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Fig. 1: We present SpatialVLA, a spatial-enhanced vision-language-action model that is trained on 1.1 Million real robot
episodes. The model is equipped with Ego3D Position Encoding and Adaptive Action Grids to explore spatial representations
for generalist robot policies, achieving superior 3D scene spatial understanding, zero-shot in-distribution generalization, and
efficient adaption to new robot setups. The model achieves state-of-the-art performance across a diverse range of evaluations
and shows significantly faster inference speed with fewer tokens per action.

Abstract—In this paper, we claim that spatial understanding is
the keypoint in robot manipulation, and propose SpatialVLA to
explore effective spatial representations for the robot foundation
model. Specifically, we introduce Ego3D Position Encoding to
inject 3D information into the input observations of the visual-
language-action model, and propose Adaptive Action Grids to rep-
resent spatial robot movement actions with adaptive discretized
action grids, facilitating learning generalizable and transferrable
spatial action knowledge for cross-robot control. SpatialVLA is
first pre-trained on top of a vision-language model with 1.1
Million real-world robot episodes, to learn a generalist manip-
ulation policy across multiple robot environments and tasks.
After pre-training, SpatialVLA is directly applied to perform
numerous tasks in a zero-shot manner. The superior results in
both simulation and real-world robots demonstrate its advantage
of inferring complex robot motion trajectories and its strong in-
domain multi-task generalization ability. We further show the
proposed Adaptive Action Grids offer a new and effective way to
fine-tune the pre-trained SpatialVLA model for new simulation
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and real-world setups, where the pre-learned action grids are
re-discretized to capture robot-specific spatial action movements
of new setups. The superior results from extensive evaluations
demonstrate the exceptional in-distribution generalization and
out-of-distribution adaptation capability, highlighting the crucial
benefit of the proposed spatial-aware representations for gener-
alist robot policy learning. All the details and codes are open-
sourced.

1. INTRODUCTION

Generalist robot policies that are capable of interacting with
the physical environment, adapting to various embodiments,
and performing complex tasks have been a long-standing
pursuit in robotics [6, 3, 16, 8, 65]. Recent advances in
Vision-Language-Action (VLA) models [7, 30, 5, 33] show a
promising paradigm in building such generalist policy by fine-
tuning the pre-trained Vision-Language Models (VLMs) [I,
55, 50, 37] on diverse robot data [13, 29, 18]. The key to the
success of this paradigm lies in adapting the generalization
power of VLMs to numerous robot manipulation tasks, as well



as specific architectural designs that synergize the VLM back-
bone and robot action output head. Nonetheless, existing VLA
models are primarily confined to 2D observation inputs and
lack precise perception and comprehension of the 3D physical
world — where humans instinctively construct rich, structured
mental representations of space, effortlessly aligning objects
within a canonical, intuitive, and even personally tailored
workspace for manipulation [20, 40, 52, 63, 67]. Therefore, an
essential question for the field now is how to effectively equip
the VLA models with a profound spatial understanding of
the 3D physical world?

However, developing such generalist robot policies with 3D
spatial intelligence encounters two primary challenges in the
aspects of robot observation and action. Firstly, the observa-
tions from different robot embodiments are not 3D-aligned,
because the camera sensors of different robots are various and
mounted at different places (e.g. wrist and/or third-person),
resulting in non-calibrated 3D observation spaces. Secondly,
different robots have different action movement characteristics
to accomplish diverse tasks, due to different degrees of free-
dom, motion controllers, workspace configurations, and task
complexity, leading to significant difficulty in learning gen-
eralizable spatial actions. Despite some attempts in generalist
policy learning across heterogeneous robots [48, 13, 30, 65],
advancement in 3D spatial understanding abilities of gener-
alist policy has significantly lagged behind. This is largely
attributed to the heterogeneity in robot observation and action
information. The solutions to the above challenges require
spatial-aligned robot observation and action representations for
cross-embodiment control and adaptation in the universal 3D
physical world.

