Robotics: Science and Systems 2025
Los Angeles, CA, USA, June 21-25, 2025

Learned Perceptive Forward Dynamics Model for Safe and
Platform-aware Robotic Navigation

Pascal Roth*T, Jonas Frey*i, Cesar Cadena*, and Marco Hutter*
* ETH Zurich T NVIDIA ¥ Max Planck Institute for Intelligent Systems
{rothpa, jonfrey, cesarc, mahutter } @ethz.ch

eight-Scan
B e o el e o = (fom e
Past States

M

e 10m

Waypoints

----- P Rewards -->-'~§[< Reward =~
Action

Simplified Reward
Formulation

Future
States &
Risks

Next
Action

)
i

Fig. 1: Demonstration of the proposed perceptive Forward Dynamics Model for robust navigation in complex environments. The model,
trained with real-world and simulation data, predicts the robot’s future states given a sequence of velocity actions. It takes as input the
surrounding geometry in the form of a height scan, along with past states and proprioceptive measurements. A sampling-based planner
evaluates the integrated paths based on simple reward functions to select the optimal next action in a receding horizon fashion. (A) Ten
example paths are visualized and overlaid on the environment image alongside the height map and the downsampled height scan (blue points).
Path colors indicate rewards, with the highest reward assigned to the closest collision-free trajectory to the goal. (B—E) Additional planning
events are shown, displaying sampled paths and the selected trajectory (green), demonstrating safe planning in rough terrain.

Abstract—Ensuring safe navigation in complex environments
requires accurate real-time traversability assessment and under-
standing of environmental interactions relative to the robot’s
capabilities. Traditional methods, which assume simplified dy-
namics, often require designing and tuning cost functions to
safely guide paths or actions toward the goal. This process
is tedious, environment-dependent, and not generalizable. To
overcome these issues, we propose a novel learned perceptive
Forward Dynamics Model (FDM) that predicts the robot’s future
state conditioned on the surrounding geometry and history of
proprioceptive measurements, proposing a more scalable, safer,
and heuristic-free solution. The FDM is trained on multiple
years of simulated navigation experience, including high-risk
maneuvers, and real-world interactions to incorporate the full
system dynamics beyond rigid body simulation. We integrate our
perceptive FDM into a zero-shot Model Predictive Path Integral
(MPPI) planning framework, leveraging the learned mapping
between actions, future states, and failure probability. This allows
for optimizing a simplified cost function, eliminating the need
for extensive cost-tuning to ensure safety. On the legged robot

ANYmal, the proposed perceptive FDM improves the position
estimation by on average 41% over competitive baselines, which
translates into a 27% higher navigation success rate in rough
simulation environments. Moreover, we demonstrate effective sim-
to-real transfer and showcase the benefit of training on synthetic
and real data. Code and models are made publicly available
under https://github.com/leggedrobotics/fdm.

I. INTRODUCTION

Understanding robotic system dynamics is essential for
ensuring safe and effective control, particularly in complex
tasks like motion planning in contact-rich scenarios. The
dynamics of a mobile robot navigating within an environment
depend on its structure and interactions with the terrain. This
results in highly nonlinear behaviors that are challenging to
generalize across diverse scenarios [1]. Forward Dynamics
Models (FDM) are typically used to predict such complex
dynamics, estimating the robot’s future state conditioned on

the applied commands. These models capture the robot-terrain
interactions and implicitly provide a terrain traversability
estimate. Dynamic models must carefully balance key mod-
eling choices, including state representation, fidelity, time
horizon, and modeling frequency. While the dynamics of on-
and off-road vehicles have been extensively explored [2-4],
quadrupedal robots present unique challenges due to their
complex system dynamics and difficult-to-model environmental
interactions [5]. Moreover, their learned locomotion policies,
which rely on deep neural networks, additionally complicate
the modeling of the robot’s behavior.

Traditional physics-based models that are derived from first
principles and calibrated using system identification often fail
to capture the dynamics accurately. They specifically struggle
in contact-rich scenarios, which introduce additional non-
linearities and require accurate perception [6]. Further, they can
be computationally expensive and sensitive to initial conditions.
Consequently, those models face challenges when it comes to
accurately modeling system dynamics, which in turn results in
biased predictions and persistent modeling errors.

To overcome these limitations, data-driven approaches have
emerged as a promising alternative to approximate complex
dynamics. However, training neural networks to represent robot
dynamics often requires substantial amounts of state-action
trajectories, motivating the use of synthetic data to mitigate
the challenges of collecting extensive real-world datasets [S].
Further, simulation allows performing dangerous or catastrophic
maneuvers that harm the real robot, such as falling or colliding.
While the simulator’s complex physics modeling is accurate
in rigid-body scenarios, it is computationally expensive and
fails to capture scenarios outside of its domain. As a result,
it becomes necessary to distill the dynamics into a learned
model for sufficient inference speed on a compute-restricted
mobile robot [5]. Moreover, real-world data remains essential
for addressing unmodeled effects and bridging the reality
gap [7]. Addressing the gap between physics-informed and
learned models, approaches that integrate physics constraints
— such as kinematic laws or energy conservation — in the
learning setup show strong performance [6, §—10]. However,
they remain limited to short control timescales compared to the
longer planning timesteps addressed in this work. The first work
that employs a learned FDM on a quadrupedal system has been
done by [5]. Combined with their developed trajectory sampling
technique, they demonstrate reactive navigation in complex,
narrow environments. However, open challenges remain to
incorporate 3D perception to target rough environments and
the transfer from simulation to the real system.

This work introduces a perceptive, n-step Forward Dynamics
Model framework. The proposed approach combines pre-
training with synthetic data generated using a state-of-the-art
simulator and fine-tuning with real-world data. This hybrid
strategy leverages the safety and flexibility of simulation while
capturing real-world dynamics. The FDM is designed for both
legged and wheel-legged systems, marking the first application
of its kind in rough terrain environments. Our novel framework
extends the capabilities of sampling-based planner methods

by reducing the need for extensive parameter tuning and
providing a flexible solution for non-task-specific planning.
This enables zero-shot adaptation to new environments without
requiring additional learning steps. Additionally, the perception
capabilities of the model represent a significant step forward,
offering an attractive alternative to explicitly modeling the
environment’s traversability. The main contributions of this
work are as follows:

o The first application of a rough-terrain Forward Dy-
namics Model trained in simulation and deployed on
a quadrupedal robot. The model demonstrates reliable
sim-to-real transfer capabilities and robust performance
in rough terrain.

e« A hybrid training strategy using real-world data to
effectively capture the full system’s dynamics beyond
rigid-body simulation while leveraging synthetic data for
pre-training to safely account for high-risk scenarios.

o A simplified cost formulation for MPPI-based planning
that integrates the platform-specific FDM to enable safe
and reliable trajectory generation. The approach supports
zero-shot adaptation to new environments by cost-term
adjustments without the need for additional training.

II. RELATED WORK

A. Dynamics Modeling

The field of dynamics learning has predominantly focused
on data-driven solutions [1-4, 7, 11, 12], as models derived
from first principles and calibrated via system identification
often oversimplify or misrepresent system dynamics, leading
to bias and persistent modeling errors [6]. In contrast, learned
models can approximate complex, nonlinear dynamics from
large datasets [13, 14] while capturing uncertainties using
probabilistic neural network ensembles [11, 15]. To incorporate
environmental context, approaches integrate terrain information
via geometric measurements such as 2D LiDAR scans [5]
or height maps [4, 12, 16], as well as RGB images [7, 17]
Thereby, the dynamics models predict various aspects of future
states, including positions [5], visual observations [17], and
terrain properties such as bumpiness [7] or slippage [4, 18],
leveraging proprioceptive labels. Lately, world models have
emerged, which encode system dynamics in a latent space,
enabling policy optimization through imagined rollouts [19, 20].
Such models can also be used to directly estimate the next
suitable action [21]. The prior works dominantly focus on
wheeled robots [2-4, 7] or short-horizon predictions [6, 11],
often neglecting to incorporate proprioceptive data in the
observation space for terrain assessment. Pioneering work
targeting quadrupedal robots learned an FDM in simulation
with a 2D LiDAR scan as observation [5]. While achieving
navigation in narrow environments, open challenges remain to
go beyond flat scenes with 2D obstacles and to investigate the
transfer to reality. Our approach advances dynamics modeling
for quadrupeds by incorporating proprioceptive history and
height scans, enabling long-horizon predictions in rough terrain.
We improve the sim-to-real transfer performance by integrating

real-world data, which in turn results in robust navigation in
unstructured terrains.

