zero-sum reward functions. The general-sum nature of the
AAM game helps us using a practical reward computing
method for the autonomous vehicle agents building on the
non-linear taxi-fare calculation proposed in [6].

We argue that explicit model-based solutions are not ideal
to solve the AAM game due to 1) the inherent difficulty
of solving general-sum games, 2) the partial observability
caused by wireless communication limitations that prevent the
autonomous vehicles from aggregating the full fleet state [7],
3) and the fleet heterogeneity. Thus, we propose a deep multi-
agent reinforcement learning (MARL) approach for coordinat-
ing vehicle agents in a heterogeneous fleet by accounting for
their interactions. Specifically, we build on the premise that an
agent’s heterogeneous interaction topology constitutes a graph
corresponding to a set of meta-type nodes and edges, whose
relations are quantifiable by a Heterogeneous Graph Neural
Network (HetGNN) to learn a generalizable policy.

By following the notion of graph attention, we propose
a novel heterogeneous graph attention encoder-decoder (Het-
GAT Enc-Dec) policy where the attention mechanism com-
putes a score between the interacting node features [8], [9]. To
handle the non-stationarity issue in MARL caused by the ever-
changing policies of the other agents, we leverage centralized
training and decentralized execution (CTDE) paradigm [10].
The CTDE MARL allows the agents to access the experiences
collected by the other agents during the training by sharing the
policy parameters, yet requiring only local observations for
the decision-making. Fig. 1 shows the deep MARL training
and the decision-making loops for an autonomous vehicle
by using a heterogeneous graph, constructed using the local
observations.

Through extensive experimentation, we show that the pro-
posed approach is highly generalizable to varying fleets,
environments, demand patterns, and observational topologies,
thus rendering it suitable for coordinating autonomous ve-
hicle fleets in dynamic and complex mobility environments.
We additionally introduce an intrinsic fleet rebalancing mask
based on a vehicle’s local observations that improve the
policy’s performances under varying demand patterns. The
main contributions of this work are,

• formulating AAM as a POSG for coordinating vehicle
agents with hierarchical-timescale autonomy by account-
ing for complex, heterogeneous interactions in mobility
networks, and the general-sum fair calculation in trans-
portation literature (Section IV),

• proposing a novel HetGAT Enc-Dec architecture for au-
tonomous mobility under time-varying partial observation
topologies, demand-patterns by performing intrinsic fleet
rebalancing (Section V),

• evaluating the deep MARL solution performances of the
stochastic AAM game against different Graph Neural

Network (GNN) policy architectures by drawing connec-
tion to the social optimum, and the agents’ observation
topology (Section VI).

To the best of the authors’ knowledge, HetGAT-based MARL
has not yet been studied in the on-demand mobility context
under the POSG constraints considered in this paper, thus
making our work the first of its kind.

II. RELATED WORK

A. Neural Networks for Learning Graph-Structured Data

A plethora of real-world data takes the form of graphs, e.g.,
social and computer networks, protein interactions, etc. The
GNNs have emerged as a powerful tool for learning from such
data by extending the traditional neural network architectures
to operate directly on the input graph-structured data, to cap-
ture complex relationships and dependencies among the nodes
[11]. Compared to conventional convolution neural networks,
GNNs share the convolution operators across the graph; thus,
generalizable to graphs of various sizes and degrees [12],
[13]. Graph attention neural networks (GAT) advance GNN
by prioritizing the neighboring node features by through an
attention score before aggregating together, depending on
the features’ prominence toward the learning task [14]. In
[8], authors presented a GAT method for sequential routing
plans proving their robustness and generalizability in the
combinatorial optimization domain.

The Heterogeneous variant of GNN improves the model
interpretability and expressiveness by allowing more complex
graph structures with multiple heterogeneous relations among
different meta-type entities. In contrast to homogeneous GNN,
the convolution operators in HetGNN are type-specific and
thus operable on varying feature spaces. Following the success
of GNN, the HetGAT show promise in parallel research direc-
tions for learning generalizable policies in combinatorial and
sequential decision-making tasks: multi-robot task allocation
[15], sequential traffic speed prediction [16]. In [17] authors
propose a large-scale multi-agent path planning with GATs
for attentive bandwidth consumption in limited communication
settings.

B. Deep Multi-Agent Reinforcement Learning

In contrast to fully-cooperative or fully-competitive games,
which have been often discussed in the stochastic games
literature, solving general-sum POSG for a stationary Nash
equilibria, especially in multi-agent settings, remains an open
challenge [18], [19]. The state-of-the-art DRL approaches have
contributed significantly to the recent advancements related
to computing multi-agent coordination policies in POSG en-
vironments; e.g., in [20], authors achieved superhuman per-
formances in StarCraft II. In a parallel research direction,
Lowe et al. [21] showed that actor-critic algorithms trained
using CTDE to generate robust multi-agent policies in POSG
environments with complex inter-agent relationships.

The GNN-based MARL methods range in their rewarding
mechanism across numerous application domains. In [22],
[23], authors consider fully-cooperative decision-making for

multi-agent teams, where the latter operates in heterogeneous
settings. In [24], authors study the naturally emerging behavior
in partially observable multi-agent team games in the presence
of two types of interactions occurring among the agents. In
[25], authors discuss a HetGAT-based multi-agent approach
for training an electric vehicle charging pricing policy. Our
approach, however, stretches beyond the existing works to
incorporate complex, topological interactions occurring among
multiple entity types, along with heterogeneity within them-
selves.

C. Autonomous Mobility Fleet Coordination

Current autonomous mobility fleet coordination spans multi-
ple research areas; autonomous mobility-on-demand (AMoD)
[26], multi-robot dynamic task allocation [27], drone-assisted
delivery [28] and robot pick up and delivery systems [29].
Many AMoD solutions consider a centralized policy that
coordinates the vehicles with single occupancy [5], [30] or
ridesharing [31], [32]. However, the latter notion is still far
from AAM due to unique safety and infrastructural regula-
tions. In [5], Gammelli et al. present a Graph Neural Network
(GNN)-based centralized policy that is also generalizable to
different service areas for coordinating an AMoD fleet. The
autonomous mobility fleet redistribution under congestion has
also been studied with Q-learning [30] and optimization-
based [33] approaches. Especially, Guériau et al. [30] propose
simultaneous pick up, delivery, and rebalancing using RL
agents with fleet elasticity. The agents’ action spaces, however,
limit to the closest ride requests, whereas ours are free to
choose any depot to encourage exploration, and for implicit
fleet rebalancing. The model predictive control (MPC) meth-
ods have also been used to solve AMoD; with a composite,
weighted utility function to maximize the fleets’ and the riders’
rewards [4]. Carron et al. [26] propose an MPC-based method
for AMoD with explicit system delay modeling, yet overlooks
the vehicles and payloads with various capacities.

Multi-agent pick up and delivery [34] recently received
a spotlight as a viable direction for coordinating warehouse
and mobility fleets. In [35], [36], authors propose a hybrid
approach for the multi-agent pick up and delivery problem that
simultaneously addresses the path planning. The latter work
combines drone package delivery with public transit systems
to conserve energy. Choi et al. [37] propose a drone multi-
package delivery focusing on battery and payload constraints,
albeit overlooking the on-demand perspective. In [38], au-
thors propose a drone swarm redistribution approach using
a centralized policy. Although our approach does not perform
explicit multi-agent path planning, it supports training agents
with multiple timescale autonomy systems to account for
path planning, low-level control, and trajectory optimization
hierarchically.

Dynamic task allocation (DTA) introduces temporal con-
straints to otherwise spatially-constrained conventional task
allocation algorithms. In [15], [27], authors propose multi-
robot dynamic task allocation approaches, with the former
considering a drone package delivery task under temporal

uncertainty. However, the oversight of robots’ movements
makes them better suited for in-place task completion over
mobility applications.

III. BACKGROUND

A. Partially Observable Stochastic Games

Stochastic games extend the Markov decision processes
(MDP) to the multiple agents setting [39], where the stochas-
ticity stems from the simultaneous action selection of the
agents. Partially observable stochastic games are most suited
for environments where the system state is not fully visible
to the agents due to practical limitations; consequently, they
must make decisions using individual local observations. It
mainly differs from the seemingly similar decentralized par-
tially observable Markov decision processes (Dec-POMDP)
by allowing the agents to act in their self-interest; whereas the
agents in the latter share identical reward functions [18].