In this work, as illustrated in Fig. |, we propose a generalist
robot policy Spatial VLA, which equips the VLA model with
3D spatial intelligence by exploring aligned spatial represen-
tations of robot observation and action signals. Spatial VLA
perceives 3D world through Egocentric 3D (Ego3D) Posi-
tion Encoding to integrate 3D spatial context with semantic
features. This position encoding is derived in the egocentric
camera frame that eliminates the need for specific robot-
camera calibration, which is universally applicable to various
robot embodiments. As for robot actions, Spatial VLA unifies
the action space of various robots via Adaptive Action Grids,
which discretizes the continuous robot actions into adaptive
spatial grids according to statistical action distributions on the
whole robot episodes and learns spatial action tokens on these
grids to align cross-robot actions with the 3D spatial struc-
ture of the physical world. Crucially, after pre-training, the
learned spatial action grids demonstrate a superior capability
in adapting to new robot environments via adaptively grid re-
discretization, providing a flexible and effective approach to
robot-specific post-training. We find that the proposed model
Spatial VLA bridges observation inputs and action outputs in a
universal robot-agnostic manner, which explores powerful 3D
spatial-aware representations to enhance the VLA model.

We extensively evaluate and ablate Spatial VLA on diverse
robot manipulation tasks and different robot embodiments in

both simulation and real-world, including 24 real-robot tasks
and 3 simulation environments. To broadly test SpatialVLA
as a generalist robot policy, we examine the model’s abilities
in zero-shot in-distribution robot control and new robot setup
adaption abilities with instruction following, 3D scene struc-
ture understanding, and fine-tuning to new robot environments.
The evaluation setups include view/texture/lighting change,
unseen objects, unseen robot environment, and challenging
spatial layout changes in robot setups and environments,
demonstrating remarkable generalizability and transferability
of Spatial VLA with spatial-aware representations. In summary,
the contributions of this work consist of a novel generalist
robot policy that explores spatial representations for robot
foundation models, sophisticated designs on Ego3D Posi-
tion Encoding and Adaptive Action Grids for effective 3D-
awareness injection, and superior evaluation results across
various robot setups and tasks.

II. RELATED WORK

Generalist Robot Polices. Recent advances in robotics have
witnessed a trend towards developing multi-task “generalist”
robot policies to perform diverse tasks, rather than one spe-
cific task. Some early works [49, 57, 21, 6, 61, 76, 22]
achieve great success in learning a language-conditioned visual
multi-task policy on a single embodiment with pre-trained
visual/text encoder, thereby lacking the ability to adapt new
robot embodiment. More recent efforts [48, 39, 65] explore
to use large-scale, cross-embodiment robot datasets [13] for
generalist polices pre-training, supporting effective fine-tuning
to new robot setups. Notably, Octo [48] proposes a flexible
transformer-based architecture to unify different configurations
in Open X-Embodiment (OXE) dataset [13], and the trained
policy can solve a variety of in-domain tasks in zero-shot
and achieves strong performance in the new embodiment after
fine-tuning. With the same cross-embodiment robot datasets,
RDT [39] pre-trains a 1.2B-parameter diffusion-based general-
ist model and fine-tunes it for complex bimanual manipulation.
Moreover, HPT [65] proposes a modular architecture to align
data across heterogeneous embodiments into a shared repre-
sentation via embodiment-specific stem module, embracing the
heterogeneity in data through pre-training.

Vision-Language-Action Models. Recently, several stud-
ies [34, 7, 30, 31, 71, 33, 70, 51] propose to build generalist
robot policies by extending pre-trained VLMs with ability
to robot action generation. As a pioneer, RT-2 [7] fine-
tune VLM PaLI-X [11] on both large-scale vision-language
data and robot demonstration data via autoregressive next
token prediction, where robot actions are discretized into 256
bins and represented as separate tokens analogous to text
tokens. OpenVLA [30] adopts a similar action discretization
approach and fine-tune Prismatic VLM [28] only on the OXE
dataset [13], which consists of robot data from 22 different
robot embodiments across 21 institutions. CogACT [31] and
TraceVLA [71] continue to fine-tune the trained OpenVLA
model with the new attached diffusion action module and
visual trace prompting separately. Moreover, m; [5] adapts
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Fig. 2: Overview of SpatialVLA. Given an image observation o, and a task instruction L, the model processes the image
using Ego3D Position Encoding and auto-regressively predicts spatial action tokens, which are then de-tokenized to generate
continuous actions A for robot control. The model comprises three key components: (1) SigLIP vision encoder extracts 2D
semantic features, which are then infused with 3D spatial context via Ego3D Position Encoding; (2) continuous 7D actions
AT, AR, G are translated to 3 spatial action tokens by querying Adaptive Action Grids and auto-regressively predicted
and de-tokenized for robot control; (3) in post-training, action grids and spatial embeddings are adapted from new Gaussian

distributions to facilitate effective transfer to new robot setups.