B. Planning

Classical planning frameworks employ a modular structure,
combining mapping, traversability assessment, and sampling-
or optimization-based planning [22-29]. Traversability is
evaluated either through heuristics [30] or learned from experi-
ence [22-24]. Motion planning techniques such as MPPI [31]
or iCEM [32] sample action sequences, propagate them using
dynamics models, and select actions based on traversability
and task-specific reward functions. While effective, the MPPI
formulation requires extensive tuning and environment-specific
adjustments [23, 29, 31]. Our perceptive FDM mitigates this
by implicitly learning traversability and directly providing risk
scores for action sequences, eliminating the need for manual
assessment while retaining the flexibility of sampling-based
planning.

End-to-end learning approaches optimize planning policies
via unsupervised learning [33, 34] or reinforcement learning
(RL) [35, 36], directly mapping sensor inputs to motion
commands or paths. These methods offer fast inference and
avoid error accumulation across modules. While unsupervised
approaches rely on simplified dynamics and require manual
cost-map tuning, RL-based planners learn platform-aware
behaviors through experience but face sim-to-real transfer
challenges due to domain discrepancies. Our method addresses
domain discrepancies by incorporating real-world data into the
dynamics model while maintaining platform awareness through
learning from past experiences. Additionally, it preserves
the benefits of sampling-based planning, allowing flexible
adaptation of planning behavior without the need for retraining.

III. PRELIMINARIES
A. Dynamics Modeling

We adopt the Partially Observable Markov Decision Process
(POMDP) framework to model the system’s dynamics. A
POMDP is defined as a tuple (S, A,7,0,Z). Here, S
represents the set of states, capturing the possible configurations
of the system and its environment, while A denotes the set of
actions available to the agent. The state transition probabilities,
T (st41|st,a:), describe the likelihood of transitioning from
state s; to sz41 given an action a. Observations, drawn from
the set O, provide partial and noisy state information, with
Z(0¢]s:) specifying the observation probabilities, which reflect
the likelihood of receiving an observation o; given the state
s¢. The robot evolves according to a forward dynamics model
that maps the current state and action to the next state:

D

However, such model f is unknown due to the unobserv-
ability of the true state s;. To address this, we aim to learn an
approximate dynamics model f that predicts a subset of state
5 based on the action a; and observation o; € O:

St+1 — f(Sta at)-

§t+1 ~ f(Ot, (lt).

@

Instead of rolling out this model, which would require
learning the mapping from 5; to o, one can extend this one-
step model to an n-step prediction model for long-horizon
forecasting. Given the current observation o; and sequence of
actions a = as,__++,—1 We predict a sequence of future states

8 = St41,.. t+n-

Sz f(os,a). (3)
In practice, this mitigates the computational complexity asso-
ciated with long-horizon predictions.

B. Model Predictive Path Integral Control

This work incorporates the Model Predictive Path Integral
(MPPI) control framework to select action sequences a. The
selection over a set of C' candidates is performed by maximizing
a reward function R defined over the future states S, and the
goal pose g. Therefore, the action sequences must be forward-
propagated through the system’s dynamics over a prediction
horizon n to compute the future states.

5 R I~ 4
a = arg max, (8", 9))
= arg max R(f(a’,0:),9) Q)

1€[1,0]

The optimal action sequence is iteratively refined by perturb-
ing the previous solution with Gaussian noise, evaluating the
new set of candidates, and then performing a weighted update:

C
a<a+y woa, (6)
=1

where w; denotes the weight assigned to the i-th trajectory
and da; the action pertubation. These weights are computed
based on the reward R; of each trajectory, ensuring higher-
reward trajectories contribute more significantly to the update:

exp (% (Ri — Rmax))

2?21 GXP(%(RJ' - Rmax))

where ~ controls sensitivity to reward differences, and Rpax
represents the maximum reward among all sampled trajectories.

; (7

w; —

IV. PROBLEM STATEMENT
A. Dynamics Modeling

To enable accurate state predictions, we approximate the
n-step transition function introduced in Eq. 3 with a learned
model fg, parameterized by neural network weights 6. We
define the state § to be the tuple (p,r), where p € SE2 is
the robot’s pose and r € {0,1} is the failure risk of the
trajectory where 0 indicates risk-free and 1 a catastrophic
failure. The actions a € R are defined as the linear and angular
velocity in the x, y, and yaw direction. As observations o
(detailed in Tab. I), the model utilizes proprioceptive inputs,
including the robot’s past states 5; _;—, and measurements
mb7 = mifﬁn, along with the current height scan h;
as exteroceptive input, enabling perceptive predictions of the

Data-Colletion

Sampling

Commands

Proprioception,
= Exteroception,

Forward -Dynamics Model

Position &

* Heaging
Integration P

v

Commands State History | Pé,....t
g P
% L TOGE D Normahzatlon
A [History
-
2
o
+ + n-steps -2, Height-Scan
g
Random FDM-based =
Time-Correlated || Sampling Planner Future State Data Encoders
Command Sampler||Command Sampler Replay Buffer Information

Co -
Flatten
Forward Integration

- Fallur% Prob. T j

Fig. 2: Overview of the FDM training. Data is collected in a parallelized simulation setting and from real-world experiments. The proprioceptive
and exteroceptive measurements, along with velocity actions, are saved in a replay buffer from which training data is sampled. The information
about the current and past state of the robotic system is encoded and given to a recurrent unit, which generates a latent of the robot’s future
states conditioned on the applied actions. Different heads are used to predict the future SE2 poses and failure probabilities.

MPPI
Initial Solution I Tferaions
Pertubation
A Max-Reward

Action 1 ¢ Actions
[Distribution e a
Reward
R(D,F,9)
— Reward
Rpoae"‘Rrisk

Fig. 3: Overview of the MPPI-based planning approach. A population
of action trajectories is generated by perturbating an initial solution
with Gaussian noise. The presented FDM is then used to predict the
future states and the risk of the individual action sequences, which
are evaluated using a reward formulation. After % iterations, using
the previous highest reward action sequence as a starting point, the
sequence with the maximum reward is executed.

robot’s interaction with its environment. Accordingly, the
dynamics model estimates the future poses p = p¢. .. s+, and
failure risks ¥ = 7 :1,, taking into account the platform’s
capabilities, applied locomotion policy, and environmental
factors such as friction and terrain roughness. Similar to [12],
the neural network is parameterized using a residual formu-
lation. Instead of predicting direct pose estimates, the model
predicts residual velocities internally Aa and integrates the
final velocity trajectory using a constant-velocity model to final
pose estimates. Consequently, the objective of the dynamics
model becomes minimizing a combined loss comprising pose
prediction L. and failure risk prediction £,;.p:

0* = arg ngn (Lot Lnist) 5 @®)

where 6* denotes the optimized model parameters.

B. Planning

The planning objective is to identify a safe, collision-free,
and efficient sequence of actions a to navigate the robot
from its current pose p; to a goal pose g. In this work, the
navigation task must be performed online, relying only on
onboard sensing and computing. In the proposed method, the
optimal action sequence a is determined as defined in Eq. 4
with a reward function compromising position error R ,,se
and failure risk R,;s; given the future states generated by the
developed FDM fg.

Observation Dimensions Augmentation
m! Twist Commands R3 -

m? Projected Gravity R3 U[-0.05,0.05]
m?3 Base linear velocities R3 U[—0.1,0.1]
m?* Base angular velocities ~R> U[—-0.2,0.2]
m5 Joint positions R® U[—0.01,0.01]
m8 Joint velocities R? U[—-1.5,1.5]
m” Last Two Joint actions R2b -

h Height Map Ruxv U[—0.1,0.1]

TABLE I: The observation space of the FDM combines proprioceptive
information of the robot state m? ~* and the joint states m® "7 with
exteroceptive measurements h. b represents the robotic system’s joint
count, and u X v is the dimension of the height map. I/ indicates
uniform distributions used to augment the measurements and make
the system robust against sensor noise.

