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Abstract—Achieving successful scan matching is essential for
LiDAR odometry. However, in challenging environments with ad-
verse weather conditions or repetitive geometric patterns, LiDAR
odometry performance is degraded due to incorrect scan matching.
Recently, the emergence of frequency-modulated continuous wave
4D LiDAR and 4D radar technologies have provided the potential
to address these unfavorable conditions. The term 4D refers to
point cloud data characterized by range, azimuth, and elevation
along with Doppler velocity. Although 4D data is available, most
scan matching methods for 4D LiDAR and 4D radar still establish
correspondence by repeatedly identifying the closest points between
consecutive scans, overlooking the Doppler information. This paper
introduces, for the first time, a simple Doppler velocity-based
correspondence—Doppler Correspondence—that is invariant to
translation and small rotation of the sensor, with its geometric and
kinematic foundations. Extensive experiments demonstrate that the
proposed method enables the direct matching of consecutive point
clouds without an iterative process, making it computationally
efficient. Additionally, it provides a more robust correspondence
estimation in environments with repetitive geometric patterns. The
implementation of our proposed method is publicly available at
https://github.com/Tars0523/Doppler_Correspondence.

I. INTRODUCTION

State estimation is a fundamental component in autonomous
systems, enabling robots to achieve tasks accurately and
safely [3, 7, 20]. Accurate odometry plays a critical role in
reliable state estimation by tracking the robot’s movement and
position. Therefore, LiDAR odometry has been extensively
researched to achieve high accuracy and real-time performance,
leveraging its superior precision and detailed environmental
sensing capabilities. However, scan matching, which is essential
for LIDAR odometry, is degraded in adverse weather conditions
such as rain, smoke, and fog [15]. Additionally, most scan
matching methods, which depend on the geometry of the
environment, often fail to accurately estimate sensor motion in
repetitive geometric structures such as tunnels and highways [7].

Recently, the frequency-modulated continuous wave (FMCW)
4D LiDAR and 4D radar have shown great potential in allevi-
ating these limitations. Unlike conventional LiDAR, FMCW-
based 4D ranging sensors are more resilient to weather condi-
tions [10, 15]. Moreover, they provide 4D point cloud informa-
tion (range, azimuth, elevation, and Doppler velocity), which
has potential [7, 15] for robust scan matching in scenarios with
repetitive geometric structures.

Existing approaches related to correspondence estimation for
4D point cloud scan matching either rely on heuristic utilization
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Fig. 1: The red circle denotes source points, the blue circle
represents target points, and the green arrow indicates the
Doppler velocity of each point. While the ICP method requires
multiple iterations to refine correspondences, the proposed
method utilizes the direct scan matching approach based on
Doppler Correspondence.
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Fig. 2: The result of the proposed non-iterative scan match-
ing method using the nyl trajectory in the NTU4DRadLM
dataset [22].

of radar cross section (RCS) [8] or leverage the uncertainty
inherent in point clouds derived from 3D information [20].
Although FMCW-based 4D ranging sensors provide Doppler
velocity but still the correspondence estimation methods typi-
cally rely solely on 3D information [6, 7, 11, 13, 14, 23].

In this paper, for the first time, — Doppler Correspondence—
a simple correspondence that leverages Doppler velocity is
introduced. This correspondence is based on the range and
Doppler velocity of each point. Unlike the iterative closest point
(ICP), scan-matching utilizing Doppler Correspondence directly
matches point clouds without an iterative process, as illustrated
in Fig. 1, while preserving a reasonable level of odometry



accuracy, as shown in Fig. 2. The key contributions of this work
are summarized as follows:

« A simple and novel correspondence utilizing Doppler
velocity is proposed for the first time. Geometric and
kinematic foundations of this correspondence are derived;

« Doppler Correspondence enables a non-iterative scan
matching. Consequently, it significantly reduces time con-
sumption compared with traditional ICP methods;

« Since the proposed correspondence does not depend on
geometric cues alone, it remains effective even in the
presence of repetitive geometric structures; and

« Scan matching based on Doppler Correspondence achieves
performance comparable to ICP methods across diverse
scenarios and sensor configurations with less computation
time.

II. RELATED WORK
A. 4D Radar Odometry

4D radar odometry and simultaneous localization and map-
ping (SLAM) methods have gained significant attention due to
their robustness in challenging environments, such as visually
degraded or bad weather conditions. Early work by Doer and
Trommer [3, 4] demonstrated the feasibility of fusing 4D radar
data with inertial measurements to achieve 4D radar-inertial
odometry (RIO). Using extended kalman filter (EKF)-based
approaches, they highlighted improvements in pose estimation
through techniques such as RANSAC-based ego-velocity es-
timation, barometric height fusion, and online 4D radar ex-
trinsic calibration, which removed the need for tedious pre-
calibration processes. Building on this foundation, Michalczyk
et al. [13, 14] extended RIO methods, incorporating persistent
landmark detection and multi-state estimation frameworks to
improve performance.