We define a POSG as an eight-tuple ⟨N , S, T, {Ri∈1,...,N},
{Ai∈1,...,N}, γ, {Oi∈1,...,N}, O⟩, where N is the number of
agents in the game, S is the full state space, Ai and Ov are the
action and the local observation spaces for agent i. For a given
action profile A = a1×· · ·×aN , ∀ai ∈ Ai, the state S changes
according to the state transition function T : S × A 7→ S′,
and agent i receives a reward defined by the function Ri :
S × Ai 7→ R according to its action. Here γ ∈ [0, 1] is a
discount factor. The observation function maps the state S
to the agents’ local observations O : S 7→ Oi. The objective
of a POSG is to find an optimal policy πi which maximizes
the agent i’s expected cumulative discounted reward, J(πi) =
Eai∼πi [

∑T
t Ri(s

t, ati)] using their local observations. In this
work, we consider general-sum rewards calculated according
to the trip distance and the payload size using a non-linear taxi-
fair calculation method following [6] (see VI-A2 for more on
the reward calculation).

B. Policy Gradient Deep Reinforcement Learning

DRL computes an optimal policy πθi(a
t
i|oti) characterized

by a set of parameters θ using the agents’ experiences acquired
during the training. As the agent’s action space increases,
the exploration step of many action-value methods, e.g., Q-
Learning, becomes intractable, leading to impractical training
times. The policy gradient (PG) methods particularly excels
in tasks involving large state and action spaces as it directly
optimizes the policy parameters θ in the direction of the
policy gradient [40], [41]. Let J(πθi) defines the vanilla policy
gradient,

J(πθi) = Êai∼πθi
[▽θi log πθi(ai|Ov)Q

πi(S, ai)],
(1)

where Êai∼πθi
(.) and Qπi(S, ai) are empirical expectation and

the action-value function for agent i. In this work, we use
proximal policy optimization (PPO) for training the stochastic
policy that replaces Qπi(S, ai) in Eq. 1 using a clipped
surrogate objective and an advantage estimator [42]. The
clipped surrogate objective prevents PPO from updating the
policy parameters too aggressively, thus stabilizes the learning

Local Observation

(a)

Depot Selection

(b)

Payload Assignment

(c)

Payload Fulfillment

(d)

Fig. 2. Different stages of payload fulfillment by a single UAV agent. (a) The local observation space of agent v at time t. The color images and solid black
lines show agents’ observable neighbors, and their communication links. The blue, magenta and green color bars denote each type of payload at the depots.
(b) Agent v selects a depot using its policy πv using the observations and communicates its selection. (c) The depot assigns a payload to the agent from its
available payload requests set. Note the amount of green color payloads is reducing. (d) Agent fulfills the payload request by traveling to the chosen depot
and next to the assigned client c. Here τ = τ1 + τ2 denotes the total travel time.

including in multi-agent settings [43]. In our experiments,
we observed PPO to further generate higher fleet rewards
compared to Q-Learning and vanilla policy gradient methods.
We further use actor-critic DRL for training the policy, where
a critic network provides value estimations to the policy, also
known as the actor.

IV. PARTIALLY OBSERVABLE AAM GAME

A. Hierarchical Timescales

Autonomous vehicle agents operating in a mobility system
require specific tailoring as opposed to many other RL agents;
mainly due to their 1) hierarchical action execution and
2) asynchronous action selection nature. For instance, two
vehicles might not complete their journeys simultaneously:
one may need to choose a new depot to undertake a payload
while the other is still traveling. This stems from the hier-
archical timescale nature of the vehicle autonomy where the
execution of a high-level decision relies on multiple low-level
components operating at different frequencies, such as motion
planning and control [44]. As a result, choosing an action by
a vehicle agent intermediary, while committed to a travel may
disrupt its current trajectory, causing unnecessary observations
to aggregate in the experience buffer affecting the training
results and the performances negatively. Simultaneously, it
is also crucial to update one’s internal state throughout the
simulation, so that the other agents can observe its state.
We believe such real-world constraints must be accounted for
in designing MARL-based robotic simulation frameworks to
maximize training performances. In this work, we propose a
hierarchical timescale approach by introducing the notion of
active timesteps.

The mobility network evolves in small, discrete timesteps
∆t. Consider an identity function that indicates a vehicle v’s
availability at time t such that 1avail(v

t) = 1 is when v is
available to undertake payloads, or 1avail(v

t) = 0 is when it is
committed to a payload request and unavailable. We only con-
sider a timestep t as an active timestep if it results in a change
of the vehicle’s availability function such that, a timestep t is

active iff 1avail(v
t) ̸= 1avail(v

t−∆t). Throughout this work,
we consider the vehicles’ action selections and observations
only occur at active timesteps, leaving the local trajectory
execution and UAV control to take place intermediary.

B. Partially Observable Stochastic AAM

Let D, C and V denote a set of stationary depots, clients
and a fleet of heterogeneous UAVs. The depots may resemble
warehouses or designated locations in a mobility network
where the robots can pick up payloads that need to be delivered
to another depot or a client location. For brevity, we refer to
a destination as a client, and denote by c. Let xt

v, xd, xc ∈ R2

denote the locations of a vehicle v ∈ V , a depot d ∈ D
and a client c ∈ C ∪ D \ d. Let pdc ∈ Pd denote a payload
request indicating a payload located at depot d ∈ D with a
destination c, and Pt

d is the state of the payload queue at d
at time t. At a given timestep t, the system may contain an
arbitrary number of payload requests in each queue. Each UAV
in the system may communicate with its neighboring UAVs
and the depots to acquire its local observations as shown in
Fig. 2(a). Thus, we define a time-varying neighborhood for a
vehicle v, N t

v containing its observable vehicles Vt
v and the

depots Dt
v at the active timestep t, such that N t

v ∈ D ∪ V .
Complementing the structure of the graph input data in GNN
literature, we define vehicle observations as a tuple Ov =
⟨Gtv,ht

v⟩, where Gtv is a time-varying heterogeneous interaction
graph (HIG) constitutes to the topology of the neighborhood
N t

v . Specifically, the nodes and the edges of a HIG corresponds
to the elements of N t

v , and the presence of an interactions
between any two nodes. The feature space of an observation
is denoted by ht

v .
First, a vehicle v ∈ V where 1avail(v

t) = 1 chooses a
depot d ∈ D given its local observations as shown in Fig. 2(b),
and communicates the selection to d. Let Cap(v) define the
maximum capacity of vehicle v. We categorize the payloads by
size, such that a vehicle with capacity Cap(v) can only fulfill
payload requests of size Cap(p.), where Cap(p.) ≤ Cap(v).
The depot assigns the agent a payload pdc from its payload

queue Pt
d using a fixed assignment function Ψ considering the

vehicle’s maximum capacity, such that Ψ : Cap(v)×Pt
d 7→ pdc

for pdc ∈ Pt
d. The depot next discard the payload request from

the queue Pt+∆t
d = Pt

l \ pdc as in Fig. 2(c).
Upon the assignment, v switches to unavailable mode

1(vt+∆t) = 0, visits the chosen depot d to pick up the
payload. Finally, it travels to the destination c to drop off the
payload, at which point it switches back to 1(vt+τ+∆t) = 1
as shown in Fig.2(d). Let τ1, τ2 denote the time it takes for
v to travel to the d from the current location, and to c from
d. Let τ = τ1 + τ2. Upon completing the travel at t + τ , v
collects a net reward computed from the payoff specified in
the payload request and the vehicle’s initial state. If the chosen
depot d does not contain a suitable payload for v, the vehicle
may stop at d, collects a negative net reward, and marks itself
as available 1avial(v

t+τ1+∆t) = 1.
We formally define each vehicle v’s objective as,

Maximize Eav∼πv

[T∑
t=0

1avail(v
t)γtRv(s

t, atv)
]
, (2a)

Subject to atv ∼ πv(Av|Ot
v), Av = D, (2b)

Ot
v = ⟨Gtv,ht

v⟩, (2c)

Ot+τ
v = ⟨Gt+τ

v ,ht+τ
v ⟩ (2d)

pdc ←− Ψ(Cap(v),Pt
d) (2e)

Cap(v) ≤ Cap(pdc) (2f)
rv ←− Rv : xt

v × hpdc , (2g)

1avail(v
t) = 1avail(v

t+τ1+τ2) = 1, (2h)

where t+ τ ≤ T is the planning horizon, hpdc is the features
associated with the payload request. We seek a generalizable
stochastic policy that is shareable by all the vehicle types
in the fleet for making local decisions that maximize their
rewards. Additionally, the resulting policy must scale to a
variety of heterogeneous depots and vehicles in the fleet to
accommodate dynamic addition and removal of entities. Thus,
it must suit for coordinating fleets elastic size conditions, and
support service area expansion mimicking the requirements of
real-world mobility applications.