V. METHODOLOGY

We outline the data collection process and sampling strategy
in Sec. V-A. The model architecture, designed for compu-
tational constraints and noisy observations, is described in
Sec. V-B. Training procedures, including the loss formulation
for long-horizon accuracy, are detailed in Sec. V-C. An
overview of the entire FDM training procedure is provided
in Fig. 2. The planner’s workflow, leveraging MPPI control,
is depicted in Fig. 3. The reward formulation, including goal
reward and risk penalization, is presented in Sec. V-D.

A. Data Collection and Sampling

Data Sources: The training data of the Forward Dynamics
Model - consisting of the proprioceptive and exteroceptive
observations and the states - can be collected from trajectories
executed in both simulated environments and during real-world
deployments. As the data is conditioned on the specific platform
and applied locomotion policy, the specific terrain interactions
are captured. Collecting data in simulation allows for cheap,
scalable data generation from thousands of robots in parallel
with terrain randomization to achieve wider generalization and
robustness. While the simulation provides only a simplified
dynamics model, it enables data generation of risky maneuvers
that would severely damage the real platform. On the contrary,
real-world data is more expensive to collect and only covers
safe paths. However, as we later show in Exp. VI-D, this data
source remains essential in order to remove undesirable biases,
cover the actual sensor noise, and include the full dynamics of
the platform, especially in environments beyond the rigid-body

domain of current simulators (e.g., snow or entanglement in
soft vegetation). Thus, such data enables a closer FDM to the
real hardware.

Synethic Data Generation: To minimize the gap between
simulated and real data, we identify the simulation parameters
using system identification or model certain parts using learned
networks fitted from real-world data [37]. Similarly, the
locomotion policies executed in the simulation are the same as
those later used in the real system. Moreover, the randomization
of observations (see Tab. I) and terrains increases the diversity
of covered state transitions. The action generation is adapted
over time. During the initial phase of the model training, actions
are purely generated using linear and normal time-correlated
sequences, as introduced in [5] and detailed in Appendix B.
In later stages, the MPPI planner using the currently trained
FDM generates a part of the action sequences given randomly
sampled goal poses. This allows the model to adjust for the
different sampling nature of the planner and avoid possible
overfitting to the time correlation.

Real-World Data Collection: A human expert operator
safely guides the ANYmal robot equipped with the Boxi [38]
sensor payload through a variety of environments. During this
data collection, proprioceptive inputs and height-scan generated
from onboard depth cameras are stored. The accurate pose
estimation of the robot is provided by fusing dual RTK-GNSS,
highly accurate IMU measurements, and position estimates
provided by a Leica Geosystems MS60 Total Station using the
open-source Holistic Fusion factor graph framework [39].

Data Sampling: The states and the observations are stored
in replay buffers from which arbitrary sample numbers can be
generated. While the buffers remain constant for real-world de-
ployments, buffers are cleared and newly populated per episode
of the simulation. As the buffers contain trajectories multiple
times longer than the prediction horizon, we decompose them
into sub-trajectories, starting at random timestamps in the
trajectory. To create training samples, for each sub-trajectory,
the history information as part of the observations is collected
for n past states with a frequency of 1/At,. This history
horizon of n - At;, enables the model to infer terrain properties
such as roughness by observing the platform’s recent motion
and interaction history. The future states are collected from
the following n states with a frequency of 1/At,, resulting in
a prediction horizon of n - At,. For all samples, the poses of
the observation history and future states are translated into the
robot’s base frame at time %.

B. Model Architecture

Model Input: As introduced, the model receives as
observations a history of n past states 5; __:_,, proprioceptive
readings m%fﬁn and a height scan h; for traversability
assessment and obstacle detection. From the proprioceptive
data of all samples, mean and standard deviation are computed
to normalize these observations before feeding them to the
network. The noise augmentation, as detailed in Tab. I, for
the synthetic samples of the proprioceptive and exteroceptive

observations follows Rudin et al. [40]. In addition, the height

scan has been augmented with missing patches, and all its
occlusions have been specifically modeled to capture the
limitations of the real-world measurement. Occlusions are
determined by checking for a direct line of sight between
any of the robot depth cameras and the height scan point.

Model Structure: An initial GRU layer sequentially
encodes the history information of the past states and pro-
prioceptive measurements, while multiple convolutional layers
process the current height scan. The flattened output of the latter
and the last embedding of the former are used to initialize the
hidden state of the forward prediction GRU. This unit receives
the sequence of action encodings from an MLP and sequentially
predicts a latent for each future state. All future state encodings
are processed in parallel by two prediction heads. There is
one head to predict the twist command corrections Aa and
another to estimate the failure risk ¥. We use two different
GRU units, given that the history and prediction frequency
differ. The correction term Aa describes the difference between
the intended velocity and the applied one on the robot &, s.t.
a+ Aa ~ a. Final poses p € R? are derived by integrating
applied velocities over the prediction timestep At,,.

C. FDM Loss

The Forward Dynamics Model loss £ consists of supervised
terms for network outputs. Labels are generated from the
replay buffer structure introduced in Sec. V-A, using the
future states of the trajectories. The pose loss is computed
using mean squared error (MSE) between predicted and true
poses. For the heading, a sinus-cosine encoding is applied
to avoid discontinuities at 27. The ground truth poses for
failure trajectories is kept constant from the moment the failure
occurred. The failure risk is supervised using binary cross-
entropy loss (BCELoss) over the trajectory. Therefore, the loss
terms are defined as:

®
10

Lypose(p, p) = MSELoss(p, p)
Lrisk(r,7) = BCELoss(r, 7)

Additionally, when a failure is predicted, the pose should
remain constant for the future trajectory. To highlight this
behavior, an extra stop loss Ls:,p, implemented as MSELoss,
is applied for failure scenarios:

Lstop = MSELoss(p, p) (11)

with §,,5% as the threshold to declare the future trajectory
as risky. The final loss for model updates becomes a weighted
sum of all individual terms:

th with r; > 5risk;

L= €pose * Epose + €risk - Lrisk + €Estop * £5t0p7 (12)

where €,05c, €risk, and €5, are the individual weights.
Details on how the training is structured and about the iterative
approach between data collection and model updates are
provided in Sec. VL

Trajectory
I Constant Vel.
| o)

urs
B Ours (Coll)

Fig. 4: Demonstration of environment- and platform-aware state predictions using the presented FDM. Collision-free predictions of our
method are displayed in B, in collision ones in M, whereas the actual path is presented in . (a) Simulation: The same four action sequences
are rolled out across multiple environments, showing that the predicted paths by our model are adapted to the environment. (b) Real-World:
Qualitative comparison between constant velocity estimation Bl and our model’s predictions for the same action sequences across multiple
scenarios. Given that rigid body dynamics sufficiently describe the scene, we deployed our synthetic model to assess sim-to-real transfer.

D. Path Planning

Using a zero-shot MPPI planner allows for adjustments of the
planning behavior without retraining. Leveraging the pose and
failure risk of the perceptive FDM, there are no requirements
for handcrafted cost-maps or other metrics to account for the
traversability of the environments. Consequently, the planning
reward R can be simplified to a weighted combination of a
goal-oriented pose reward R e (terminal reward) and a risk
minimization term R,;s (state reward). Both components are
assigned a weight, A\pose and A5, to balance their influence:

R =)\pose ' Rpose + Arisk - Ryisk (13)

The pose reward Rp,s. encourages paths that reduce the
Euclidean distance between the predicted terminal pose of the
robot p;,, and the goal pose g. To create a pull factor when
being close to the goal, a reward multiplier A,y is applied
when the state is closer than a threshold 4.

if [[pe+n — gll2 < Spose (14)

else.