PaliGemma VLM to robot control by adding a separate action
expert module that produces continuous actions via flow
matching, and the model can then be prompted for zero-shot
control or fine-tuned on high-quality data to enable complex
dexterous manipulation tasks. Notably, while these models
benefit from VLMs’ capabilities and show some zero-shot
capabilities, a sophisticated fine-tuning step with new data is
essential and required for complex tasks or new robot setups.
3D Foundation Models for Robotics. Some researches [73,
10, 19, 24, 53, 25, 69] have focused on extending the generalist
ability of LLMs and VLMs from language-vision towards the
3D world. 3D-LLM [24] integrates a 3D feature extractor
with 2D VLMs backbone and train 3D-LLMs on a wide
variety of tasks, including dense captioning, 3D question
answering, task decomposition, 3D grounding, 3D-assisted
dialog, navigation, and so on. LLaVA-3D [10] extends the
2D LLaVA’s capabilities with the proposed 3D patches to
bridge 2D features within a 3D space for 3D spatial under-
standing. Similarly, LEO [25] trains an embodied multi-modal
generalist agent that can take egocentric 2D images, 3D point
clouds, and texts as task input and handle comprehensive
tasks within the 3D environment. Moreover, 3D-VLA [69]
builds a generative world model on top of 3D-based LLM
to perform 3D reasoning and localization, multimodal goal
generation, and embodied action planning. LEO and 3D-VLA
are closely related to our work, but their attention is on 3D
world understanding and prediction, ignoring the 3D spatial
characteristics in the robot action space.

III. METHODOLOGY

In this section, we describe Spatial VLA model and its
training framework in detail. Our model with the proposed
Ego3D position encoding and adaptive action grids to capture
and learn 3D spatial knowledge for generalizable robot control,
which we describe in Sec. .. Next, we detail the training
procedure of Spatial VLA that consists of a pre-training stage
and a post-training stage in Sec. . The pre-training aims

to learn generalizable knowledge with large-scale cross-robot
data and the goal of post-training is to adapt pre-trained model
to specific downstream robot embodiments and tasks.

A. The SpatialVLA Model Architecture

As illustrated in Fig. 2, Spatial VLA is developed based
on a vision-language model to inherit the general world
knowledge. Formally, Spatial VLA takes image observations
o; = {I},..,I?} and a natural language task instruction L as
inputs, and then learns a mapping function 7(-) to generate
a sequence of robot actions A; = [a;,ai41,..., 8 m-1],
ie, Ay = F(og L). To empower SpatialVLA with 3D
spatial intelligence, we augment the VLM backbone with
robotics-specific 3D-aware inputs and outputs, namely, Ego3D
Position Encoding and Adaptive Action Grids. The ego3D
position encoding representation Oggq aims to capture 3D
scene structure via integrating 3D spatial information with 2D
semantic features. The adaptive action grids are designed to
represent the continuous distribution of robot actions a with a
set of discrete spatial action tokens a = {a!,...,a"'}. During
training, Spatial VLA model is trained to take the ego3D
position encoding representation Ogq and natural language
task instruction L as inputs, and autoregressively generate
spatial action tokens a; using the cross-entropy objective L,

2(0) - EP(At|Ot)‘C(ata at))a (1)

where the predicted action tokens d; = 7(QO3zq, L) is the de-
tokenized into continuous action signals a; for robot control.
More details of the model architecture and action encoding
can be found in Appendix.

Ego3D Position Encoding. The proposed Ego3D position
encoding integrates depth information from the camera frame
and image pixels to construct an egocentric 3D coordinate
system, which eliminates the need for robot-camera extrinsic
calibration and is agnostic to specific robot setups. Specifically,
we use ZoeDepth [4] to estimate depth map DD and obtain
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Fig. 3: Illustration of adaptive action grids. (a) Statistics of
translation and rotation action movements on the whole pre-
training mixture, (b) grids are split on each action variable
according to the probability density function of fitted Gaussian
distribution, and (c) the obtained adaptive action grids in
translation and rotation action spaces.