More recently, as 4D radar point clouds become more dense,
researchers have focused on optimization-based approaches.
Unlike earlier Kalman filter-based methods, which rely on
sequential state estimation, optimization-based methods aim to
solve the sub-trajectory by considering the global consistency of
sensor data. Li et al. [11] developed a pose graph optimization-
based 4D radar SLAM framework that utilizes ego-velocity pre-
integration factors to improve robustness in noisy 4D radar data.
Huang et al. [8] introduced an enhanced RIO that integrates
Doppler velocity and RCS information to filter noisy point
cloud, adhering to the less is more principle. Additionally,
Nissov et al. [15] tackled the challenges of LiDAR degeneracy
by proposing a LiDAR-4D radar-inertial fusion, leveraging 4D
radar’s robustness in the fog-filled hallway, while preserving
LiDAR accuracy in well-conditioned environments. Herraez
et al. [6] presented methods for pose estimation and map
creation, highlighting the benefits of velocity-aided odometry
and map filtering to enhance accuracy. Zhang et al. [23] and
Xu et al. [20] further advanced 4D radar odometry by modeling
point uncertainty in polar coordinates, integrating into data
association and motion estimation for improved performance
in adverse conditions.

B. 4D LiDAR Odometry

4D LiDAR is an emerging technology that enables Doppler
velocity measurements, offering advantages in environments

with geometric degeneracy or dynamic objects. Several recent
studies have explored the potential of this novel sensing modal-
ity for odometry and SLAM tasks. Wu et al. [19] introduced the
first continuous-time 4D LiDAR-only odometry method lever-
aging Doppler velocity measurements. Their method employs
Gaussian process regression to estimate vehicle trajectories
and correct motion distortion caused by scanning, significantly
outperforming existing methods. Similarly, Hexsel et al. [7] pro-
posed DICP, which integrates Doppler velocity measurements
into the ICP framework for robust point cloud registration. By
jointly optimizing Doppler and geometric objective functions,
their method demonstrated improved registration accuracy and
convergence speed, particularly in featureless environments such
as tunnels and hallways. Yoon et al. [21] and Lisus et al. [12]
developed correspondence-free methods that estimate 6-DOF
velocity directly from Doppler information without requiring
explicit scan matching and incorporate multiple sensors or
complementary modules such as IMUs or gyroscopes for full
motion estimation.

C. Summary and Limitations of 4D Radar / LIDAR Odometry

The 4D information of FMCW 4D LiDAR and 4D radar
has leveraged its advantages in three main directions. First,
Doppler velocity has been effectively incorporated into opti-
mization frameworks to improve accuracy and robustness in
challenging environments, such as repetitive geometric settings,
foggy conditions, or a significant number of dynamic objects [3,
4,6,7, 11, 13, 14, 15, 19, 23]. Second, scan matching methods
have been developed by refining point correspondences, using
RCS information [8] or the uncertainty of point clouds [20].
Third, direct motion estimation methods [21, 12] attempt to
recover full 6-DOF motion from Doppler information without
relying on point correspondences.

While recent advances have shown promising results, most
existing correspondence-based methods still rely solely on 3D
geometric information, overlooking the rich Doppler velocity
available in 4D LiDAR or radar data. Also, correspondence-
free approaches estimate 6-DOF motion directly from Doppler
measurements but suffer from limited rotational observability,
requiring multiple LiDAR sensors or an additional gyroscope
to compensate. In this work, we address these limitations by
proposing a novel correspondence formulation that explicitly
leverages Doppler information. Unlike prior methods, our ap-
proach associates Doppler measurements not only with transla-
tional motion but also with rotational motion from a single 4D
Sensor.

The remaining sections are organized as follows. In Sec-
tion III, Doppler Correspondence is introduced in detail, in-
cluding its geometric derivation and the rationale behind its
robustness in repetitive geometric environments. Section IV
presents the experimental results, demonstrating the effective-
ness of the proposed method across various datasets and com-
paring its performance against point-to-point ICP and DICP.
In Section V, the limitations of the approach are introduced,
addressing scenarios where the method may face challenges. In
Section VI, Doppler Correspondence is integrated with ICP to
compare its performance with ICP and DICP, demonstrating
its potential applicability. Finally, Section VII provides the
conclusion, summarizing the key contributions of the work and



its potential for the field of 4D ranging sensor-based odometry.

III. METHODOLOGY
A. Problem Definition

ICP is a widely used method for point cloud registration,
aiming to estimate the relative transformation between two
consecutive scans. Let us consider two consecutive point cloud
scans, P = {p1,p2,...,pon} and Q = {q1,¢2,...,qrn}, where
P and Q contain N and M points, respectively. Assume the
sensor undergoes a rotation AR € SO(3) and a translation
At € R? between scans. To estimate AR and At, the three-
step process is applied iteratively as below.

1) Imitialization: The initial predictions for the rotation AR
and translation Af are set to I3x3 and [0 0 O]T,
respectively.

2) Correspondence Estimation: Identify correspondences C
by determining the closest points between the two point
cloud scans.

c{<p,q> ‘ A Vpep},
qeEQ

where p and g € R3.
3) Optimization: Compute §R and & that minimize the
following loss function:

(6R, 6t) = arg min Z llg — (6Rp + 6t)||2-
SR, 5t
(p.g)eC

4) Update: Update the AR, Af and source point cloud P:
AR < SRAR, Af < &t + Af,

p<&éRp + &t, VpcP.

Correspondence Estimation, Optimization and Update are
repeated until convergence is achieved, typically defined by a
threshold on the change in the loss function || — (§R p+ &t)|?
between iterations.

Mostly, the Correspondence Estimation step solely relies
on the spatial information of each point cloud. Relying only on
the spatial information in Correspondence Estimation makes
registration prone to degradation in environments with repetitive
geometric structures [7, 15] or when consecutive scans fail to
capture the same spatial points due to its sparse and noisy char-
acteristics [8]. To address these limitations, this study proposes
Doppler Correspondence for the Correspondence Estimation,
which is explained from the following in detail.