V. GRAPH ATTENTION MARL FOR SOLVING AAM

We start by constructing the HIG that subsumes the in-
teractions among different meta-type entities in the mobility
network. Each edge in the HIG represents a specific relation
between two interacting entities, and belongs to a set of
semantic relations we consider in this work. From a GNN
perspective, we are interested in learning asymmetric relational
operators that project the features of each interacting node to a
high-dimensional space considering their pairwise neighbors’
features to obtain a richer representation at the output layer.
We use a graph encoder to compute such representations
for each of the meta-type nodes using the HIGs. The high-
dimensional representations are further processed through a
decoder unit by operating with a set of newly introduced
node types to compute the action probabilities and the value

function outputs for actor-critic reinforcement learning. At the
decoder level, we introduce an additional low-level interaction
graph for this purpose, that we name heterogeneous decoder
graph (HDG) introducing a set of abstract relations between
HIG representations, depots and a value node.

A. The Heterogeneous Mobility Network

We first introduce three meta-type entities for a mobility
network, and their corresponding feature spaces.

1) Depots: The mobility network consists of L depots
D = {d1, . . . , dL} that gets populated with payload requests
initiated by clients. Following the AMoD literature [5], [26],
we define a set of Poisson point processes parameterized by
their expected arrival rates λd, ∀d ∈ D to model the arrival of
payloads at each depot d. Let ᾱd ∈ [αmin, αmax] denote the
expected size of a payload requested at depot d. The feature
vector of a depot takes form ht

d = [xd, λd, ᾱd] ∈ R4, where
xd ∈ R2 is the location of the depot. The features ᾱd, λd

can be considered as the vehicle agents’ prior knowledge on
each depot, that help an agent choose a depot intuitively, even
when they are not fully observable, resembling the human taxi
driver behavior.

2) Payloads: A payload characterizes a deliverable avail-
able at a depot destined to a specific client location. The set
of payloads currently available at a depot d can be denoted
as Pt

d = {pdci |i = 1, . . . , p max} where p max ∈ N+ is
a fixed maximum number of payload requests handled by
a depot. Each payload request pdc ∈ Pt

d further contain a
maximum payoff awarded to the vehicle upon completing
the delivery Payoff(pdc), according to the delivery distance
and the payload size. We represent the feature vector of
a payload pdc, ∈ Pt

v by concatenating the payoff, client
destination and the required minimum vehicle capacity. Thus,
hp = [Payoff(pdc), xc,Cap(p

dc)] ∈ R4. The incoming
payload requests are inserted to the corresponding depot’s
payload queue Pd ordered by their arrival time. The payload
assignment function Ψ follow a fixed policy that return the
next suitable payload for the requesting vehicle from the
payload queue, to help minimizing the waiting time of a
payload request.

3) Vehicles: We define the feature space of a vehicle v
as the vector ht

v = [x
tprev
v , xtnext

v ,Cap(v)] ∈ R5, where
x
tprev
v ,xtnext

v ∈ D ∪ C are previous and the next stops of the
vehicle.

The observation feature space of a vehicle concatenates the
meta-type features, thus ht

v = [ht
d, h

t
p, h

t
v].

B. Time-Varying Heterogeneous Interaction Graph

We introduce five semantic relations to summarize the
interactions among different meta-type objects: Φ = {has,
visits, depends, assigned to, communicates}. The observ-
able neighborhood of a vehicle N t

v = {Vt
v,Dt

v} follows a
topological range, where Vt

v = {v′|∀v′ ∈ V ,Distance(v, v′) ≤
Distance(v, vkv

)}, and Dt
v = {d|∀d Distance(v, d) ≤

Distance(v, dkd
)}. Here vkv , dkd

denotes the k.−th closest

Depot

Payloads

Vehicle

visits

communicates

has

depends
assigned_to

Fig. 3. The meta-graph representing the abstract interactions among vehicle,
depot and payload type entities. The vehicle and payload types has self-edges
that connects the objects of these types to themselves.

vehicle and the depot respectively. Let Pt
v define the set of ve-

hicle v’s all observable payloads where Pt
v = {Pt

d|∀d ∈ Dt
v}.

We construct the HIG for a vehicle v, Gtv for timestep t, by
including the observable vehicles, payloads and depots.

Algorithm 1 summarizes the steps for connecting the each
type node using semantic relations following the meta-graph
shown in Fig. 3. The communicates edge captures interactions
between any two vehicles in the neighborhood that includes
itself Vt

v , allowing the vehicle type nodes to incorporate each
others features. Next, each vehicle node relates to the depots
through a visits type edge, which operates the vehicle agents’
features with the depot features –both observed and prior
knowledge, to compute the output encoding. The payload
nodes in HIG connects to their corresponding depots through
a has type edge. By taking into account each observable
payload’s minimum-required capacity, we add an assigned to
type edge between any the matching vehicles and the payloads,
through line 16 to 21 in Algorithm 1.

The intuition behind drawing semantic relations not only
for the ego vehicle node v, but also for neighboring vehicles
in HIG narrows down to two objectives: 1) v’s objective
to fictitiously approximating the other agents’ actions, and
2) learning robust relational operators with limited informa-
tion; especially, by accounting for the variance when the
neighbors’ higher-order relations are not observable. Note that
any meta-type node that does not have an incoming edge is
not passed through the convolution layers in graph neural
networks. Thus, we add a self-edge connection depends to
operate the payloads’ type node feature space with themselves.
These incoming edges allow aggregating the features from
neighboring objects, resulting in richer node representations
at the output layer.

C. Representation Learning with HetGAT

A HetGAT layer intakes one’s initial features hi, according
to the HIG to compute a high-dimensional projection h′

i

by applying node-wise message passing, aggregation and
attention operations at each node. Since we operate on the HIG
and a feature set observed by a vehicle at a given timestep, we
drop the timestep t for brevity. In the GNN message passing,
each node propagates its feature vector to the neighboring

Algorithm 1: Constructing the HIG: Gtv
1 Inputs: N t

v = {Vt
v,Dt

v}, Pt
v , D

2 Output: Gtv
3 for v ∈ Vt

v do
4 for d ∈ D do
5 Add Edge (v, visits, d)
6 end
7 for v′ ∈ Vt

v do
8 Add Edge (v, communicates, v′)
9 end

10 end
11 for d ∈ Dt

v do
12 for pdc ∈ Pt

d do
13 Add Edge (pdc, has, d)
14 end
15 end
16 for pdc ∈ Pt

v do
17 for v ∈ Vt

v do
18 if

[
Cap(pdc) ≤ Cap(v)

]
then

19 Add Edge (pdc, assigned to, v)
20 end
21 end
22 Add Edge (pdc, depends, pdc)
23 end
24 Create graph Gtv with edges.

nodes Ni following the directionality ascribed in the relation
preserving the asymmetry. Note that Ni is the first order
neighborhood of some meta-type node i in the HIG in G,
which is different from the observational neighborhood of a
vehicle Nv . The features are then multiplied with relation-
specific weight matrices to project them to a high-dimensional
feature space. As the weight matrices are relation specific, they
are generalizable to different input graph sizes, in contrast to
fully-connected neural networks that depend on the input size.