pixel’s 3D position p = {x,y, z} in the egocentric 3D coor-
dinate system via back-projection 7! with camera intrinsic
parameters. Then, as illustrated in Fig. 2, we first employ
SigLIP [68] visual encoder to extract 2D semantic visual
features X ¢ R*"* to inherit the alignment between vision
and language, and calculate their corresponding 3D positions
P ¢ R3*"w in the egocentric 3D coordinate system. The
egocentric 3D positions P are then encoded into 3D position
embeddings P* € R¥"* through a sinusoidal function ~(-)
following by a learnable MLP. The egocentric 3D spatial
representations Qgq € RY*"*% are obtained by adding 3D
position embedding P’ and 2D path visual tokens X, depicted
as follows,

Osq = X + P = X + MLP((P)). )

Adaptive Action Grids. In order to auto-regressively generate
continuous robot actions with pre-trained VLM backbone, we
design Adaptive Action Grids to translate continuous robot
actions to discrete grids that are represented as tokenized
classes for prediction. Specifically, for a single-arm robot,
its actions consist of seven dimensions for movement a =
{x, ¥, z, roll, pitch, yaw, grip}, and are split into three parts
as follows,

a = {atrans; Arot, agrip}a (3

where ag.ns = {X, ¥, z} represents translation movements
AT, ay, = {roll, pitch, yaw} denotes rotation movements
AR, and ag, = {grip} consists of two discrete tokens
that represent opening and closing gripper actions. Moreover,
we transform the translation movements (X, y, z) into polar
coordinates (¢, 8,r) to disentangle movement direction (¢, 8)
and distance 7.

As illustrated in Fig. 3, for tokenizing continuous trans-
lation and rotation movements, we first normalize each ac-
tion variable into [—1,1] for each robot environment and
statistic the translation and rotation movements AR =
{roll, pitch, yaw}, AT = {¢,0,r} on the whole dataset
mixture (see Appendix. G), following with a parameterized
Gaussian distribution fitting N (u®, 3%). Then, the continu-
ous actions are split into M intervals G,—1, v = {Jo1 =
—1,as),....[am1,am = 1]} with equal probability 1/M on
each normalized action variable, i.e.,

ait1
az,...,aM:argmin/ f@)dz—1/M,i=1,...M (4)
a2,...,aM Ja;

where f(x) is the probability density function of Gaussian
distribution A (u®,3%). Note that we split more grids on
{#,0} to capture fine-grained movement direction other than
movement distance r. Suppose My, Mg, M, are the numbers
of the discrete bins on variable (¢, 8, r), then the translation
space consists Of My = Mg - My - M, discrete spatial
grids agans = {at, ..., M), Similarly, there are My, =
Mol - Mpich - Myaw 3D discrete grids o, = {a!,..., aM=}
in rotation 3D spatial space. Then, the associated learnable
spatial action token embeddings are defined as follows,

Ea = {Etrans; Erot; Egrip}; (&)

where Eypps € ROMem - E € RPMe By, € RIX2
denote the translation, rotation, and gripper actions, and the
total number of action tokens is V = Muyans + Mot + 2.
After training, these learned spatial action tokens capture
general robot action knowledge and show a surprising ability
in new robot embodiment adaption, as discussed in Sec.
Moreover, it is worth noting that the model only needs to
generate 3 tokens for one-step robot actions rather than 7
tokens as in RT-1 [6], RT-2 [7] and OpenVLA [30], achieving
in fast model inference speed.

B. The Pre-training and Post-training Scheme

To obtain a generalist robot policy model, the training pro-
cedure of Spatial VLA consists of pre-training stage and post-
training stage. Pre-training stage aims to learn generalizable
knowledge across diverse tasks and robots from a large-scale
dataset mixture, while the post-training stage adapts the pre-
trained model into new robot embodiments or new tasks. In
the following, we discuss the dataset mixture and key designs
for implementing this two-stage training procedure.
Pre-training Procedure. We train SpatialVLA from
Paligemma2 backbone [62] on a cross-robot dataset mixture
with 1.1 Million real rtobot demonstrations {(1,...,¢n},
covering a diverse range of robot embodiments, scenes, and
tasks. This pre-training dataset mixture consists of a subset
of OXE [13] and the RH20T dataset [18] and we modify
the mixture weights from OpenVLA [30] according to the
real-word testing performance of individual dataset, which are
exhibited in Appendix. A. At the beginning of pre-training,
the embeddings E, of spatial action tokens and parameters
of MLP in egocentric 3D spatial representation are randomly



initialized, and then they are optimized during training, as well
as the parameters of vision encoder and LLM backbone. At
each training step, a batch of data pairs is extracted at random
timesteps t1, ...,tp from shuffled demonstrations {¢;, ..., {;},
i.e., a batch of tuple [(04,,A¢,,L;),..., (0¢5, A¢,,Lj)], and
then SpatialVLA is trained with a standard auto-regressive
next-token prediction objective in eq. (). Importantly, the
embeddings of text tokens Ey are frozen to maintain
the general world knowledge in pre-trained VLM, and the
experimental results show this frozen operation is beneficial
for the instruction following ability. Moreover, as discussed
in OpenVLA [30], DROID dataset [29] are removed from the
data mixture for the final third of pre-training to improve the
quality of the pre-trained Spatial VLA model.