B. Geometric Derivation of Doppler Correspondence

Let us denote points p; € P and q; € Q are the true
corresponding points, represented as:

pi:[xpyi Yp,i Zm']T and qJ':[‘TqJ Yq.5 quj]T

Here, (xz,y, z) are the spatial coordinates of the point. Besides,
let v, ; and vy ; be the Doppler velocity of each point. Assuming
that, during a short time interval AT between two consecutive
scans, the trajectory of the point can be approximated by the
vector P(), as shown in Fig. 3. Decomposing P() into radial
(r) and tangential (6) components yields:

PG — PE+ RO,

“*y: Point's Trajectory
O Y Y S - .
: Approximation of Point's Trajectory

X

Fig. 3: Two corresponding points across consecutive scans. The
radial and tangential velocity components form the basis of our
Doppler Correspondence derivation.

where ﬁ and ]@ represent the radial and tangential compo-
nents, respectively. Expressing this in terms of velocity:

VAT =V, ,AT +V ,4AT,

where 7 is the average velocity over ]%, and 71,77, and 71,79
are the radial and tangential velocities at point p;, respectively.

Similarly, for g;: N
PG — HO + PH,

- % —
VAT = VAT + V s AT.

Using the similarity condition APOH ~ AQOR (ie., side-
angle-side similarity), the following proportional relationship
holds:

and:

OR| |OH|
— j.
|03| 0P|
Expanding this gives:
0P| + |PR| 0G| - |HG|
0G| 0P|

Substituting |ﬁ>’| = T, |@| = T |ﬁ%| = vp AT, and
|HQ| = vq ;AT, where r,; and 7, ; are the ranges of p; and
q; respectively, and v, ; and v, ; are their respective Doppler
velocities, into Eq. (1) provides:

Tpi +0p i AT 1q5 — Vg ;AT

ey

Tq.g Tp,i

Rearranging and simplifying the above equation yields:
szl- + 1y p AT = 7"27]- e i s N 2)
This can be expressed as:

f(piavpyi) - g(Qjaqu,j)' (3)

Note that the above relationship, termed as Doppler Correspon-
dence, is formulated such that the left-hand side, f(pi, vp.),
depends only on the information from point p;, while the right-
hand side, g(g¢;, vq;), depends only on the information from
point ¢;. Furthermore, since there are no terms involving the At,
this Doppler Correspondence is inherently invariant to transla-
tion of the sensor. Moreover, unlike traditional correspondence
that relies only on spatial (x,y,z) information, this method
additionally utilizes Doppler information. This enables a more
robust and reliable matching process in repetitive geometric
environments, as it relies more on the flow of the point cloud [2]
rather than the spatial information from the environments.



C. Kinematic Derivation of Doppler Correspondence

Alternative to the previous geometric derivation of Doppler
Correspondence, this section utilizes manipulation of simple
matrices and vectors. To establish Doppler Correspondence, we
start with the kinematic relationship from [2, 25]:

q; — Di Di

ST R Uy )
AT pilla "
q; — Di q;

C e R Vg %)
AT gyl

Here, each left-hand side of Egs. (4) and (5), represents the
radial velocity computed relative to p; and ¢;, respectively,
while each right-hand side corresponds to the Doppler velocity
measured by the sensor. By clearing denominators, we obtain:

(g5 — i) - Di = vp,i AT || p;]]2, (6)
(95 — pi) - 45 = vq,; AT [|gjl2- 7
Adding Eqgs. (6) and (7) yields:
(g5 —pi) (@5 +pi) = vpi AT [[pilla + vq; AT ||gslf2-
Since (¢; —pi)- (¢ +p:) = llasll3 — llpsll3s [lpill2 = 7., and

llg;ll2 = rq,;. where 7, ; and rq ; are the ranges of p; and g,
respectively, substituting these into the above equation leads to:
2 2
Taq = Tpi = VpaTpi AT + vg;7q; AT.
Rearranging terms, we obtain the final form:

2 2
rpit Ty iUp AT = Ty Tq,iVq i AT.

which matches Eq. (2).

D. Outlier Rejection

A pair of points p; € P and ¢; € Q that satisfy Eq. (3)
can be considered as a correspondence. However, ambiguity
could arise when multiple candidate points, such as ¢; and its
symmetric counterpart q} € Q with respect to the sensor frame,
satisfy Doppler Correspondence for a single p;. In this case, both
points yield f(pi, vp.i) = g(qj,vq,5) = 9(qj, vg ), as shown in
Fig. 4(a).

This occurs because g(qj,vq,;) is identical to g(qj, vy ;)
as the range and radial velocity of each point is the same
(r, = Tq, and vy, = vq;). Such ambiguity can result in
incorrect correspondence estimation. To address this issue, it
is assumed that correctly matched points p; and g; lie within
similar spatial regions between scans. This assumption enables
the use of a distance-based rejection mechanism to filter out
mismatched candidates, as shown in Fig. 4(b). Similar to the
maximum correspondence distance used in [17], a threshold
is applied to eliminate unlikely matches. Specifically, both the
spatial distance dgpaia = ||p; — ¢;||2 and the Doppler distance
daoppler = |f (Pi vp,i) — 9(¢j, vq,5)| should satisfy:

dspatial < Tspatial and ddoppler < Tdoppler -

Any pair of points that significantly deviates from these con-
straints is considered an outlier and is removed from the set of
correspondences. By enforcing these thresholds, the impact of
false correspondence estimation is mitigated.