_ Y ,
Rpose(tan,g) = petn —gll2 - Apurs
lpt4n — gll2,

The risk term R ;53 penalizes trajectories with high predicted
failure risk r;, which the FDM estimates based on terrain and
motion characteristics. If a path’s risk exceeds the threshold
Grisk, a penalty A,;q is applied. To enhance robustness against
false negatives in the risk prediction, the total cost includes
the cumulative risk of ¢ neighboring paths. This redundancy
increases robustness to isolated collision prediction errors.

if Elrteri, Tt>5m'sk (15)
else

1 i)\m'sk
Rm’sk (I‘) = Zr e 0

VI. EXPERIMENTS

Experimental Setup: The effectiveness and perceptive
capabilities of the developed FDM are evaluated in both
simulated and real-world environments. In simulation, exper-
iments are conducted in three scenarios: 20D, 2D-3D, and
3D. 2D environments include obstacles like walls, pillars, and
mazes, detectable with 21) sensors, while 3D scenarios feature
complex obstacles such as stairs and ramps. These obstacles
cannot be differentiated from walls using only a horizontal
2D sensor without actively changing the observation angle.
Consequently, at least 2.5D representations would be required.
2D-3D environments combine both obstacle types. Large-scale
simulations are performed on the legged robot ANYmal [41],
Barry [42], and the wheeled-legged robot ANYmal-On-Wheels
(AoW) [43]. The simulation results are achieved by building
upon the NVIDIA IsaacLab framework [44] with terrain details
and data augmentations provided in Appendix E. Real-world
data is collected using ANYmal, which is also used in our real-
world deployments. The FDM runs onboard using an NVIDIA
Jetson Orin AGX, with the planner running at 7 Hz using 2048
trajectories and a model inference time of 40.6 ms per iteration.
Throughout the experiment section, we use consistent color

Plane 2D

2D-3D 3D

1 Step 4

£| B swepo
s 10° 1 1
= I
o
A&
=
2
oy i
- L A J

, &»] ‘ E «é

Hours Kimetal. B Constant Vel. Hours Kimetal. M Constant Vel. Hours Kimetal. M Constant Vel. Hours Kimetal. M Constant Vel.

Fig. 5: Comparison of the position error at the final prediction step in different environments for the presented FDM M, the perceptive FDM

by Kim et al. [5]

and the constant velocity model M. For each environment, 50k samples are evaluated, and the error is displayed up to the

95% quantile to mitigate the effect of outliers. The presented method achieves the lowest error rates in all environments. Notably, while the
perceptive baseline exhibits an error increase in 3D environments, the developed FDM is unaffected by the more complex obstacles.

coding of our method M, the baseline of Kim et al. [5] [and

the constant velocity assumption M.

Model Training: The model is trained to predict the
tollowing ten states with a step time of At, = 0.5sec, yielding
a 5 sec prediction horizon. The history information of the past
ten states is collected with a step time of At;, = 0.05sec.
Training alternates between data generation and model updates
to ensure diverse coverage. Initially, only synthetic data is used
to create a robust model through broad environmental variability
and data augmentation. Across 15 rounds, each collecting 80k
samples from 10k parallel environments, updates consist of 8
episodes with a batch size of 2048, optimized using the AdamW
optimizer with a learning rate scheduler and weight decay. In
later stages, real-world data is integrated with synthetic data,
and weights are refined using a small, constant learning rate
to capture the full system dynamics beyond the rigid-body
domain. Training is performed on a single NVIDIA RTX 4090,
completed in approximately eight hours. Subsections VI-A
to VI-C, VI-E, and VI-F utilize models trained exclusively
on synthetic data, while subsection VI-D employs fine-tuned
models incorporating real-world data. More details on the
sensitivity of learning and planning parameters, alongside a
discussion of the adaptation required for a new robot platform,
can be found in Appendix H.

A. FDM Perceptiveness

By incorporating both proprioceptive and exteroceptive
measurements, the proposed method can predict robot-terrain
interactions. Specifically, the FDM can estimate failure states
(e.g., collisions) and adjust future poses based on the velocity
command tracking performance in rough terrain. To evaluate
its perceptiveness, we apply the same action sequence across
different terrains and visualize the resulting paths in Fig. 4.
Even on flat ground, the simple constant velocity assumption
fails to capture the robot’s actual dynamics, whereas our
approach closely aligns with the walked path. The advantage
of our method becomes even more apparent in complex
environments, where it accurately detects collisions and models
movement on stairs and ramps. A similar performance is
observed in real-world scenarios, demonstrating the model’s
sim-to-real transfer capabilities.

0.41 —®— Constant Vel.
Kim et al.
—8— OQurs
EO.?)-
3
S 0.2
c
.Q
z
& 0.1
, - —e—°
P o o—0—0—
009 7
0 2 4 6 8

Prediction Step

Fig. 6: Comparison of the position error over the prediction steps
between the presented method, the perceptive FDM by Kim et al. [5],
and the constant velocity model. Our FDM demonstrates the highest
accuracy with the lowest errors and smallest standard deviation.

B. Baseline Comparison

We evaluate our proposed method quantitatively by running
experiments on a larger scale against the baseline method
of Kim et al. [5] and the constant velocity assumption. The
baseline relies on a 2D-Lidar scan as exteroceptive information
and predicts future positions and collisions. While we keep
the original model structure, loss formulation, and training
hyperparameters, we train the baseline with the same data as
our model to ensure comparability. The evaluation includes
50k samples collected from each of the previously introduced
environments. In Fig. 6, we demonstrate that the position
error averaged over all environments remains the smallest for
the developed FDM with a decrease of 41.28% compared to
the perceptive baseline and 70.57% compared to the constant
velocity assumption in the final prediction step. Regarding
the position error in the individual environments, displayed in
Fig. 5, it is evident that most predictions of our method are
within small error regions. Nevertheless, large error outliers
exist where, e.g., the failure prediction is wrong, leading either
to overshooting or discontinuing paths. The training terrain
itself contains flat patches, however, the perceptive baseline
exhibits issues to generalize in this case. In contrast, our model
provides accurate predictions in the tested scenario. Further,
the better accuracy compared to the baselines becomes clearly

Barry (robust)

Barry (quiet)

Fig. 7: Comparison of state predictions of the presented method on the quadrupedal platforms ANYmal [41], Barry [42], and ANYmal-
On-Wheels (AoW) [43]. For Barry, a robust locomotion policy capable of traversing rough environments and a “quiet” locomotion policy
optimized for minimal torques in mostly flat environments have been deployed. Moreover, the height-scan size has been extended for AoW to
account for the wider movement range. While all platforms receive the same actions, as visible in the constant velocity B predictions, the
platforms display different dynamics due to changing structure and actuators (see their trajectory &). The presented FDM M demonstrates
platform-aware predictions, successfully capturing the platform changes.

evident when moving towards the 3D environments, where
the restricted 21D LiDAR scan does not provide sufficient
information. Regarding the collision estimation, the developed
FDM demonstrates an accuracy of at least 89% over all
environments. Our method predicts collision in environments
with 2D obstacles correctly with an F1 score of 0.9, with only
a minor decrease to 0.85 when applied in 3D environments
(see Tab. II). The baseline achieves a higher recall score, which
we hypothesize is due to its limited perception. This restriction
prevents effective differentiation of obstacles, such as stairs
and walls, leading to more conservative failure predictions
and a bias toward false positives. As a result, precision is
significantly reduced, ultimately lowering the overall F1 score.
In the planar environment, robot failures are rare (0.042%),
likely caused by simulation instabilities that the model cannot
predict, leading to low recall and precision scores. Overall,
the presented method achieves the highest position prediction
accuracy over all environments and prediction steps. Moreover,
it demonstrates the most precise failure estimation, although
it is less likely to detect all collisions compared to the more
conservative baseline.

C. Platform-aware Predictions

As the data to train the presented method is sampled from
trajectories, the learned models are aware of the capabilities
of the platform and its locomotion policy. We train individual
FDMs for the above-introduced platforms. Two different
locomotion policies have been deployed for Barry: firstly,
a robust policy capable of overcoming rough terrain, and
secondly, a ’quiet” policy used to minimize torques, which is
not suitable for rough terrains. As demonstrated in Fig. 7, given
the same action sequence, the FDMs show robot embodiment-
specific predictions, capturing the actual robot locomotion
capabilities and dynamics. This underlines the model’s platform-
aware training.