Post-training Designs. In the post-training stage, we fine-
tune our model with robot-specific demonstrations to adapt
it to new tasks and robot setups. Prior works have mainly
focused on fine-tuning pre-trained VLA models using full-
parameter or LoRA fine-tuning, with little attention to ef-
fective techniques for the post-training stage. In this paper,
we investigate the potentials of the proposed spatial action
tokenizer for quick adaption to new robot setups, namely
Spatial Embedding Adaption, providing a new and effective
way for useful post-training. In detail, we fit a new Gaussian
distribution N (pipew, Xnew) for each action variable on post-
training datasets and create discrete spatial action grids Gy
in translation and rotation movement to construct action grids
Giew and tokens oy, Where the embeddings of new spatial
action tokens E, are initialized by trilinear interpolation
with pre-trained action tokens E,. These action token em-
beddings E,_ and model parameters are then optimized with
the next-token prediction objective.

Formally, for new spatial action grids Gpew, suppose i-
th 3D grid G, in translation space a’% with centroid
(@hows Olowy Thew) and its adjacent 3D grids from the pre-
trained action grids are G*Y = {G1, ..., GX}. The embedding
of new i-th action token e}, ~ are initialized by trilinear
interpolation with G a5 follows,

K
e, = > wse, (6)
j=1

where efl ¢ R? are the embeddings of the pre-trained action
grids, w; is the weights calculated by the normalized distances
between centroid (¢,., 0%, 7i.,) and adjacent centroids.
Note that the new action tokens of rotation E¢®" are initialized
in the same way. With this embedding initialization, the new
action tokenizer is capable of effectively transferring pre-

trained spatial action knowledge to new robot setups.

IV. EXPERIMENT

The goal of our experimental evaluations is to test Spa-
tial VLA’s ability to serve as a generalist robot control policy
out of the box, as well as be a good initialization for fine-
tuning to new robot tasks. Our extensive experiments consist
of zero-shot evaluations and adaption to downstream tasks in

both simulation and real-world. Spatial VLA is compared to
previous state-of-the-art robot foundation models and alterna-
tive designs in spatial representations. Concretely, experiments
seek to answer the following research questions:

1) How well does Spatial VLA directly perform on a variety
of in-distribution tasks after pre-training on large-scale
robotic data mixture?

2) Can Spatial VLA be effectively fine-tuned on new robot
setup and task?

3) How well does Spatial VLA perform in scenarios that
require spatial understanding?

4) To what extent do Egocentric 3D Spatial Representations
and Adaptive Spatial Action Grids improve the perfor-
mance of Spatial VLA?

To answer these questions, as shown in Fig. 4, we evaluate

Spatial VLA’s capabilities across a representative spectrum of 7
different robot learning scenarios with 24 real-robot tasks and
3 simulation environments. Firstly, we evaluate Spatial VLA in
both SimplerEnv [35] simulation and the real-world WidowX
robot platform (BridgeV2 [64] [64] setups), testing its out-
of-the-box control capabilities on different robots with setups
matching the pre-training dataset. Second, we assess the
fine-tuning efficacy of our method in both simulation and
real-world settings, including LIBERO [36] and new Franka
robot setups, to adapt to new robot environments and tasks.
Then, we design 4 special tasks that require precise spatial
understanding in 2 different real-world robot environments to
test the effectiveness of spatial representations of Spatial VLA.
Finally, we conduct comprehensive ablation studies on a
mixture of Fractal [6] and BridgeV2 [64] datasets to verify our
design decisions in Spatial VLA. For more details on evaluation
setups, see Appendix.
Implementation Details. The Spatial VLA model is pre-
trained with 1.1 Million real-robot demonstrations from the
OXE [13] and RH20T dataset [18] on a cluster of 64 A100
GPUs for 10 days, using a batch size of 2048. For input robot
observation, the Spatial VLA policy is only conditioned on
one third-person camera and takes one image for constructing
egocentric 3D spatial representations. For output robot actions,
the Spatial VLA policy predicts a chunk of 7" = 4 future
actions (12 spatial action tokens from total V = 8194 tokens)
and executes the ensemble actions before predicting the next
chunk. During inference, Spatial VLA requires 8.5GB of GPU
memory and runs at approximately 20Hz on one NVIDIA
RTX 4090 GPU to run evaluations in both simulation and real-
world. For more details about model training and deployment,
please refer to the Appendix.