Incorrect Matching

Vgl T ~r
a; ?//

True Matching
Wrong Matching <..>
Doppler Velocity —»

Sensor Frame

(a) Incorrect matching

Outlier Rejection

LA /\T<maz}
; Rej2$on P O

4d; q; Y

Sensor Frame

(b) Outlier rejection

Fig. 4: (a) illustrates multiple candidates due to symmetry in
range and Doppler velocity, and (b) shows that the distance-
based outlier rejection method filters out mismatched pairs.

E. Non-iterative Scan Matching Algorithm

In this section, a simple registration method leveraging
Doppler Correspondence is introduced. This method is designed
to evaluate the feasibility of the proposed correspondence for
odometry. The framework is intentionally designed to remain
lightweight to isolate and emphasize the impact of the proposed
Doppler Correspondence. To focus solely on demonstrating
the effectiveness of this correspondence, techniques such as
robust kernels and RANSAC are deliberately omitted from the
algorithm. Further details are provided in Algorithm 1.

The process begins by receiving two consecutive scans, P and
Q, and calculating f(p;, vp:) and ¢(g;, vg;). FindClosest
is then performed to estimate correspondences. Unlike the
conventional ICP explained in Algorithm 2, which relies on
3D-based correspondence, our method operates on 1D-based
correspondence. This could reduce computational complexity,
even though f(p;,v,,) and g(g;, v, ;) need to be calculated.
While this approach may be slightly less accurate than 3D-based
methods due to less information, it offers faster computations.
Furthermore, unlike the closest point correspondence methods
[1, 7, 16, 17], which iteratively refine correspondences through
multiple iterations, Algorithm 1 performs a direct correspon-
dence estimation in a single step. This eliminates the iterative
search process, significantly reducing the computational load,
as illustrated in Fig. 1. Next section, the feasibility of Doppler
Correspondence is validated by comparing the proposed method
against ICP-based approaches.

IV. EXPERIMENT AND DISCUSSION
A. Dataset

To evaluate the effectiveness of Doppler Correspondence for
odometry, experiments are conducted on datasets with varying
point cloud densities. The datasets include sparse 4D radar,
semi-dense 4D radar, and dense 4D LiDAR point clouds. This
diversity allows us to examine the performance of our approach
across different sensing conditions.



Algorithm 1 Non-Iterative Scan Matching Algorithm Based on
Doppler Correspondence

Require: P (source point cloud), Q (target point cloud), Tpatial
(spatial distance threshold), Tgoppier (doppler distance thresh-
old)

Ensure: R, 7
Compute f(P), g(Q)

Q + FindClosest(f(P),g(Q))

Masking Outliers:
M |P— Q|2 < Topaiar and [f(P) — g(Q)] < Taoppler
C « P[M], Q' |M]

Prgdict Transformation:
R’ tA A ar%%ntlinZ(p,q)GC Hq - (Rp + t)”z

return ]%, f

Algorithm 2 Iterative Closest Point Algorithm

Require: P (source point cloud), Q (target point cloud), Tpatial
(spatial distance threshold)
Ensure: ]%,tA
while not converged do
Q + FindClosest(P, Q)
Masking Outliers:
M < HP o Q/H2 < Tspatial
C + PM], QM]
Predict Transformation:
OR, 6t + argRr?in qu)eC llg — (Rp+ )2

Update:
P < TransformSourcePoint(dR,&t, P)
]%,f% UpdateTransformation(dR, t, ]%,ﬂ
end while
return R, {

1) Sparse 4D Radar: The Campus dataset [11] is utilized to
evaluate sparse 4D radar point clouds. The data were collected
using a ZF FRGen21 4D radar sensor mounted on the front
bumper of a vehicle. Each 4D radar scan generates a sparse
and noisy point cloud, containing approximately 400 to 1,400
points every 60 ms. The Campus dataset encompasses outdoor
environments featuring trees, vehicles, and pedestrians. These
diverse settings challenge methods to operate effectively under
low-density radar point cloud conditions.

2) Semi-Dense 4D Radar: The Loop 1 dataset from the
NTU4DRadLM dataset [22] is used to evaluate semi-dense 4D
radar. The data were collected using a car platform with an
Oculii Eagle 4D radar, traversing the NTU campus main roads,
resulting in a 6.95 km trajectory. The car moved at an average
speed of 25-30 km/h, and the 4D radar scans exhibit semi-
dense point clouds with approximately 1,000 to 2,000 points
per 80ms. The environment features a mix of structured and
semi-structured regions.

3) Dense 4D LiDAR: The Straight Wall, Curved Wall, and
Baker-Barry Tunnel datasets from [7] are utilized to evaluate
dense 4D LiDAR. The Straight Wall and Curved Wall datasets,
generated in the CARLA simulator, simulate featureless envi-
ronments by placing large parallel walls along the trajectory.
These datasets provide an effective platform for evaluating

odometry performance, particularly in environments with lim-
ited geometric features and repetitive structures. The Baker-
Barry Tunnel dataset was collected using an Aeva Aeries 1
FMCW 4D LiDAR sensor. The point clouds from 4D LiDAR
are significantly denser than 4D radar data, containing approx-
imately 40,000 to 120,000 points per 100ms, depending on the
sequence.