Let Type(i, j) denote the type of edge between i, j where
Type(i, j) = ϕ ∈ Φ, and i, j ∈ Ni. For projecting the feature
spaces of different sizes to the output shape h′

i, the weight
matrices are shared in a relation-specific manner. For any
Type(i, j) = ϕ, where j ∈ Ni, we define Wϕ’s dimensions
as |h′

i| × |hj |, where Wϕ is a projection weight matrix shared
among the nodes participating in relation ϕ. The node-wise
message passing in a single HetGAT layer can be summarized
as,

h̄ϕ
i = σ

[∑
j∈Ni

Type(i,j)=ϕ

βijWϕhj

]
, (3)

where βij is a node-wise attention coefficient, and σ is a
non-linear activation function. A node i may have incoming
messages over different edges; i.e., a depot type node receives
messages over has, and visits type edges. In such cases, we
aggregate each feature message using a rotational invariant
operation Agg. Thus, we denote the outgoing feature space h′

i

MHA

SHA

=

++++ +

Fig. 4. The HetGAT encoder architecture. Following Fig. 3 the blue, yellow
and green colors represent vehicle, depot and payload meta-type objects in
the input HIG. Each relation type is represented in corresponding colors.
The HIG is first sent through multiple multi-head attention (MHA) layers
and finally a single-head attention (SHA) layer. The graph node embedding
is represented in grey color by stacking the mean nodes of each meta-type
outputs embeddings.

as
h′
i = Agg

(
h̄ϕ1

i . . . h̄ϕn

i

)
, (4)

where n is the number of distinct incoming edge types for
node i. In this work, we use Leaky ReLU activation for σ and
mean aggregation for Agg. The node-wise attention weights
βij emphasize the importance of the neighbor j’s features
to i’s action selection. Briefly, HetGAT learns an attention
coefficient eij via a fully-connected layer fc parameterized by
an edge-specific weight matrix, and LeakyReLU activation,
fc : R2|h′

i| 7→R. Thus, for a given relational edge type ϕ

eij = fc
(
Wϕhi,Wϕhj). (5)

Finally, the attention coefficients are normalized over the
neighborhood Ni using the softmax function as

βij =
exp(eij)∑

k∈Ni
exp(eik)

. (6)

We stack multiple HetGAT layers to learn high-dimensional
representations for each node in the input HIG. Thanks to the
high expressiveness and the ability to represent diverse array
of entities engaging in complex agent interactions, we believe
that HetGAT-based approaches are ideal for learning many
heterogeneous fleet coordination tasks.

D. Graph Attention Policy Architecture

We consider two criteria to assess the generalizability of
a trained policy in mobility environments: 1) transferability
to different mobility networks to the one that it was trained
on with minimal to no reconfiguration, and 2) shareability
by different vehicle classes, i.e., capacity, to maximize the
rewards. Primarily, a HetGAT’s generalizability attributes to
its type-specific sharing of graph convolution and attention
operators which makes them operable on arbitrary graph sizes
with nodes of different degrees [12]. In heterogeneous mobility
networks, such interaction graphs often occur as a result of 1)
time-varying observability and 2) the addition and removal of
different meta-type nodes to cater to dynamic demand patterns.

In [8], authors showed generating attention-based graph
encoding at the node level is highly effective in solving routing
problems. Following this notion, we propose a novel type-
sensitive HetGAT encoder-decoder architecture for solving
autonomous mobility. Generally in deep learning, the encoder
unit processes the input to construct rich representations from
the inputs, whereas the decoder generates the overall output
conditioned on the encoder output [45]. Similarly in graph
learning, an encoder may generate high-dimensional graph
representations at the output layer, where the decoder uses
encoder outputs to perform prediction or classification [46],
[47].

1) Encoder: The encoder unit in this work intakes the HIG
Gv and the associated features of the nodes. The graph is then
passed through 2 multi-head attention (MHA) and a single
head attention (SHA) output layers. As presented in [14], a
MHA layer computes kβ independent attention weights and
concatenates the aggregated features in the outgoing feature
space h′

i resulting an output dimensionality kβ |h′
i| compared

to the single-head attention (SHA) presented in Eq. 4. Fig. 4
shows the proposed encoder architecture. For each meta-type
node in the output representation h⃗d, h⃗v and h⃗p we use R64

vectors. In addition to each meta-type node representations,
the encoder outputs a graph embedding node shown in grey
color g by averaging each meta-type node and concatenating
them together, where hg ∈ R|⃗hv|+|⃗hd|+|⃗hp|.

Algorithm 2: Constructing the HDG: Gdec
1 Inputs: g, D, val
2 Output: Gdec
3 Add Edge (g, g contributes val, val)
4 for d ∈ D do
5 Add Edge (d, d contributes g, g)
6 Add Edge (d, d contributes val, val)
7 for d′ ∈ D do
8 Add Edge (d, d near d, d′)
9 end

10 end
11 Create graph Gdec with edges.

2) Decoder: Let g, val denote the graph embedding node
and a newly introduced value node. We summarize the steps
of constructing the heterogeneous decoder graph (HDG) in
Algorithm 2. The decoder accepts the HDG along with the
graph embedding node h⃗g, depot representations h⃗d, and val
node –a zero vector for value node initialization. The decoder
processes the HDG through two HetGAT layers where the
first layer has MHA and an output layer with SHA. We
provide the details of chosen output feature dimensions of
each HetGAT layer in Appendix A. The value node output
from the decoder q⃗val is further processed through a fully
connected layer fc val to obtain the value function output qval.
At the final layer, we do not perform feature aggregation and
non-linear activation steps for output graph embedding and
depot nodes. Instead, each depot node output is dot multiplied

MHA

SHA

fc_val Value Branch

Fig. 5. The HetGAT decoder architecture. The critic value function shares
layers with the actor network, yet the value branch is only used by the critic
network. The final graph and the depot embeddings are multiplied together
to output the action-values of choosing a depot qdi .

with the graph embedding node output to compute the output
query values followed by a non-linearity; qd = σ(q⃗Td q⃗g) for
all d ∈ D, where qd is the value of choosing depot d. Finally,
we calculate probabilities associated with each depot in the
stochastic policy by using the softmax function over each qd.

3) Fleet Rebalancing Mask: In the absence of suitable
payloads nearby, one must favor farther away depots to avoid
getting penalized by choosing an empty depot. Following
this notion, we draw parallels between a non-repopulating
mobility environment and a stochastic variant of reward-
collecting travelling salesman problem (RC-TSP). In contrast
to the RC-TSP, where salesman’s overall reward depends on
a set of node-specific values that decays upon visitation, an
stochastic variant may suffer from the added difficulty of
partial observability and multiple salesmen moving simultane-
ously, resembling the mobility game. In [8], authors show that
masking is beneficial in solving RC-TSP to prevent visiting an
already visited node and getting penalized. Thus, we introduce
a fleet rebalancing mask computed using local observations to
1) explore farther away depots in low-demand environments,
and 2) prevent one from choosing depots in the observable
range that does not contain matching payloads.

Formally, we mask the query values of each depot that is in
the observation range, but does not contain a suitable payload
such that, qd = −∞ for all d ̸∈ {d|∀p ∈ Pd,Cap(p) ≤
Cap(v),∀d}. From a mobility perspective, we resemble this
to an intrinsic fleet rebalancing mechanism.

VI. EXPERIMENTS AND RESULTS

A. Simulation Environment

We implemented the AAM environment on PettingZoo
framework [48], HetGAT Enc-Dec using the Deep Graph
Library (DGL) with a PyTorch back-end, and performed the
MARL using Ray RLlib [49] to scaling the training process.
We trained our system on an NVIDIA A100 GPU and an AMD

EPYC 7713 processor for 10 hours on Indiana University Big
Red 200 computing facility. 1

For evaluating the proposed approach, we consider a custom
AAM environment where a payload destination can either be
a client or a depot node; thus a modified client set is C′
= D ∪ C \ d and c ∈ C′. We categorize the payloads and
vehicles into three different sizes such that Cap(v), Cap(pdc),
∈ {1, 2, 3}, where Cap(v) = 3 denotes the largest of the
UAVs that can carry any payload, and Cap(v) = 1 indicates
the smallest that can only carry payloads of size 1. In the
experiments, we do not consider the scenario of a UAV car-
rying multiple payloads at once. Throughout the experiments,
we used p max = 5 as the maximum payload queue length
of a depot. The vehicles use a constant velocity trajectory
to navigate to their destinations. For the on-demand scenario
we consider a simulation episode of 400 ∆t timesteps, and
a horizon length T = 50 active timesteps where the agents
are allowed to take actions. During the training, we skip non-
active timesteps to improve efficiency and prevent the training
algorithm from accumulating unnecessary observations. The
training environment comprise of 24 × 24 discrete cells where
the depot and client nodes are approximately evenly positioned
in each quadrant. Fig. 6 shows a simulation environment with
2 vehicle agents delivering payloads to clients, where Fig. 13
shows a densely populated simulation environment.

1) Populating Payloads: The payload requests may ar-
rive at depot d every 50 ∆t intervals following a Poisson
process whose rate parameter is chosen uniformly from the
set {0.01, 0.05, 0.025}. We have chosen the rate parameters
to reflect the imbalanced request arrival nature at different
depots in a city, where a higher parameter may simulate the
behavior of a high-demand depot. For every incoming request
pd. we assign a capacity Cap(pd.) by sampling from the
normal distribution Normal(ᾱd, 0.1), such that the rounded
Cap(pd.) ∈ {1, 2, 3}. Here ᾱd is the expected payload size
at depot d. Typically, in a practical last-mile delivery system,
it is more likely that the payload requests arriving at a depot
require delivering to a destination closer to the origin than
those further away for various reasons, including minimizing
the carbon footprint. We mimic this behavior in the training by
ordering the nodes by their distance, in a normally distributed
manner.