D. Real-World Fine Tuning

During the synthetic data generation, we randomize the ter-
rain to increase robustness and simplify the reality transfer. For

Env. Method Pos. Offset Precision Recall Accuracy F1 Score
o Constant Vel. 0.32 £ 0.24 - - - -
& Kim et al. 0.45 £ 033 10.84 90.47 92.92 0.17
A~ Ours 0.13 £+ 0.19 12.73 9.83 98.32 0.10
Constant Vel. 1.33 £ 1.17 - - - -
8 Kimetal 0.37 £ 041 80.63 92.68 86.47 0.86
Ours 0.28 + 0.34 93.42 86.57 89.13 0.90
a Constant Vel. 1.08 = 1.11 - - - -
A Kimetal 0.45 £ 045 70.11 88.97 83.61 0.78
& QOurs 0.30 + 0.37 83.09 87.25 89.20 0.85
Constant Vel. 0.99 £ 1.06 - - - -
2 Kimetal 0.44 £ 045 74.05 86.62 86.35 0.80
Ours 0.28 + 0.35 83.58 86.51 90.61 0.85

TABLE II: Comparison between the developed FDM, a perceptive
FDM using a 2D LiDAR by Kim et al. [5] and the constant velocity
baseline over multiple environments. The presented method demon-
strates the lowest final position error and highest failure prediction
accuracy over all test environments. For the failure estimation, a
positive case 1s a high-risk action sequence, whereas negative indicates
a safe one. The higher precision scores of our method underline that
if it predicts a collision, it is the most likely of all methods to be
correct. The perceptive baseline is more conservative and achieves
higher recall scores. Failures in the planar environment occur at a
rate of 0.042% (compared to 50-60% in other cases), likely due to
simulation instabilities that the models cannot predict.

rigid environments, this allows us to directly transfer our model,
as demonstrated in Fig. 4. When targeting dynamic scenarios
beyond the rigid domain, the synthetic data becomes out of
domain, potentially increasing modeling errors. As detailed
above, we fuse data collected from difficult-to-model real-
world deployments into the training to cover soft, slipping, or
entangled scenarios. This real-world data mix includes samples
from pavement, snow, and forest deployments collected as part
of the GrandTour [38]. The snow environment demonstrates
frequent slipping events, while the forest environments present
challenges such as slipping and entanglement in the high grass
and other vegetation. For the evaluation presented in Fig. 8§,
new datasets in similar environments have been used. The
experiments show that even before the fine-tuning, our FDM
performs better than the constant velocity model. After fine-
tuning, accuracy improves further, reducing the mean position
error by 34.38% in the forest, 30.55% in the snow mountain
scenario, and 30.30% on the pavement. The similar error

[Step 4

1.014
0 Step 9

o 14
=S o

Pasition Delta (m)
I
-

\
= 4

0.0 1

YX

'K

W Ours (Fine Tuned) Wours (Pure Sim) [EConstant Vel. W Ours (Fine Tuned)

Wours (Pure Sim)

[lConstant Vel. Wours (Fine Tuned) [MiOurs (Pure Sim) [liConstant Vel.

Fig. 8: Comparison of the position error at two prediction steps in real-world environments. Shown is the presented method M, trained
only with simulated data and fine-tuned with real-world data and the constant velocity model . The presented method can already bridge
successfully to the real world. However, it still exhibits larger errors that our deployed fine-tuning can reduce.

reduction on pavement, despite it being less out-of-distribution,
can be attributed to the abrupt movements observed, in contrast
to the smoother patterns in the other datasets. A comparison
to Kim et al. [5] is not possible due to the absence of a 2D
Lidar in our available datasets.

E. Planning Performance

To evaluate planning performance, we compare the MPPI
planner using the proposed FDM and reward formulation from
Sec. V-D to an MPPI planner using the learned FDM method
of Kim et al. [5] and the height-scan-based traversability
estimation of Wellhausen and Hutter [30]. In the latter, the
failure loss term is replaced by an evaluation of future
robot positions on the generated traversability map. For this
experiment, the baseline method of Kim et al. [S] was trained
solely in a 2D environment, as training in a more complex
3D environment made the collision predictions, as expected,
unreliable, rendering the FDM unsuitable for path planning. The
MPPI parameters have been tuned for each baseline, with details
provided in Appendix G. We assess the planner’s effectiveness
in both 2D and 3D environments based on success rate, mean
path length (MPL), and mean path time (MPT). As shown in
Tab. 111, our approach achieves the highest success rate across
both environments. While the baseline methods perform well
in 2D, their performance drops significantly in 3D due to their
limited ability to generalize across different obstacle shapes
and slopes, such as stairs and ramps, often misclassifying
traversable paths as impassable. MPT and MPL scores are
reported for all paths and successful paths only. Reporting
on all paths enables a comparison across methods using the
same dataset, while focusing on successful paths reduces the
influence of early-collision trajectories, which tend to lower
both metrics. The results show that the presented method
produces the most effective paths towards the goal. In contrast
to the baseline method by Kim et al. [5], the average time and
length for all paths is typically lower than for successful paths,
indicating that our method failed in cases where the goal is

Env. Method Success (%) MPL (m) MPT (s)
Suc. All Suc. All

MPPI Ours 88.33 4.28 4.02 923 8.92

2D MPPI Kim et al. [5] 78.33 998 1623 2501 41.88
MPPI Heuristics [30] 82.50 4.73 4.79 11.12 12.68
MPPI Ours 73.75 393 3.69 8.68 9.67

3D MPPI Kim et al. [5] 48.75 7.20 1326 18.60 3545
MPPI Heuristics [30] 33.13 4.41 3.85 13.99 17.17

TABLE III: Comparison of planning methods in 2D and 3D
environments, evaluating Success Rate, Mean Path Length (MPL),
and Mean Path Time (MPT). The MPL and MPT metrics are reported
for successful paths reaching the goal and all paths. Our approach
demonstrates superior performance compared to the baseline method
of Kim et al. [5], which struggles to assess traversability. While
the heuristics-based method performs well in the 2D case, it fails
to generalize to varying height differences of obstacles in 3D and
would require fine-tuning for each obstacle type. Further, our approach
executes successful paths in the shortest time and path length due to
more precise knowledge of the dynamics.

not reached. The more conservative baseline instead circled
around the obstacles, leading to increased path time and length,
often without reaching the goal.

F Qualitative Planning Evaluation

We test the planner in simulated and real-world settings
to assess the system’s ability to generate safe and efficient
trajectories while handling environmental uncertainty, sensor
noise, and terrain variability. As demonstrated in Fig. 9, in
simulation, the sampled action trajectories avoid obstacles
and untraversable regions while steering toward the goal as
our FDM successfully adjusts the future poses based on the
terrain and estimates the risk correctly. In the real-world
deployment, as shown in Fig. 1, we illustrate a long-range
traversed path, where the goal positions are projected onto the
robot’s perception range at each time step. Despite real-world
challenges such as sensor noise, terrain inconsistencies, and
imperfect state estimation, our FDM successfully interprets the
environment’s traversability. This demonstrates that using the
proposed FDM, safe planning can be achieved while relying
only on the two simple cost terms.

Pillars

Pose Reward Reward

Risk Reward

2D

3D

Untraversable Ramp Untraversable Stairs

Ramp & Wall Stairs & Wall

[Goal

Low @ Reward Wl High

Fig. 9: Demonstration of the pose and failure rewards across various simulation scenarios. The proposed FDM accurately predicts failures
due to collisions and early path terminations caused by untraversable stairs and ramps. As a result, the simple combination of a pose reward
guiding the robot toward the goal and a failure reward preventing collisions proves sufficient for safe and effective planning.

VII. LIMITATIONS

While the presented method demonstrates significant ad-
vancements in perceptive dynamics modeling, it is subject
to certain limitations. First, despite using data augmentation
techniques and including real-world data during training, the
model remains constrained to a primarily geometric domain.
We assume that our method generalizes to terrains with
geometric variations covered during training and with terrain
properties where the locomotion policy reasonably tracks the
velocity command, as demonstrated by our successful real-
world experiments. However, the FDM is inherently limited by
the locomotion policy’s capabilities and may fail in scenarios
involving novel geometries, such as spiral staircases, highly
confined spaces like caves or tunnels, or extreme terrain
conditions like ice or deep mud. This limitation prevents it
from fully capturing the broader dynamics and complexities
of diverse real-world scenarios. Second, the failure states
observed in simulation environments do not perfectly translate
to real-world failures, and real-world data lacks demonstrations
of collisions due to the risk of hardware damage, leaving
a persistent gap between simulation and reality that may
affect performance. Third, although we significantly reduce
the effort required to adjust safety-related parameters in the
MPPI-based planning, some tuning is still needed for the action
distribution, including command ranges and time correlation
factors. In addition, the simulation and learning setup introduces
a set of new design choices and tunable parameters. However,
in our experiments, the learning setup was robust across a

range of hyper-parameters, robot platforms, and simulation
environments, while the correct environment design was key
for successful sim-to-real transfer. Generally, we do not expect
the model to generalize to environments beyond the training
domain. Designing diverse environments that support broader
generalization across unseen scenarios remains an open research
question. Finally, our method does not consider any social
norms and is not tested in environments with faster-moving
objects or multiple dynamic agents.