B. Experiment Setup

The proposed method is evaluated by comparing its per-
formance with established methods: point-to-point ICP and
DICP [7]. DICP is a novel algorithm that integrates Doppler ve-
locity into the Optimization in the ICP framework. It enhances
scan matching by jointly optimizing both the closest point term
and additional constraints derived from the Doppler velocity
of each point. These methods are tested in two conditions: No
Seed and With Seed. In the No Seed category, no initial pose
estimate is provided, whereas the With Seed category uses the
estimated pose from the previous scan pair under a constant-
velocity motion model assumption [18].

For point-to-point ICP, the parameters are set to the following
values: maximum iteration = 100, convergence threshold =
105, downsampling factor = 2, and Tepatial = 3. The maximum
iteration defines the maximum number of optimization itera-
tions. The method is considered converged when the change in
error falls below the convergence threshold. The point clouds are
uniformly downsampled at intervals determined by the down-
sampling factor, reducing density and computational complexity.

DICP is evaluated using its original parameters from the
open-source implementation. Each value is as follows: maxi-
mum iteration = 100, convergence threshold = 1075, downsam-
pling factor = 2, and 7ypaia = 0.3.

The proposed method is evaluated with parameters set to
these values: downsampling factor = 1, Tgpaial = 3, and Tggppler =
5. It does not use maximum iteration or convergence threshold,
as it performs optimization in a single step. All experiments are
conducted on a system equipped with an Intel Core 17-14700KF
CPU.

C. Evaluation Metrics

The performance is evaluated using the relative error (RE)
from [24]. This metric standardizes trajectory estimation accu-
racy, allowing fair comparisons across different methods. The
evaluation measures odometry accuracy through segment-wise
error analysis. This approach provides detailed insights into the
local and global performance of the trajectory estimation. By
using shorter sub-trajectories, RE captures local consistency and
short-term accuracy, while longer sub-trajectories emphasize
global consistency and long-term accuracy. This dual capability
makes RE a versatile and informative metric for trajectory
analysis.

The computation time for transformation estimation, exclud-
ing point cloud pre-processing, is evaluated. A fair assessment
of computational efficiency could be ensured by excluding
computation time for point cloud pre-processing.

D. Experiment Results

The performance evaluation on sparse 4D radar data compares
the proposed method against the standard point-to-point ICP



TABLE I: Each cell shows rotation and translation errors in degrees and meters, respectively for different segment lengths. The
final column highlights the average computation time per frame (ms). For each segment, the bold values represent the best

performance.
Evaluation Units (rotation [deg] / translation [m])
Dataset Method -
8m 16m 24m 32m 40m 48m Time (ms)
(With Seed)point-to-point ~ 3.776 / 0.937 4.543 / 1.708 5223 /2452 5.881/3.176 6.519 /3914 7.144 / 4.654 5.4
° = Campusl (No Seed)point-to-point 3.666 /2293 441174413 5028 /6436 5.666/8368 6.305/10.245 6.895/ 12.087 6.0
22 3594 /1215 4.149/2.189 4468 8 11/ 3.828 5.422 / 5.285 0.17
g &~ 269071329 364072578 4533 0 541075.019 715677378 56
“ e Campus?2 (No Seed)point-to-point 252672516 331474918 4.068/7323 4.798/9.720 5.534/12.128 6.236/ 14.526 59
Ours 79 /0.769 2957 /1.271 505/ 1.707  4.090/ 2.078 4712 / 5.2 680 0.16
"~ (With Seed)DICP 2170627  1201/71.110 1434/1.606 1.600/2.084 1.771/ 1.9 024 AT
Loopl_0 (No Seed)DICP 0.813/0.631 1.193/1.112 1.419/1.605 1.590/2.084 1.763 / 2.566 1.935/ 3.033 4.8
Ours 1.1727/0.646 1750/ 1.071  2.242/1.500 2.649 / 1.906 3.044 /2295 342172734 1.2
T(With Seed)DICP 0.625/0.620 0928 / 1.115  1.196 / 1.633  1.442/2.156 1.670/2.682 1.859/3213 40
§ E Loopl_ 2 (No Seed)DICP 0.625/70.623 0932/ 1.124 1207/ 1.647 1461/2.177 1.698 / 2.709 1.897 / 3.247 4.4
&% oo Owes o 0617/0650 0942/ 1148 1216/ 1651 147272145  1.707/2.631  1913/3.110 04
é & (With Seed)DICP 0.841/0.631 1.161/1.117 1413/1.617 1.619/2.106 1.808 / 2.597 1.997 / 3.095 4.5
3 e Loopl_3 (No Seed)DICP 0.843/0.630 1.160/1.119 1.415/1.623 1.622/2.118 1.812/2.615 2.003/3.118 4.6
Ours 1396 7/0.704 2138 /1204 2.650/1.687 3.044 /2106 3.399 /2,502 3.768 / 2.882 1.2
""""""""""""""""""""""""""""" (With Seed)DICP ™ 1318 70.660 1.904 7 1181 2280 7 1.651 "2.62972.092 317272525 376772925 537
Loopl_4 (No Seed)DICP 1.253/0.663 1.807/1.170 2160 /1.633 2.452/2.065 2963 /2477 3.540 / 2.827 53
Ours 3.123/0.880 5398/ 1.760 7.349/2700 9.169/3.782 11.949/5227 15.604 / 6.883 2.2
"~ (With Seed)DICP~ 0.050 / 0.028  0.111/0.059  0.128 /0.073 0.154/0.086 025870103 0303/ 0112 291
Straight Wall (No Seed)DICP 0.050/0.028 0.111/70.059 0.128 /0.073  0.154 / 0.086 0.258 / 0.103 0.304/ 0.112 29.1
Ours 0486 /0.068 0.896/0.173 1.420/0.291 1.882/0.525 2213 /0.789 2.627 1 1.091 78
" (With Seed)DICP 0378 /0.092  0.761 /0.137  1.167 /0.133  1.565/0.120 ~ 1.974/0223 239970404  29.1
E‘t‘ Curved Wall (No Seed)DICP 037170090 0.745/0.135 1.143/0.131 1.532/0.119 1.932 /7 0.220 2.347 1 0397 29.2
= Ous . 0327 /0.183  0.601/0.368  0.856/0.552 1.069/0724  1261/0888 144271050 8.6
a - (With Seed)DICP 1.028 /0.289  1.652/0.490 2.515/0.744 3.313/0.963 3.964 / 1.140 4.794 1 1.342 20.8
a Baker-Barry Tunnel (Empty) (No Seed)DICP 1.022 /0290 1.634 /0492 2487 /0.746  3.269 / 0.965 3914/ 1.141 4.730 / 1.341 26.1
Ours 1.804 /0.614 259970945 332571301 3.767/1.581 4.189 /1919 4.931/ 2.367 5.8
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Fig. 5: Trajectory results on multiple sequences. Each plot’s horizontal axis (x-axis) and vertical axis (y-axis) are in meters.