2) Reward Function: The maximum payoff that an agent
can obtain by delivering a payload Payoff(pdc) depends on
the distance between the origin and the destination, and the
payload size. Specifically, we define the payoff as a nonlinear
function of the distance using the taxi fare computation scheme
proposed in [6]. In practice, this prevents the vehicles from
unfairly gaining high payoffs that linearly increase with the
distance. We observed that non-linear rewarding scheme to 1)
discourage certain depots with longer rides from emerging as
dominating actions in the game from preventing asymmetric

1It is also possible to train the HetGAT Enc-Dec policy on a desktop
computer with an NVIDIA RTX 3090 GPU and an Intel 12700K CPU under
10 hours.

(a) (b) (c) (d)

Fig. 6. Snapshots of a simple AAM simulation with 2 different vehicles, 5 clients, and 3 depots. (a) Both the vehicles are delivering payloads picked up
at their initial depots to the clients. (b) An active timestep: B reaches the destination client, drops off the payload and collects a positive reward. A is still
completing the delivery. (c) The next active timestep: A drops off the payload and collects a positive reward. B travels to a chosen depot to pick up another
payload. (d) The next active timestep: A reaches an invalid depot, and collects a reward of -5. B is on its way to deliver another payload. Elapsed ∆t timesteps,
total fulfillments, and the total fleet reward are displayed at the bottom of each image.

0 50 100 150 200 250
Active Timesteps (X1000)

60

80

100

120

140

160

Fl
ee

t R
ew

ar
d

HetGAT Enc-Dec
HetGAT
HetGCN

Fig. 7. Training performances of HetGAT Enc-Dec architecture compared
to HetGAT and HetGCN after 250000 active timesteps. A heterogeneous fleet
of 6 vehicles, 2 vehicles from each category, 10 depots and 12 client nodes
were used for the training.

vehicle distribution, 2) stabilize the training process. Thus,

Payoff(pdc) = q1||xd − xc||2 + q2||xd − xc||+ q3Cap(p
dc),
(7)

for d ∈ D, c ∈ C′, q1 < 0, and q2,q3 > 0. Specifically,
under this payoff scheme, the vehicles are incentivized in a
concave fashion rather a linear fashion, thus selecting farther
depots is not always preferred. The payload size acts as a
flag fall cost multiplied by q3 in the payoff function. The net
reward rv of v for choosing a depot is the difference between
the maximum payoff and the vehicle’s travel cost to reach the
depot for picking up the payload (Eq. 8). Thus,

rtv =

Payoff(pdc)− q4||xt

v − xd||, if d is valid,
0 if d is invalid and xd = xv,

−5 otherwise.
(8)

In other words, if the vehicle chooses a depot that returned
a suitable payload, it may complete the delivery and obtain
a reward according to the first case. In the cases where the
chosen depot does return with a suitable payload, the vehicle
may receive a penalty of −5 rewards, except when the chosen

depot is its current location. By considering the distance
between the nodes in the mobility network, we chose the
coefficients q1 = −0.0167, q2 = 1, q3 = 2, and q4 = 0.2 to
flatten the concave payoff curve at a maximum trip distance of
30 units. For more information on calculating the coefficients
we refer the readers to [6].

B. One-Shot Training and Comparison

We observed training the agents directly in the on-demand
mobility environment to cause a skewed behavior where agents
largely preferred busier depots, causing an imbalance in the
mobility network. Inspired by the RC-TSP, we propose a
step-wise approach: first training the vehicle agents in an
environment that only gets populated once, –that we call “one-
shot training”, and simulating until either all the payloads are
delivered or reach a fixed duration of 100 ∆t timesteps. This
encourages the agents to continuously fulfilling the payloads
in an increasingly scarce environment, requiring them to take
more exploratory actions to minimize penalization.

We used a fixed-size heterogeneous vehicle fleet that com-
prises 6 vehicles – 2 from each capacity, and a fixed obser-
vation range of kv = 5 and kd = 5, 10 depots and 12 clients
for one-shot training (highlighted in in Table I). The expected
arrival rates, and the expected payload sizes were randomized
to prevent the model from overfitting and to generalize better
to different environments.

We compare the performances of HetGAT Enc-Dec to two
other GNN architectures: vanilla HetGAT and Heterogeneous
Graph Convolutional networks (HetGCN). Fig. 7 shows the
total fleet reward, the sum of all the agents’ rewards acquired
under each policy architecture against the number of active
timesteps trained. During the one-shot training, the HetGAT
Enc-Dec policy significantly outperformed the HetGAT and
HetGCN MARL policies. The vanilla HetGAT and the Het-
GCN module architectures resembled that of the encoder with
similar semantic relations showed in Fig. 4, yet the final layer
depot representations h⃗d directly corresponded to the action-
value output of a depot. Appendix A provides the implemen-

HetGAT
Enc-Dec

HetGAT
Enc-Dec
Masked

HetGAT HetGCN Random
Policy

ODLA
0

25

50

75

100

125

150

175

200

Fl
ee

t R
ew

ar
d

Total Fleet Reward

(a)

HetGAT
Enc-Dec

HetGAT
Enc-Dec
Masked

HetGAT HetGCN Random
Policy

ODLA
0

10

20

30

40

50

60

70

80

Fu
lfi

llm
en

t %

Payload Type: 1
Payload Type: 2
Payload Type: 3

(b)

Fig. 8. Total fleet reward (a) and fulfillment rates (b) in an one-shot
population environment against different policy architectures and ODLA. The
environment comprises of 6 UAVs with 2 from each capacity, 10 depots and
12 client nodes.

tation information for the three neural network architectures
and the training hyperparameters. Despite being limited in
its ability to generalize to different mobility networks, we
also experimented Long-Short Term Memory (LSTM) pol-
icy network yet, its training performances were significantly
worse compared to the others; thus, we exclude it in further
evaluations. Each experiment comprise 20 simulation episodes
that lasted 400 ∆t timesteps. We compared the general-sum
POSG results to a fully-observed, on-demand payload request
assignment (ODLA) approach.

In ODLA, we assign the requests to the vehicles in a
centralized manner by solving a linear assignment problem
as discussed in [50], minimizing the total cost (negative
net reward) of the vehicles at a given timestep t where
1avail(v

t) = 1. This approach resembles maximizing 2a
at timestep t = 0 given the full system state iteratively,
thus, eliminating the need for having to model the stochastic
AAM environment explicitly. Additionally, it circumvents the
requirement to modify the optimization problem as the avail-
able number of vehicles changes dynamically. To solve the
optimization problem, we construct a rectangular matrix that
tabulates the cost of undertaking each payload by the available
vehicles. We set the cost to ∞ if the payload size exceeds a
vehicle’s capacity. From a game-theoretic perspective, ODLA
represents an approximate social optimum policy. However, we
underscore that the centralized assignment nature violates the
partial observability, and self-interested constraints imposed
on the stochastic game immediately, thus we do not seek a
POSG policy that surpasses the socially-optimum policy in
the experiments.

Fig. 8(a)-8(b) show the performances of different policies
measured by the total fleet reward and the payload fulfillment
percentage in the one-shot population environment. The fleet
composition remains unchanged from that used in the training.
The proposed HetGAT Enc-Dec policy outperforms both Het-
GAT, HetGCN, and the random policy by a significant margin.
Thanks to the masked policy’s ability to explicitly ignore the
empty depots in the one-shot partially-observable environment,
it performs marginally better (9% higher fleet rewards, less
than 1% higher delivery fulfillment) compared to the HetGAT
Enc-Dec policy.