VIII. CONCLUSIONS & FUTURE WORK

In this work, we presented a perceptive Forward Dynamics
Model framework for deployment in challenging local planning
tasks. Trained with a mix of simulated and real-world data, the
FDM captures the complex dynamics of a quadrupedal robot
and enables zero-shot adjustments of the planning objective.
The presented network decreases position errors by, on average,
41.28% compared to baseline methods and estimated failures
with an accuracy of at least 89.20%. Moreover, our FDM inte-
grated into an MPPI planner with simplified rewards achieves
on average 81% goal success rate in complex environments.

For future work, we will explore adaptive timesteps for
applied commands and extend the range of addressed environ-
ments. Additionally, we aim to transition to RGB input for a
richer environmental representation. We also plan to integrate
the proposed FDM into an ensemble learning framework to
assess uncertainty and use it as an additional planning parameter.
Furthermore, this work can serve as a step toward improving
the fidelity of physics simulators in challenging environments.

ACKNOWLEDGMENTS

The authors thank Fan Yang for their support and scientific
discussions. This work is supported by the Swiss National
Science Foundation (SNSF) as part of project No.227617,
ETH RobotX research grant funded through the ETH Zurich
Foundation, the European Union’s Horizon research and
innovation program under grant agreement No 101070596,
No 101070405, and No 852044, and an ETH Zurich Research
Grant No. 21-1 ETH-27. Jonas Frey is supported by the Max
Planck ETH Center for Learning Systems.

(1]

[10]

REFERENCES

Jason Gibson, Bogdan Vlahov, David Fan, Patrick Spieler,
Daniel Pastor, Ali-akbar Agha-mohammadi, and Evange-
los A. Theodorou. A multi-step dynamics modeling frame-
work for autonomous driving in multiple environments.
In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 7959-7965, 2023. doi:
10.1109/ICRA48891.2023.10161330.

Xuesu Xiao, Joydeep Biswas, and Peter Stone. Learning
inverse kinodynamics for accurate high-speed off-road
navigation on unstructured terrain. IEEE Robotics and
Automation Letters, 6(3):6054-6060, 2021.

Anuj Pokhrel, Aniket Datar, Mohammad Nazeri, and
Xuesu Xiao. Cahsor: Competence-aware high-speed oft-
road ground navigation in se (3). IEEE Robotics and
Automation Letters, 2024.

Jason Gibson, Anoushka Alavilli, Erica Tevere, Evange-
los A Theodorou, and Patrick Spieler. Dynamics modeling
using visual terrain features for high-speed autonomous
oft-road driving. arXiv preprint arXiv:2412.00581, 2024.
Yunho Kim, Chanyoung Kim, and Jemin Hwangbo.
Learning forward dynamics model and informed trajectory
sampler for safe quadruped navigation. 2022.

Thai P. Duong, Abdullah Altawaitan, Jason Stanley, and
Nikolay Atanasov. Port-hamiltonian neural ode networks
on lie groups for robot dynamics learning and control.
IEEE Transactions on Robotics, 40:3695-3715, 2024.
Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr:
An autonomous self-supervised learning-based navigation
system. [EEE Robotics and Automation Letters, 6(2):
1312-1319, 2021.

Michael Lutter and Jan Peters. Combining physics and
deep learning to learn continuous-time dynamics models.
The International Journal of Robotics Research, 42(3):
83-107, 2023.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter
Battaglia, David Spergel, and Shirley Ho. Lagrangian
neural networks. Proc. ICLR Workshop Integration Deep
Neural Models Differ. Equ., 2020.

Manuel A Roehrl, Thomas A Runkler, Veronika Brandt-
stetter, Michel Tokic, and Stefan Obermayer. Modeling
system dynamics with physics-informed neural networks
based on lagrangian mechanics. IFAC-PapersOnLine, 53
(2):9195-9200, 2020.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Taekyung Kim, Jungwi Mun, Junwon Seo, Beomsu
Kim, and Seongil Hong. Bridging active exploration
and uncertainty-aware deployment using probabilistic
ensemble neural network dynamics. In Robotics: Science
and Systems (RSS 2023), 2023.

Hojin Lee, Taekyung Kim, Jungwi Mun, and Wonsuk
Lee. Learning terrain-aware kinodynamic model for
autonomous off-road rally driving with model predictive
path integral control. IEEE Robotics and Automation
Letters, 2023.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465472, 2011.
Sergey Levine and Pieter Abbeel. Learning neural net-
work policies with guided policy search under unknown
dynamics. Advances in neural information processing
systems, 27, 2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and
Sergey Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances
in neural information processing systems, 31, 2018.
Stefan Fabian, Stefan Kohlbrecher, and Oskar Von Stryk.
Pose prediction for mobile ground robots in uneven
terrain based on difference of heightmaps. In 2020 IEEE
International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pages 49-56. IEEE, 2020.

Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and
Yann LeCun. Navigation world models. arXiv preprint
arXiv:2412.03572, 2024.

Jiaqi Chen, Jonas Frey, Ruyi Zhou, Takahiro Miki, Georg
Martius, and Marco Hutter. Identifying terrain physical
parameters from vision-towards physical-parameter-aware
locomotion and navigation. IEEE Robotics and Automa-
tion Letters, 2024.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. In International Conference on
Learning Representations, 2020.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2:
Scalable, robust world models for continuous control. In
International Conference on Learning Representations
(ICLR), 2024.

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey
Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
63-70. IEEE, 2024.

Lukas Lao Beyer, Gilhyun Ryou, Patrick Spieler, and
Sertac Karaman. Risk-predictive planning for off-road
autonomy. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 16452-16458.
IEEE, 2024.

Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqi
Li, Nolan Wagener, Matthew Schmittle, JoonHo Lee,
Wentao Yuan, Zoey Chen, Samuel Deng, et al. Terrainnet:

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

Visual modeling of complex terrain for high-speed, off-
road navigation. In Robotics: Science and Systems (RSS
2023), 2023.

Jonas Frey, Matias Eduardo Mattamala Aravena, Nived
Chebrolu, Cesar Cadena, Maurice Fallon, and Marco
Hutter. Fast traversability estimation for wild visual
navigation. Proceedings of Robotics: Science and System
XIX, page p054, 2023.

Mateo Guaman Castro, Samuel Triest, Wenshan Wang,
Jason M Gregory, Felix Sanchez, John G Rogers, and
Sebastian Scherer. How does it feel? self-supervised
costmap learning for off-road vehicle traversability. In
2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 931-938. 1IEEE, 2023.
Lorenz Wellhausen and Marco Hutter. Artplanner: Robust
legged robot navigation in the field. Field Robotics, 3(1):
413-434, 2023.

Matias Mattamala, Nived Chebrolu, and Maurice Fallon.
An efficient locally reactive controller for safe navigation
in visual teach and repeat missions. IEEE Robotics and
Automation Letters, 7(2):2353-2360, 2022.

R Omar Chavez-Garcia, Jér6me Guzzi, Luca M Gam-
bardella, and Alessandro Giusti. Learning ground
traversability from simulations. [EEE Robotics and
Automation letters, 3(3):1695-1702, 2018.

Manthan Patel, Jonas Frey, Deegan Atha, Patrick Spieler,
Marco Hutter, and Shehryar Khattak. Roadrunner m&m -
learning multi-range multi-resolution traversability maps
for autonomous off-road navigation. IEEE Robotics and
Automation Letters, 9(12):11425-11432, 2024. doi: 10.
1109/LRA.2024.3490404.

Lorenz Wellhausen and Marco Hutter. Rough terrain
navigation for legged robots using reachability planning
and template learning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 6914-6921. IEEE, 2021.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul
Drews, James M Rehg, Byron Boots, and Evangelos A
Theodorou. Information theoretic mpc for model-based
reinforcement learning. In 2017 IEEE international
conference on robotics and automation (ICRA), pages
1714-1721. IEEE, 2017.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes,
Jan Achterhold, Joerg Stueckler, Michal Rolinek, and
Georg Martius. Sample-efficient cross-entropy method
for real-time planning. In Conference on Robot Learning
2020, 2020.