approach, while the open-source implementation of DICP is
excluded due to its failure to produce reliable results on sparse
4D radar data. Under these conditions, closest point corre-
spondence, which relies on the spatial overlap of consecutive
scans, becomes unreliable [§8]. By contrast, the proposed corre-
spondence leverages the flow of points [2] rather than explicit
spatial positions, offering robustness against sparse and noisy
data. As shown in Table I, Figs. 5(a) and (b), and Fig. 6(a),
the proposed method attains substantially higher accuracy than
that of point-to-point ICP. Moreover, unlike point-to-point ICP,
which requires repeated correspondence estimation in 3D space,

our approach simplifies the process to a single-step and 1D
correspondence estimation.

For semi-dense 4D radar point clouds, the proposed method
was tested and compared with DICP. The proposed method’s
translation errors exhibited a lower median but higher variance
than those of DICP, as illustrated in Fig. 6(b). Additionally,
rotation errors demonstrated higher median and variance com-
pared with DICP, particularly in sequences with significant rota-
tional motion (Loop!_4). Despite these limitations, the proposed
method achieves comparable performance to DICP in other
scenarios. Furthermore, it offers computational advantages due
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(a) ICP, Straight Wall

(d) Non-lIterative Scan Matching, Straight
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(f) Non-Iterative Scan Matching, Baker-
Barry Tunnel (Empty)

Fig. 7: The top row shows results using point-to-point ICP, while the bottom row shows those from the proposed method. Our
method alleviates matching ambiguity caused by repetitive geometry.

to its efficient matching process.

The proposed method is further evaluated on dense 4D Li-
DAR, particularly in geometrically repetitive environments, and
compared with DICP. In static scenarios, Straight Wall, Curved
Wall, and Baker-Barry Tunnel (Empty), the proposed method
demonstrates comparable performance to DICP while being
significantly faster than DICP. Moreover, the method achieves
lower rotation error than DICP in Curved Wall, possibly due to
the Doppler velocity term in DICP having a limited effect on
constraining the rotational component during the optimization
process. The performance of the proposed method in the Baker-
Barry Tunnel (Vehicles) is degraded due to a significant number
of dynamic objects.

E. Repetitive Geometric Environment

In contrast to traditional closest-point correspondence, which
relies solely on spatial geometry, the proposed approach lever-
ages the simple functions f and g defined in Eq. (3), which
incorporate Doppler velocity. Because these Doppler-based

functions do not depend on geometric cues alone, they of-
fer robust performance even when surfaces appear similar or
repetitive. As illustrated in Fig. 7, this fundamental reliance on
velocity information disambiguates correspondences, providing
accurate alignment in settings where ICP may fail. While the
Optimization process has no difference from other registration
techniques, the core difference lies in how correspondences are
established (Correspondence Estimation) via Doppler infor-
mation, rather than through purely closest point matching.

F. Correspondence Visualization

The matching results of Doppler Correspondence and the
closest point correspondence method are visualized on sparse,
semi-dense, and dense point clouds. The correspondences es-
tablished after the single iteration are performed, as shown in
Fig. 8. With only a single iteration, Doppler Correspondence
achieves more coherent and consistent matches than the closest
point approach across all levels of point cloud density.
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In the sparse 4D radar point clouds, Doppler Correspondence
generates significantly fewer correspondences than a number
of points, as illustrated in Figs. 8(a) and (d). However, those
correspondences are high quality, leading to better alignment
performance compared with the closest-point method, as shown
in Fig. 6(a). This result aligns with the less is more prin-
ciple discussed in [8], where using fewer but more reliable
correspondences can be advantageous in highly noisy data.
For semi-dense 4D radar point cloud, while the closest point
correspondence often fails to establish reliable matches, Doppler
Correspondence succeeds in maintaining robust and consistent
pairings, even when only a single iteration is performed, as
illustrated in Figs. 8(b) and (e). For dense point clouds with
repetitive geometric structures (Baker-Barry Tunnel (Empty)),
Doppler Correspondence can produce clear and stable matches
by effectively mitigating the ambiguity that may degrade the
performance of ICP approaches, as depicted in Figs. 8(c) and
®.