HetGAT
Enc-Dec

HetGAT
Enc-Dec
Masked

HetGAT HetGCN Random
Policy

ODLA
0

100

200

300

400

500

600

700

800

Fl
ee

t R
ew

ar
d

Total Fleet Reward

(a)

HetGAT
Enc-Dec

HetGAT
Enc-Dec
Masked

HetGAT HetGCN Random
Policy

ODLA
0

20

40

60

80

Fu
lfi

llm
en

t %

Payload Type: 1
Payload Type: 2
Payload Type: 3

(b)

HetGAT
Enc-Dec

HetGAT
Enc-Dec
Masked

HetGAT HetGCN Random
Policy

ODLA
0

100

200

300

400

500

Fl
ee

t R
ew

ar
d

Total Fleet Reward

(c)

HetGAT
Enc-Dec

HetGAT
Enc-Dec
Masked

HetGAT HetGCN Random
Policy

ODLA
0

20

40

60

80

100

Fu
lfi

llm
en

t %

Payload Type: 1
Payload Type: 2
Payload Type: 3

(d)

Fig. 9. Total fleet reward and the percentage of total deliveries fulfilled
in high- (Top) and low-yielding (Bottom) on-demand mobility environments
against different policy architectures. The two environments received a highest
average arrivals of 103.5 and 69.7 payload requests respectively. In the total
payload requests arrivals, 49.76%, 35.62% and 14.6% corresponds to category
1, 2 and 3 type payloads. The fleet size remains the same as in the one-shot
environment.

C. Transferability from One-shot to On-Demand Environments

The real-world mobility environments are often subject to
varying demand patterns; i.e., the depots in the same city
may experience much lower demands during the after-hours.
To assess the learned policy’s ability to handle such demand
asymmetries, we experiment with two sets of payload arrival
parameters, high- and low-yielding, namely. The payload
requests in the low-yielding scenario use previously unseen,
halved Poisson arrival rate parameters {0.005, 0.025, 0.0125}.
Fig. 9(a)-9(d) report the learned policy’s performances in the
two environments.

The vehicle fleets operating under HetGAT Enc-Dec masked
and HetGAT Enc-Dec policies reported the highest fleet
rewards in high- and low-yielding scenarios, respectively,
compared to the HetGAT, HetGCN, and Random policies.
Although the fleet reward under the masked policy falls
marginally behind the unmasked policy in the low-yielding
environment, according to Fig. 9(b), 9(d), both the policies
report roughly equal fulfillment rates in each environment. In
contrast, the HetGAT and HetGCN -based policies have opted
for higher fulfilling ratios at the expense of individual revenue.
HetGCN policy, however, reports higher fleet reward than the
HetGAT, and a fulfillment ratio closest to the socially optimal
policy in the low-yielding environment. These statistics show
that our HetGAT Enc-Dec Masked can generally achieve the
highest individual and fleet rewards, successfully reflecting the
self-interest of the agents. This behavior can greatly benefit
high-affinity, commercial AAM, and AMoD fleets, where the

TABLE I
POLICY GENERALIZATION TO DIFFERENT FLEETS AND ON-DEMAND ENVIRONMENTS FOR A HETGAT ENC-DEC POLICY WITH MASKING.

Fleet # Depots # Clients # Payload Req. % Fulfillments Fleet Reward Rew. V1 Rew. V2 Rew. V3

(2,2,2) 5 5 51.4±17.3 92.8±4.9 372.8±129.8 47.2±40.7 127.3±53.7 198.2±66.6
(2,2,2) 10 12 80.1±5.4 80.4±5.5 559.5±107.8 100.7±69.9 207.4±43.6 251.3±40.3
(0,2,4) 10 12 95±14.2 85.5±6.4 695.8±117.2 0±0 210.3±39.0 484.2±89.5
(3,3,4) 15 12 141.9±22.1 78.0±5.3 999.6±218.6 168.5±90.4 327.6±75.7 503.0±99.1
(3,3,4) 15 24 151.6±19.0 81.3±3.9 963.9±163.3 149.7±96.6 328±50.4 486.2±62.3
(4,4,7) 15 24 254.8±12.2 84.9±2.4 2099.6±136.7 377.1±70.6 501.6±43.4 1220.8±75.0

6 9 12
Fleet Size

100

200

300

400

500

600

700

800

900

Fl
ee

t R
ew

ar
d

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN
ODLA

(a)

6 9 12
Fleet Size

75

80

85

90

95

Fu
lfi

llm
en

t %

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN
ODLA

(b)

6 9 12 15
Fleet Size

400

600

800

1000

1200

1400

1600

Fl
ee

t R
ew

ar
d

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN
ODLA

(c)

6 9 12 15
Fleet Size

60

70

80

90

Fu
lfi

llm
en

t %

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN
ODLA

(d)

Fig. 10. Fleet reward and fulfillment rate for different fleet sizes against
other generalizable POSG solutions and fully-observable ODLA. Top: An
environment with 10 depots, 12 clients with closest kd=5 observation topol-
ogy. Bottom: An environment with larger service area of 15 depots, 12 clients
with closest kd=8 observation topology. Only 50% error in rewards is showed
for HetGAT Enc-Dec and HetGAT policies for clarity.

vehicles must maximize the owners’ revenue while operating
under partial observations.

Consistent with the performances in the one-shot envi-
ronment, the masked HetGAT Enc-Dec reports 9.8% and
roughly 2% higher fleet rewards and fulfillments compared
to the unmasked policy in the on-demand environment with
the same rate parameters. According to Fig. 8, in the one-
shot population environment, under the POSG formulation, the
HetGAT Enc-Dec policy only falls short 13.8% and 9% of the
ODLA in fleet reward and the fulfillment ratio, respectively.
Fig. 9(a)-9(b) reports similar statistics for the on-demand
environment; 14% and 6%, respectively. Following these con-
sistent observations, we confirm that our HetGAT Enc-Dec
MARL policies show excellent transferability between one-
shot and on-demand payload populations, thus suitable for
fleet coordination in either AAM POSG environment without
reconfiguration.

D. Generalizability to Varying Fleets and Environments

To ensure uninterrupted service, and maximize the fleet
revenue with the fulfillment rate, a vehicle coordination policy
operating in a mobility network must generalize to several fluc-
tuations in the heterogeneous fleet composition, fleet size, and
service area. We evaluated the performances of our HetGAT
Enc-Dec policy to generalize to such fluctuations; by changing
the fleet size, vehicle combinations, the number of depots,
and the client nodes in the AAM environment. We report the
experimental results in Table I. The “Fleet” and “Rew. V.”
columns denote 1) the fleet composition as the number of
vehicles from each capacity as a tuple 2) and the reward of
each vehicle type. The last row shows the experiment results
when there is an increased demand from the clients, a scenario
we simulated by doubling the payload arrival rates.

The results show that when increasing the number of depots
in the environment while keeping the fleet size constant,
all the vehicles receive higher rewards, thus increasing the
fleets’ collective utility, mainly because a vehicle doesn’t
need to travel as far to find suitable payloads thanks to the
abundance of resources. Additionally, larger vehicles tend to
collect higher rewards than smaller ones due to their ability to
attend to more payload types. Therefore, as one might expect,
replacing smaller vehicles with larger ones increase the fleets’
reward (I, Row 3). Additionally, by adding more vehicles to
the fleet, we can cater to the heightened demand caused by
newly added depots. We experience a slight drop in the fleets’
reward when introducing more client nodes to the system who
do not contribute with payload requests but only act as the
destinations (Recall that the deliveries can happen between
any two depot or depot and client nodes).

We account this reduction to the inability of the vehicles to
pick up new payloads at their delivery destinations, as opposed
to depot-depot deliveries, where a destination may also contain
payload requests. However, when the newly introduced nodes
cause a surge of payloads, fleets’ collected rewards were
observed to increase. This observation conforms with the real-
world notion that service areas with low-demand, scattered
destinations are often less preferred by human drivers due to
the reduced payoff.

E. Policy Generalizability Comparisons

We evaluated the HetGAT Enc-Dec policy’s performances
in generalizing to different fleet sizes, service areas, payload
arrival imbalances, and observation topologies. Throughout the
experiments, we maintained a 1:1:1 ratio of vehicles from each

6 9 12
Fleet Size

300

200

100

0

100

200

300

400

Fl
ee

t R
ew

ar
d

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN

(a)

6 9 12
Fleet Size

80

82

84

86

88

90

92

94

Fu
lfi

llm
en

t %

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN

(b)

6 9 12
Fleet Size

100

0

100

200

300

400

Fl
ee

t R
ew

ar
d

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN

(c)

6 9 12
Fleet Size

80

82

84

86

88

90

92

94
Fu

lfi
llm

en
t %

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN

(d)

Fig. 11. Top: Fulfillment and fleet rewards evaluations for different fleet
sizes operating in a low-yielding environment with 10 depots and 12 clients
using kd=5 (50% depots observability). Bottom: Same environment and
fleet configurations with a higher observation range kd=8 (80% depots
observability). Only 50% error in rewards is showed for HetGAT Enc-Dec
and HetGCN policies for clarity.