Pascal Roth, Julian Nubert, Fan Yang, Mayank Mittal,
and Marco Hutter. Viplanner: Visual semantic imperative
learning for local navigation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages
5243-5249. 1IEEE, 2024.

Fan Yang. iplanner: Imperative path planning. In Robotics:
Science and Systems (RSS 2023), 2023.

Joonho Lee, Marko Bjelonic, Alexander Reske, Lorenz
Wellhausen, Takahiro Miki, and Marco Hutter. Learn-

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

ing robust autonomous navigation and locomotion for
wheeled-legged robots. Science Robotics, 9(89):eadi9641,
2024.

David Hoeller, Lorenz Wellhausen, Farbod Farshidian,
and Marco Hutter. Learning a state representation and
navigation in cluttered and dynamic environments. /EEE
Robotics and Automation Letters, 6(3):5081-5088, 2021.
Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Science Robotics, 4(26):eaau5872, 2019.
Jonas Frey, Turcan Tuna, Lanke Frank Tarimo Fu, Cedric
Weibel, Katharine Patterson, Benjamin Krummenacher,
Matthias Miiller, Julian Nubert, Maurice Fallon, Cesar
Cadena, and Marco Hutter. Boxi: Design Decisions in
the Context of Algorithmic Performance for Robotics.
In Proceedings of Robotics: Science and Systems, Los
Angeles, United States, July 2025.

Julian Nubert, Turcan Tuna, Jonas Frey, Cesar Cadena,
Katherine J Kuchenbecker, Shehryar Khattak, and Marco
Hutter. Holistic fusion: Task-and setup-agnostic robot
localization and state estimation with factor graphs. arXiv
preprint arXiv:2504.06479, 2025.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco
Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on
Robot Learning, pages 91-100. PMLR, 2022.

Marco Hutter, Christian Gehring, Dominic Jud, Andreas
Lauber, C Dario Bellicoso, Vassilios Tsounis, Jemin
Hwangbo, Karen Bodie, Peter Fankhauser, Michael
Bloesch, et al. Anymal-a highly mobile and dynamic
quadrupedal robot. In 2016 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pages
38—44. IEEE, 2016.

Giorgio Valsecchi, Nikita Rudin, Lennart Nachtigall,
Konrad Mayer, Fabian Tischhauser, and Marco Hutter.
Barry: A high-payload and agile quadruped robot. IEEE
Robotics and Automation Letters, 8(11):6939-6946, 2023.
doi: 10.1109/LRA.2023.3313923.

Marko Bjelonic, C Dario Bellicoso, Yvain de Viragh,
Dhionis Sako, F Dante Tresoldi, Fabian Jenelten, and
Marco Hutter. Keep rollin’—whole-body motion control
and planning for wheeled quadrupedal robots. IEEE
Robotics and Automation Letters, 4(2):2116-2123, 2019.
Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu,
Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik
Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar,
Buck Babich, Gavriel State, Marco Hutter, and Animesh
Garg. Orbit: A unified simulation framework for in-
teractive robot learning environments. [EEE Robotics
and Automation Letters, 8(6):3740-3747, 2023. doi:
10.1109/LRA.2023.3270034.

APPENDIX

A. Nomenclature

Symbol Description Symbol Description

a Action a Action correction predicted by FDM

a Followed action on the robot b Robot joint count

I FDM function g Goal pose

h Height scan k MPPI iteration count

m Proprioceptive measurements n FDM number of prediction steps

o Observations » Pose

q Set of neighbors for MPPI obstacle cost T Risk

s State t Time

[Height-map width v Height-map length

w Trajectory weight assigned for MPPI update z Observation probability

L FDM Loss S Set of states

T Transition likelihood between states O Set of observations

Z Observation probability C Set of MPPI candidates

R MPPI Reward functions u Uniform distribution

N Normal Distribution

B Time correlation factor for action sampling o Standard deviation for action sampling

% FDM network weights A MPPI reward term weights

€ FDM loss term weights Srisk Threshold for risky trajectory

Opose Threshold to apply pull factor in pose reward

Aty Time-step of the history information with frequency Aty Time-step of the forward predictions with frequency
1/Aty 1/At,

TABLE IV: Nomenclature used in this work.

B. Time-Correlated action sampling

To model the time-correlated action given by the MPPI planner and capture a broad distribution of action sequences, we deploy
linear time-correlated command sampling (Eq. 17) and normal time-correlated command sampling (Eq. 19). All sequences are
clipped to the minimum and maximum values for the different velocities.

Linear time-correlated command sampling with time correlation factor 5 and the normal distribution /:
B~ U(Bmins 1); @rand ~ U (@min, Gmax) (16)
arr1 =0 ar+ (1 —B) trana, VE€{0,...,n—1} 17
Normal time-correlated command sampling with the standard deviation o and the normal distribution A\
o ~ U0, omax) (18)
a;i1 ~ N(ag, o), Vie{0,....,n—1} (19)
C. Detailed Model Structure

The model has been designed for efficient deployment on a mobile robot with limited computing. Consequently, the architecture
is restricted to CNN and MLP layers, compromising 1.16 million parameters overall. The detailed structure, as an example for
the quadrupedal robot ANYmal [41], is as follows:

FDMModelMultiStep (
(state_obs_proprioceptive_encoder): GRU(
66, 64, num_layers=2, batch_first=True, dropout=0.2
)
(obs_exteroceptive_encoder): CNN(
(architecture): Sequential(
(0): Conv2d(1, 32, kernel_size=(7, 7), stride=(1, 1))

(1): LeakyReLU(negative_slope=0.01)
(2): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(3): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2))
(4): LeakyReLU(negative_slope=0.01)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2))
(6): LeakyReLU(negative_slope=0.01)
(7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2))
(8): LeakyReLU(negative_slope=0.01)
)

)
(action_encoder): MLP(

(architecture): Sequential(
(0): Linear(in_features=3, out_features=16, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Dropout(p=0.2, inplace=False)
)
)
(recurrence): GRU(596, 128, num_layers=2, batch_first=True, dropout=0.2)
(state_predictor): MLP(
(architecture): Sequential(
(0): Linear(in_features=1280, out_features=128, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=128, out_features=64, bias=True)
(3): LeakyReLU(negative_slope=0.01)
(4): Dropout(p=0.2, inplace=False)
(5): Linear(in_features=64, out_features=30, bias=True)
)
)
(collision_predictor): MLP(
(architecture): Sequential(
(0): Linear(in_features=1280, out_features=64, bias=True)
(1): LeakyReLU(negative_slope=0.01)
(2): Linear(in_features=64, out_features=10, bias=True)
)

)
(sigmoid): Sigmoid ()

D. Design Ablations

We conducted ablation studies to assess the contributions of past states, proprioceptive inputs, and exteroceptive height scans
across multiple environments. Detailed results are presented in Tab. V.

Incorporating past states enhances failure estimation across all environments, increasing the FF1 score by up to 0.06. However,
it does not impact pose accuracy. In contrast, removing proprioceptive inputs significantly degrades both performances, leading
to higher position errors and lower F1 scores. The exteroceptive height scan proves critical for the perceptive navigation task.
Excluding it results in an average 110% increase in position error and a 0.13 decrease in the F1 score.

Further, we evaluated the impact of removing the failure risk reward from the planner, with results summarized in Tab. VL.
When omitted, planning success decreased by 2.5% in 2D environments and 4.6% in 3D environments. Although the mean path
length remained nearly constant, the introduction of safety constraints led to longer mean path times. These findings indicate
that failure risk estimation contributes to higher success rates, though it results in more cautious and slower planning.