V. LIMITATIONS

While Doppler Correspondence, introduced in Section III,
offers notable advantages in terms of computational efficiency
and robustness in repetitive geometric environments, it also
comes with certain limitations. Specifically, the key scenarios
where the method may fail are highlighted below. We also
clarify the main assumptions underlying Eqs. (6) and (7).
Furthermore, potential scenarios where these assumptions may
fail in practice are discussed.

A. Key Assumptions and Their Breakdown

For identification of the case where Eqs. (6) and (7) hold,
the motion of a point p; can be considered as a combination
of translation At € R3*! and rotation AR € SO(3) from
the sensor between a time interval AT. Suppose p;(T) is the
point p; at time 7". After the time interval AT, the point moves

according to:

pi(T+AT) = ARp(T) + A, (8)

where AR = exp(ATw*). Here, w € R3? is the angular
velocity, and w™ denotes its skew-symmetric matrix.
Assuming AT |jw|2 < 1, AR can be linearized as:

AR =~ I+ ATw*. )

Substituting this into Eq. (8) gives
pi(T+AT) — p(T) = (ATw*)p(T) + At.
Dividing both terms by AT gives:
pi(T+AT) — p;(T) o
= (T ] 1

i wp(T)+p,  (10)

where p = %. Assuming constant w and p during a short
consecutive scan, as AT — 0, then:

p:(T) = w*p;(T) + p. (11)

Taking the inner product of both sides with the unit vector

(1)
w0 = D
we obtain
(o np, (T) - (w x pi(T)) = 0).

Therefore, for any 71" between a short AT, w and p do not
significantly change, and Eq. (12) can be used.

In our framework, if we set p; € P and q; € Q as true
correspondences from a small time interval AT, Eq. (10) can

be written as:
q; — P

L= wrp; +p. 1
AT w p;+p (13)



Applying Eq. (12) at the points where p; and ¢; are measured:
Upi — Np; * Py (14)
Vq,j = Ng; * P- (15)
Taking inner product of both sides n, ; to Eq. (13), Eq. (4) can

be derived:
4; — Pi

AT

Multiplying both sides by AT and ||p;||2, we obtain Eq. (6):

“Thp, = (wxszrp) Mp, = PNy, = Vp,.

(g5 — pi)  Pi = vp,i AT ||pi]|2-

Derivation of Eq. (7) starts from the relationship g; =
ARp; + At, which can be expressed as:

ARqu — ARTAt = p;.
Thus, p; — ¢; can be formulated as:
pi—g; =1 — ATw™)g; — (I — ATw™)At —g;
= —ATw*q; — (I — ATw*)At.
Divide the above with AT

bi — gy

TJ = *WXQj — I— ATWX)Pa
and take inner product with ng,:

bi 45

AT =—(I—ATw*)p-ng,

= —p - ng; + (ATw™p) - ng,
= gy + (ATw™p) -my,.
Multiplying both sides by AT and |/g;||>, we obtain:
(05 —pi) a5 = AT vg,llgjll2 — AT*(w™ p)-q; .

rotation term

Doppler velocity term

Since AT? == 0, the rotation term can be neglected, leading to
the Eq. (7):

(g5 —pi) - qj = vg; AT ||g;l|2.

Therefore, the sufficient conditions required to derive Eqs. (6)
and (7) are that AT||w]||2 < 1, as assumed in Eq. (9), and
that both w and p remain constant over a short consecutive
scan, as assumed in Eq. (11).

The first condition, AT||lw||2 < 1, is necessary to linearize
the rotation matrix AR = exp(AT w*). This simplification en-
ables the relative motion between p; and ¢; to be approximated
using linear vector operations, which is essential for establishing
a direct relationship between spatial displacement and Doppler
velocity.

The second condition, assuming that both w and p remain
constant during a short interval AT, is used in Eq. (11).
This implies that the velocity of a point p; can be written
as a time-invariant expression, ensuring that Doppler velocity
measurements are consistent across a short time window. If
w or p varies significantly, the radial velocity observed from
Doppler measurements would also change, making it difficult
to formulate a consistent correspondence constraint between p;
and ¢;.

Violating this condition may lead to degradation or failure
of the proposed method. The following examples illustrate the
cases where the assumption holds and it does not:

-100

-200

Y Position

-300

— Ground Truth

— ours
00 DICP (With Seed) \
DICP (No Seed) \

0 100 300 400

200
X Position

(a) Gentle Turn

"
DICP (With Seed)
80 DICP (No Seed)

Y Position

0 100
X Position

110

(b) U Turn

Fig. 9: (a) corresponds to the gentle turn example from Loop!_2,
and (b) corresponds to the U-turn example from LoopI_4. Each
left figure shows the trajectories produced by each method, and
the right figure illustrates the map constructed in the red area
highlighted in the left figure.

1) Gentle Turn (Assumption Holds): The scenario where the
assumption remains valid is illustrated in Fig. 9(a). The vehicle
travels at a moderate speed (v ~ 8.3m/ s) with a small angular
velocity (||lw|l> & 0.1rad/s), and the sensor operates at AT =
0.083 s. In this case,

AT [wllz = 0.083 x 0.1 = 0.0083 < 1.