33% 66% 100%
Depots Observed

600

700

800

900

1000

1100

1200

1300

1400

Fl
ee

t R
ew

ar
d

HetGAT Enc-Dec
HetGAT Enc-Dec Masked
HetGAT
HetGCN
ODLA

Fig. 12. Fleet reward against the percentage of depots observed. An
environment consists of 15 vehicles, 15 depots and 12 clients were used for
the experiment.

type in the fleet, kv = 5 vehicle observability, and 50% depot
observation.

Fig. 10(a)-10(b) show the fleets’ collective reward, and the
fulfillment rate when changing the fleet size in a service
area with 10 depots. As the fleet size increases we observe
a generally downward trend in collective reward acquired
by all the policies, due to the increased competition within
the fleet. In other words, when the environment is saturated
with vehicles, 1) one’s nearby payloads are getting fulfilled
sooner, thus causing it to travel farther in sought of suitable
payloads, 2) and getting penalized more often from selecting
empty depots, thus reducing the net reward. Fig. 10(b) shows
however, adding new vehicles increases the fulfillment ratio
due to the competition. Fig. 10(c)-10(d) shows that adding

more depots causes the vehicles to obtain higher rewards,
and the environment saturates much slower. The masked
HetGAT Enc-Dec achieved the highest collective reward, and
fulfillment rate in both environments compared to the other
generalizable policy architectures, by only requiring a smaller
number of vehicles to saturate the environment. In real-world
fleets, this characteristic directly translates to lower operational
costs, and subsequently higher revenue margins. We observe
that the variance in the fleet reward increases with the fleet
size in both the ODLA and POSG solutions, that we account
for the inherent stochasticity in the data generation, and the
depots’ assignment policy Ψ. In other words, we believe
that the randomness of generating the delivery requests, and
their destinations could accumulate the variance in the fleet
reward as the vehicles fulfill more requests. Although all the
POSG solutions tend to deviate from the social-optimum when
exposed to previously unseen fleet combinations, it can be seen
that the proposed approaches generalize much better compared
to other policy architectures.

We compared the agents’ performances in low-yielding
environments by keeping the fleet composition unchanged.
Fig. 11(a) shows that introducing more agents to resource-
limited environments further degrades the fleet reward in all
four generalizable policy models. Fig. 11(c) shows that the
fleet rewards under both HetGAT Enc-Dec policies degrade
more gracefully than other GNN policies while achieving the
highest fulfillment rates in the low-yielding environments. In-
terestingly, Fig. 11(c)-11(d) shows that changing the vehicles’
observation range up to 80% of the available closest depots
to result in improved performances of the HetGAT Enc-Dec
policies. We state that this behavior highlights the ability
of the HetGAT Enc-Dec policy’s ability to incorporate new
information to improve the quality of the decisions. We also
notice that despite not using the attention mechanism, HetGCN
to outperform HetGAT in scalability experiments, as shown in
Fig. 11(b) - 11(d).

F. Adaptability to Varying Observation Topologies

We evaluate the fleets’ reward and the fulfillment rate
against different observation topologies. Throughout the ex-
periment, we kept the number of observed vehicles fixed while
increasing the visibility of the depots: a realistic consideration
as disclosing the other vehicle’s locations is less desirable
in the pursuit of higher rewards due to privacy concerns.
Fig. 12 shows that our masked HetGAT Enc-Dec policy
increases the fleets’ reward exponentially as the observability
reaches 100%, a contrasting difference to the other policies.
This showcases our approach’s ability to handle time-varying
observational topologies, which often arise in AAM due to the
stochasticity in wireless networks. Briefly, to maximize the
agents’ rewards in low-yielding environments, we advocate
1) operating the vehicle agents under the masked HetGAT
Enc-Dec policy, and 2) revealing more depot information to
the agents. All the generalizable POSG solutions presented
herewith tend to deviate from the social optimum as the fleet
size increases, especially under low-yielding environments, see

Fig. 13. A snapshot of a densely populated simulation environment used
for experiments that consists of 10 vehicles, 10 depots, and 12 clients. The
environment contains 3 types of vehicles with different capacities and 2 types
of depots (R, W) with different expected payload capacities. The number of
available payloads from each type is denoted below the depots..

Fig. 11(a)-11(c). However, from Fig. 12 it can be seen that the
HetGAT Enc-Dec approach we have proposed gets closer to
the social optimum when exposed to more observations on the
environment when coupled with a rebalancing mask. Fig. 13
shows a densely populated simulation environment used in the
experiments.

VII. DISCUSSION AND CONCLUSION

We present a novel, generalizable, multi-agent fleet au-
tonomy for coordinating heterogeneous mobility fleets in
a decentralized manner under partial observations building
on HetGAT and encoder-decoder neural networks. Extensive
experiments conducted under different fleet combinations,
service areas, observational topologies, and fulfillment request
arrival rates showed that agents fleets operating under HetGAT
Enc-Dec policies outperform the other generalizable policy
architectures. The novel fleet rebalancing mask further im-
proved the ability of our method to perform in low-yielding
on-demand mobility networks and especially to incorporate
the observational topologies beyond that were used in the
training time into the decision-making. The new insights show
that the proposed HetGAT Enc-Dec, when coupled with an
agent rebalancing mask could yield more close-to-optimal
results. The two policy architectures we proposed further
achieved the highest fleet reward using the minimum number
of vehicles compared to other generalizable POSG solutions
while maximizing the fulfillment ratios: a highly sought-after
characteristic for commercial mobility fleets.

REFERENCES

[1] S. Bradford, “Concept of operations for urban air mobility (conops 1.0),”
Federal Aviation Administration, 2020.

[2] S. Vasani, “Amazon’s started to deliver orders by drones in cal-
ifornia and texas.” https://www.theverge.com/2022/12/28/23529705/
amazon-drone-delivery-prime-air-california-texas, Dec 2022.

[3] V. Lappas, G. Zoumponos, V. Kostopoulos, H. I. Lee, H.-S. Shin,
A. Tsourdos, M. Tantardini, D. Shomko, J. Munoz, E. Amoratis, et al.,
“Eurodrone, a european unmanned traffic management testbed for u-
space,” Drones, vol. 6, no. 2, p. 53, 2022.

[4] M. Tsao, D. Milojevic, C. Ruch, M. Salazar, E. Frazzoli, and M. Pavone,
“Model predictive control of ride-sharing autonomous mobility-on-
demand systems,” in 2019 International Conference on Robotics and
Automation (ICRA), pp. 6665–6671, IEEE, 2019.

[5] D. Gammelli, K. Yang, J. Harrison, F. Rodrigues, F. C. Pereira,
and M. Pavone, “Graph neural network reinforcement learn-
ing for autonomous mobility-on-demand systems,” arXiv preprint
arXiv:2104.11434, 2021.

[6] H. Yang, C. Fung, K. I. Wong, and S. C. Wong, “Nonlinear pricing
of taxi services,” Transportation Research Part A: Policy and Practice,
vol. 44, no. 5, pp. 337–348, 2010.

[7] M. Fernando, R. Senanayake, and M. Swany, “Coco games: Graphi-
cal game-theoretic swarm control for communication-aware coverage,”
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 5966–5973,
2022.

[8] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” arXiv preprint arXiv:1803.08475, 2018.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[10] A. Oroojlooy and D. Hajinezhad, “A review of cooperative multi-agent
deep reinforcement learning,” Applied Intelligence, pp. 1–46, 2022.

[11] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI open, vol. 1, pp. 57–81, 2020.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[13] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning
in graph domains,” in Proceedings. 2005 IEEE international joint
conference on neural networks, vol. 2, pp. 729–734, 2005.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention
networks for scalable multi-robot scheduling with temporospatial con-
straints,” Autonomous Robots, vol. 46, no. 1, pp. 249–268, 2022.

[16] C. Jin, T. Ruan, D. Wu, L. Xu, T. Dong, T. Chen, S. Wang, Y. Du, and
M. Wu, “Hetgat: a heterogeneous graph attention network for freeway
traffic speed prediction,” Journal of Ambient Intelligence and Humanized
Computing, pp. 1–12, 2021.

[17] Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-aware graph attention
networks for large-scale multi-robot path planning,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5533–5540, 2021.

[18] Y. Yang and J. Wang, “An overview of multi-agent reinforce-
ment learning from game theoretical perspective,” arXiv preprint
arXiv:2011.00583, 2020.