Env. Method Variation Pos. Offset Precision Recall Accuracy F1 Score

Ours 0.14 = 0.16 41.69 3523 98.88 0.37
% Ours W/o State Obs. 0.14 £ 0.17 30.12 26.89 99.08 0.28
= Ours W/o Proprio. Obs. 1.22 + 0.81 2.62 81.02 83.38 0.05
Ours W/o Height Scan 044 £+ 0.40 592 63.51 92.82 0.10
Ours 0.23 £ 0.28 93.7 90.14 91.43 0.92
A Ours W/o State Obs. 0.22 = 0.27 89.38 89.23 90.93 0.89
™ Qurs W/o Proprio. Obs. 0.25 £ 0.32 86.05 91.00 89.77 0.88
Ours W/o Height Scan 048 £+ 0.51 89.65 68.89 82.75 0.78
A Ours 0.26 = 0.32 93.61 91.56 93.24 0.93
o Ours W/o State Obs. 0.26 = 0.32 88.18 85.69 92.07 0.87
g Ours W/o Proprio. Obs. 0.32 £+ 0.35 83.64 87.89 90.73 0.86
Ours W/o Height Scan 043 + 0.43 87.35 72.36 87.39 0.79
Ours 0.27 = 0.32 90.28 85.9 93.14 0.88
A Ours W/o State Obs. 027 £ 0.32 89.41 85.12 92.70 0.87
“ Ours W/o Proprio. Obs. 0.28 & 0.32 85.34 87.09 92.04 0.86
Ours W/o Height Scan 041 £ 041 88.94 72.61 88.89 0.80

TABLE V: Ablation studies evaluating the impact of removing specific input modalities across multiple environments. Omitting past state
information reduces the F1 score across all environments. Removal of proprioceptive inputs or the height scan results in substantial declines
in both pose accuracy and failure prediction, underscoring the importance of these components.

Env. Method Success (%) MPL (m) MPT (s)

D Ours 88.33 4.28 9.23
Ours (w/o Failure Estimation) 85.86 4.50 7.73

3D Ours 73.75 3.93 8.68
Ours (w/o Failure Estimation) 69.17 3.96 5.74

TABLE VI: Influence of the risk term when planning in 2D and 3D environments. By including the risk reward term, the success rate
improves in both cases. While the mean path length (MPT) is approximately equal, the additional safety requirement leads to longer mean
path times (MPT).

E. Terrain Details

The simulation terrain consists of four distinct segments, as displayed in Fig. 10. The largest segment (44%) combines
various tiles (stairs, ramps, flat and rough ground, walls, doors, etc.), resulting in a highly randomized terrain. Adjacent to this
is a structured segment (22%), featuring stairs, ramps, and obstacles like walls, boxes, and pillars in structured patterns with
randomized dimensions. The third segment (12%) comprises randomly placed pillars on different surfaces with variations in the
pillar dimensions. Lastly, a random maze terrain is used with additional stairs between the walls (22%). While we did not
apply domain randomization, the locomotion policies used were trained with randomization on friction, body masses, inertia,
and random disturbances.

Fig. 10: The simulation training environment consists of four distinct segments. The first segment features a randomized mix of stairs, ramps,
walls, and rough surfaces. The second contains obstacles arranged in structured patterns. The third includes pillars of varying dimensions
placed on different surfaces. The final segment is a randomly generated maze.

F. Expanded Planning Experiments Results

The MPPI planner was tuned specifically for the baseline methods of Kim et al. [5] and Wellhausen and Hutter [30] to
achieve the results reported in Tab. III. For the former, the population size was reduced by half (to 256), and the weight of
the risk reward term was decreased by a factor of 10. These adjustments were necessary due to the method’s conservative
nature, which tends to classify paths near obstacles as high-risk, hindering its ability to plan effectively in narrow environments.
Additionally, the time-out threshold was increased to allow more extensive exploration. For the heuristic-based method, the risk
reward weight remained unchanged from our setup. Only the neighboring filter parameter, introduced in Sec. V-D, was increased
from three to four to ensure a greater safety margin around obstacles, compensating for the less accurate constant-velocity
assumption. Fig. 11 visualizes traversability estimates from the heuristics-based method. It illustrates the tuning challenges in
complex environments, particularly in differentiating between stairs and steep ramps.

Height Scan Traversability Map

Height Scan Traversability Map

10

Height Scan Traversability Map 10 Height Scan Traversability Map

s
H

e
&

e
&

o.

£

°
g

°
g

°
g

N

Fig. 11: Combined visualization of the height scan and traversability estimates generated by the heuristics-based method of [26] for four
environments. It is visible that stairs often have very low traversability scores, even if they should be traversable. Nevertheless, the scores are
in the same range as the ramps, which are too steep to traverse, making tuning for arbitrary environments challenging.

G. Expanded Dynamics Experiments Results

This subsection presents an expanded set of experimental results evaluating the performance of the proposed FDM. Fig. 12
showcases how the position error evolves over the prediction horizon across the different environments, where our method
consistently achieves higher accuracy and lower variance than baseline models. Fig. 13 compares the position error across
different environments at the final prediction step. It expands Fig. 5 with an additional split between collision and non-collision
scenarios. Additional real-world demonstrations of the environment- and platform-aware predictions are provided in Fig. 14.

PILLAR STAIRS_WALL STAIRS_RAMP
0201 —e— Constant Vel. —o— Constant Vel. —— Constant Vel. —&— Constant Vel.
¢ 0.6 < ‘ 04 .
Kim et al. Kim et al. 04 Kim et al. Kim et al.
. —o— Qurs _05] —— Ours = —e— Qurs = —o— Ours
£ 015 £ £ £
E E Es Eo3
] 304 5]
S 010 5 5 5
= = 03 = 02 = 02
8 8 8 8
& 005 & < o1 =01
0.1
000 " ;4__‘_._.__‘___.__.__0—-—. oo W___.__.——Q—-—"‘" o M

plane

0 2

6 8

0 2

6 8

0 2 4 6 8

0 2 4 6 8

4 4
Prediction Step Prediction Step

Prediction Step Prediction Step

Fig. 12: Comparison of the position error over the prediction steps between the presented method M, the perceptive FDM by Kim et al. [5]

, and the constant velocity model M for the different environments. Our FDM demonstrates the highest accuracy and smallest standard
deviation across all environments.

Plane 2D 2D-3D 3D
1 Step 4
B Step 9
c |
= 10
T
a
c
8
& 4 4
Wours Kim et al. B Constant Vel WOurs Kimet al. B Constant Vel Hours Kimetal. B Constant Vel M Ours Kimet al. B Constant Vel
Plane 2D 2D-3D 3D
€
H
= 100
L=H
T
a
8
&
0
Bours "Kimetal. M Constant Vel W Ours "Kimetal. M Constant Vel Bours Kimetal. B Constant Vel M Ours Kimet al. B Constant Vel
Plane 2D 2D-3D 3D
£
z
g 10°
3
i)
°
=
S £
3
g ' <4 e
MOurs Kim et al M Constant Vel W Ours Kim et al M Constant Vel MOurs Kim et al M Constant Vel M Ours Kim et al M Constant Vel

Fig. 13: Comparison of position error at the final prediction step across different environments for the presented FDM M, the perceptive FDM
, and the constant velocity model M. For each environment, 50k samples are evaluated, and the error is shown up to the
95% quantile to minimize the impact of outliers. Errors are split between collision and non-collision samples. In the 200 — 3D and 3D
environments, the perceptive baseline struggles to differentiate obstacles, resulting in higher errors for non-collision cases, as it mistakenly
predicts collisions. In contrast, the proposed method shows significantly lower error rates in these scenarios. Failures in the planar case are

by Kim et al. [5]

non-deterministic and likely due to simulation instabilities that the models cannot predict, leading to larger error scores.

Fig. 14: Additional real-world demonstration of environment- and platform-aware state predictions using the presented FDM in comparison to
constant velocity estimation B for the same action sequences across multiple scenarios. Collision-free predictions of our method are displayed

in M, in collision ones in M.

H. Adaptation for new Platforms and Parameter Sensitivity

Adapting our FDM to a new robot platform requires updating the simulation model, locomotion policy, and input layers to
reflect platform-specific features such as additional joints or proprioceptive information. Moreover, command sampling might
be adjusted for each platform. We assume network architecture and learning hyperparameters can remain unchanged. The
embodiment-specific predictions are a key benefit of our method, tailoring the FDM to the platform’s hardware and software.

Within our tests, we found that our MPPI parameters are more sensitive compared to the learning setup. Specifically, complex
scenarios require carefully tuned parameters that facilitate path variations to overcome local minima. Key tuning parameters
include noise magnitude, time correlation, and reward scaling. Additionally, the sampling space, which determines which
actions the robot is allowed to perform, e.g., omnidirectional motion or walking backwards, is a key design decision that allows
for reduced cost term tuning. Experimentally, we found that higher noise values are generally preferred, as MPPI prioritizes
selecting the highest-reward trajectory across subsequent iterations.