In this scenario, both Eqgs. (6) and (7) hold, resulting in accurate
Doppler-based odometry with minimal drift.

2) U-Turn (Assumption Fails): By contrast, Fig. 9(b) shows
a scenario where the assumption is invalid. The angular velocity
of the vehicle is significantly higher than that of Gentle Turn
scenario (|lw|ls ~ 0.56rad/s). Even though AT remains
0.083 s, the product

AT |w|z = 0.083 x 0.56 = 0.04648,

is no longer “small” As a result, the odometry output can
deviate significantly when sharp U-turns occur.

VI. PRACTICAL USE OF DOPPLER CORRESPONDENCE

Doppler Correspondence may offer versatile applications due
to its simplicity. A straightforward implementation is its integra-
tion with ICP in a weighted form, referred to as Doppler 4D-ICP,
as described in Algorithm 3. The process begins by computing
J(P) and ¢(Q) from the point clouds and establishing Doppler
Correspondence. In this setup, correspondences estimated from
Doppler Correspondence remain fixed throughout the ICP it-
erations, while closest point correspondences are dynamically
updated. This combination enables the optimization process
to leverage two distinct correspondence characteristics: spatial



Algorithm 3 Doppler Correspondence-Based Iterative Closest
Point for 4D Ranging Sensors (Doppler 4D-ICP)

Require: P (source point cloud), Q (target point cloud), Tpatial
(spatial distance threshold), Tgoppler (doppler distance thresh-
old)

Ensure: R, 7
Compute f(P), g(Q)

Q + FindClosest(f(P),g(Q))
Masking Outliers:
M A HP - Q/H2 S Tspatial and |.f(7)) - g(Q/)| S Tdoppler
Cdoppler < P[ML Q/[M]
while not converged do
Q «+ FindClosest(P, Q)
Masking Outliers:
M < HP - Q/H2 < Tspatial
Cspatial A P[M]a Q/ [M]
Predict Transformation:
R, 0t + argRr?in (1—a) Z<p7q)€csmal p(llg — (Rp +

Dll2) + & Xpgyeca . 1 — (Bp + 1)]2)
Update:
P + TransformSourcePoint(dR,§t, P)
R« UpdateTransformation(dR, dt, ]%,ﬂ
end while
return ]%,tA

information and Doppler information. To further enhance ro-
bustness against outliers and noise, we additionally incorporate a
Huber loss function p(-) as a robust kernel during optimization.

To evaluate the effectiveness of the proposed approach, ex-
periments are conducted using a semi-dense 4D radar dataset,
Loop 1, and dense 4D LiDAR datasets, Baker-Barry Tunnel
(Empty, Vehicles). The parameters are configured as follows:
for the semi-dense 4D radar dataset, Tipatial = 3, Tdoppler = 10,
and o = 0.7. For the dense 4D LiDAR datasets, the parameters
are set t0 Topaial = 2, Tdoppler — 0, and o = 0.9.

The experimental results are presented on the semi-dense
4D radar dataset in Table II and the dense 4D LiDAR dataset
in Table III. Notably, in repetitive geometric environments,
geometric ambiguity is difficult to resolve without incorpo-
rating Doppler information, leading to divergence in conven-
tional scan-matching methods. By leveraging Doppler Corre-
spondence, the proposed approach effectively fuses spatial and
Doppler information, leading to more reliable and consistent
trajectory estimation.

VII. CONCLUSION

Overall, the results indicate that Doppler Correspondence
does not always guarantee better performance compared with
the closest point method. Scenarios with high angular velocity
may cause the violation of the aforementioned assumption and
degradation of odometry performance. However, the proposed
method offers distinct advantages, such as its weak dependence
on the environment’s geometry, which sets it apart from closest
point correspondence. These features enable robust and efficient
correspondence estimation, making it a valuable complement
to traditional methods in specific applications. Furthermore,
its simplicity makes it easy to use and integrate with other

TABLE II: Odometry performance on the semi-dense 4D radar
dataset. Each cell reports the absolute pose errors [5] (in meters).
Best results are in bold, second-best are underlined.

Sequence
Method loopl 0 loopl _]q loopl_3  loopl_4
ICP point-to-point 61.72 38.71 146.65 3.15
ICP point-to-plane 55.18 43.40 127.52 2.89
Generalized-ICP [17] 64.21 57.28 138.41 3.30
VGICP [9] 50.86 61.86 141.37 4.09
DICP [7] 60.15 68.60 143.24 2.94
Doppler Correspondence (Ours) 54.87 50.04 101.74 7.49
Doppler 4D-ICP (Ours) 63.25 37.74 114.76 2.80

TABLE III: Odometry performance on the dense 4D LiDAR
dataset. Each cell reports the absolute pose errors [5] (in meters).
Best results are in bold, second-best are underlined. Note that
Div. indicates the trajectory of the algorithm diverged.

Sequence
Method Baker-Barry Tl,mne(l1 Baker-Barry Tunnel
(Empty) (Vehicles)
ICP point-to-point Div. Div.
ICP point-to-plane Div. Div.
Generalized-ICP [17] Div. Div.
VGICP [9] Div. Div.
DICP [7] 65.27 37.12
Doppler Correspondence (Ours) 20.16 47.54
Doppler 4D-ICP (Ours) 14.50 24.06

methods. While further improvements are needed for broader
applicability, the proposed method holds novelty as it leverages
Doppler information in correspondence for the first time.
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