[19] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of Rein-
forcement Learning and Control, pp. 321–384, 2021.

[20] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[21] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

[22] E. Seraj, Z. Wang, R. Paleja, D. Martin, M. Sklar, A. Patel, and
M. Gombolay, “Learning efficient diverse communication for cooper-
ative heterogeneous teaming,” in Proceedings of the 21st international
conference on autonomous agents and multiagent systems, pp. 1173–
1182, 2022.

[23] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and
Multiagent Systems: AAMAS 2017 Workshops, Best Papers, São Paulo,
Brazil, May 8-12, 2017, Revised Selected Papers 16, pp. 66–83, Springer,
2017.

https://www.theverge.com/2022/12/28/23529705/amazon-drone-delivery-prime-air-california-texas
https://www.theverge.com/2022/12/28/23529705/amazon-drone-delivery-prime-air-california-texas

[24] A. Deka and K. Sycara, “Natural emergence of heterogeneous strategies
in artificially intelligent competitive teams,” in Advances in Swarm
Intelligence: 12th International Conference, ICSI 2021, Qingdao, China,
July 17–21, 2021, Proceedings, Part I, pp. 13–25, Springer, 2021.

[25] W. Zhang, H. Liu, J. Han, Y. Ge, and H. Xiong, “Multi-agent graph
convolutional reinforcement learning for dynamic electric vehicle charg-
ing pricing,” in Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pp. 2471–2481, 2022.

[26] A. Carron, F. Seccamonte, C. Ruch, E. Frazzoli, and M. N. Zeilinger,
“Scalable model predictive control for autonomous mobility-on-demand
systems,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 2, pp. 635–644, 2019.

[27] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg,
“Dynamic multi-robot task allocation under uncertainty and temporal
constraints,” Autonomous Robots, vol. 46, no. 1, pp. 231–247, 2022.

[28] G. Oh, Y. Kim, J. Ahn, and H.-L. Choi, “Task allocation of multiple uavs
for cooperative parcel delivery,” in Advances in Aerospace Guidance,
Navigation and Control, pp. 443–454, Springer, 2018.

[29] O. Salzman and R. Stern, “Research challenges and opportunities in
multi-agent path finding and multi-agent pickup and delivery problems,”
in Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1711–1715, 2020.

[30] M. Guériau, F. Cugurullo, R. A. Acheampong, and I. Dusparic, “Shared
autonomous mobility on demand: A learning-based approach and its
performance in the presence of traffic congestion,” IEEE Intelligent
Transportation Systems Magazine, vol. 12, no. 4, pp. 208–218, 2020.

[31] A. Wallar, M. Van Der Zee, J. Alonso-Mora, and D. Rus, “Vehicle
rebalancing for mobility-on-demand systems with ride-sharing,” in 2018
IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp. 4539–4546, IEEE, 2018.

[32] K. Meneses-Cime, B. Aksun Guvenc, and L. Guvenc, “Optimization of
on-demand shared autonomous vehicle deployments utilizing reinforce-
ment learning,” Sensors, vol. 22, no. 21, p. 8317, 2022.

[33] K. Solovey, M. Salazar, and M. Pavone, “Scalable and congestion-
aware routing for autonomous mobility-on-demand via frank-wolfe
optimization,” arXiv preprint arXiv:1903.03697, 2019.

[34] Q. Xu, J. Li, S. Koenig, and H. Ma, “Multi-goal multi-agent pickup
and delivery,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 9964–9971, IEEE, 2022.

[35] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2019.

[36] S. Choudhury, K. Solovey, M. J. Kochenderfer, and M. Pavone, “Effi-
cient large-scale multi-drone delivery using transit networks,” Journal
of Artificial Intelligence Research, vol. 70, pp. 757–788, 2021.

[37] Y. Choi and P. M. Schonfeld, “Optimization of multi-package drone
deliveries considering battery capacity,” in Proceedings of the 96th
Annual Meeting of the Transportation Research Board, Washington, DC,
USA, pp. 8–12, 2017.

[38] B. Alkouz and A. Bouguettaya, “A reinforcement learning approach
for re-allocating drone swarm services,” in International Conference on
Service-Oriented Computing, pp. 643–651, Springer, 2021.

[39] M. L. Littman, “Markov games as a framework for multi-agent reinforce-
ment learning,” in Machine Learning Proceedings 1994, pp. 157–163,
Elsevier.

[40] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[41] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning, pp. 387–395, PMLR, 2014.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[43] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of ppo in cooperative, multi-agent games,” arXiv
preprint arXiv:2103.01955, 2021.

[44] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar,
“A survey on aerial swarm robotics,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 837–855, 2018.

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[46] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and
P. Poupart, “Representation learning for dynamic graphs: A survey,” The
Journal of Machine Learning Research, vol. 21, no. 1, pp. 2648–2720,
2020.

[47] Y. Zhu, F. Lyu, C. Hu, X. Chen, and X. Liu, “Learnable encoder-
decoder architecture for dynamic graph: A survey,” arXiv preprint
arXiv:2203.10480, 2022.

[48] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan,
L. S. Santos, C. Dieffendahl, C. Horsch, R. Perez-Vicente, et al.,
“Pettingzoo: Gym for multi-agent reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 34, pp. 15032–15043, 2021.

[49] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Gold-
berg, and I. Stoica, “Ray rllib: A composable and scalable reinforcement
learning library,” arXiv preprint arXiv:1712.09381, vol. 85, 2017.

[50] D. F. Crouse, “On implementing 2d rectangular assignment algorithms,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 4,
pp. 1679–1696, 2016.

APPENDIX A
NEURAL NETWORK ARCHITECTURES

For the fully-connected neural network fc val, we used a
two hidden-layers with the input features vectorized together.
The output layers in the fc val maps from the number of
depots to a scalar value.

TABLE II
TRAINING PARAMETERS

Model/Training Params. Batch Size Minibatch
Size

Entropy
Coeff.

HetGAT Enc-Dec 1200 48 10−2

HetGAT/HetGCN 1200 48 10−3

TABLE III
DIFFERENT HETGAT NEURAL NETWORK ARCHITECTURES.

Layers/Type HetGAT-Enc
(V , D, P)

HetGAT-Dec
(g, D, val)

HetGAT
HetGCN
(V , D, P)

Layer 1
Input/Output
Dim.

(5,4,4)
(32,32,32)

(192,64,32)
(48,48,48)

(5,4,4)
(32,32,32)

Att. Heads 8 8 8

Layer 2
Input/Output
Dim.

(32,32,32)
(32,32,32)

(48,48,48)
(64,64,64)

(32,32,32)
(32,32,32)

Att. Heads 8 1 8

Layer 3
Input/Output
Dim.

(32,32,32)
(64,64,64)

fc val (64)
1

(32,32,32)
(64,1,64)

Att. Heads 1 1 1

We show the implementation details for each neural network
used in this work in Table III. The HetGCN network uses
the same combination of layers as the HetGAT, except for
the attention heads, the distinguishing feature of attention
type neural networks. The HetGAT network we used for
the experiments shares the same architecture as the HetGAT-
Encoder. For the training, we used a learning rate that decayed
over a course of 300000 active timesteps from 10−4 to 10−5.
We list all the training parameters used for PPO in Table III
and below.

• SGD iterations - 8
• Value function loss coefficient - 5× 10−3

• Clip parameter - 0.1
• λ (PPO) - 0.95
• γ - 0.99

	Introduction
	Related Work
	Neural Networks for Learning Graph-Structured Data
	Deep Multi-Agent Reinforcement Learning
	Autonomous Mobility Fleet Coordination

	Background
	Partially Observable Stochastic Games
	Policy Gradient Deep Reinforcement Learning

	Partially Observable AAM Game
	Hierarchical Timescales
	Partially Observable Stochastic AAM

	Graph Attention MARL For Solving AAM
	The Heterogeneous Mobility Network
	Depots
	Payloads
	Vehicles

	Time-Varying Heterogeneous Interaction Graph
	Representation Learning with HetGAT
	Graph Attention Policy Architecture
	Encoder
	Decoder
	Fleet Rebalancing Mask

	Experiments and Results
	Simulation Environment
	Populating Payloads
	Reward Function

	One-Shot Training and Comparison
	Transferability from One-shot to On-Demand Environments
	Generalizability to Varying Fleets and Environments
	Policy Generalizability Comparisons
	Adaptability to Varying Observation Topologies

	Discussion and Conclusion
	References
	Appendix A: Neural Network Architectures