A. Performing Zero-shot Robot Control

Evaluation Setups and Baselines. To assess the robustness
of Spatial VLA in diverse environmental variations, we employ
the SimplerEnv simulation benchmark [35] to evaluate visual
matching and variant aggregation metrics. SimplerEnv features
WidowX and Google Robot setups, providing diverse ma-
nipulation scenarios with varied lighting, color, textures, and
robot camera pose conditions, bridging the visual appearance
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Fig. 4: Experiment Setup. We evaluate Spatial VLA across 7 robot learning scenarios, 16 real-robot tasks, and 48 simulation
setups, focusing on three key aspects: zero-shot control, adaptability to new setups, and spatial understanding. We also conduct
a thorough ablation study on a mixed Fractal and Bridge dataset to verify our design decisions.

TABLE I: SimplerEnv evaluation across different policies on Google Robot tasks. The zero-shot and fine-tuning results
denote performance of OXE dataset [13] pre-trained models and Fractal dataset [6] fine-tuned models, respectively.

\ Visual Matching

Variant Aggregation

Model | Pick Coke Can  Move Near  Open/Close Drawer ~ #Average Pick Coke Can  Move Near  Open/Close Drawer ~ #Average
RT-1 [6] (Begin) 2.7% 5.0% 13.9% 6.8% 2.2% 4.0% 6.9% 4.2%
RT-1 [6] (15%) 71.0% 35.4% 56.5% 60.2% 81.3% 44.6% 26.7% 56.2%
RT-1 [6] (Converged) 85.7% 44.2% 73.0% 74.6% 89.8% 50.0% 323% 63.3%
HPT [65] 56.0% 60.0% 24.0% 46.0%

TraceVLA [71] 28.0% 53.7% 57.0% 42.0% 60.0% 56.4% 31.0% 45.0%
RT-1-X [13] 56.7% 31.7% 59.7% 53.4% 49.0% 32.3% 29.4% 39.6%
RT-2-X [13] 78.7% 77.9% 25.0% 60.7% 82.3% 79.2% 353% 64.3%
Octo-Base [48] 17.0% 4.2% 22.7% 16.8% 0.6% 3.1% 1.1% 1.1%
OpenVLA [30] 16.3% 46.2% 35.6% 27.7% 54.5% 47.7% 17.7% 39.8%
RoboVLM (zero-shot) [32] 72.7% 66.3% 26.8% 56.3% 68.3% 56.0% 8.5% 46.3%
RoboVLM (fine-tuning) [32] 713% 61.7% 43.5% 63.4% 75.6% 60.0% 10.6% 51.3%
7g (BF16 uniform) [5] 88.0% 80.3% 56.0% 70.1%

Spatial VLA (zero-shot) 81.0% 69.6% 59.3% 71.9% 89.5% 71.7% 36.2% 68.8%
Spatial VLA (fine-tuning) 86.0% 77.9% 57.4% 75.1% 88.0% 72.7% 41.8% 70.7%

71'6: The results are referred from open-pi-zero.

TABLE II: SimplerEnv evaluation across different policies on WidowX Robot tasks. The zero-shot and fine-tuning results
denote the performance of OXE dataset [13] pre-trained models and BridgeData V2 [64] fine-tuned models, respectively.

Model Put Spoon on Towel Put Carrot on Plate Stack Green Block on Yellow Block Put Eggplant in Yellow Basket  #Overall
Grasp Spoon ~ Success  Grasp Carrot  Success  Grasp Green Block Success Grasp Eggplant Success Average
RT-1-X [13] 16.7% 0% 20.8% 4.2% 8.3% 0% 0.0% 0% 1.1%
Octo-Base [48] 34.7% 12.5% 52.8% 8.3% 31.9% 0% 66.7% 43.1% 16.0%
Octo-Small [48] 77.8% 47.2% 27.8% 9.7% 40.3% 4.2% 87.5% 56.9% 30.0%
OpenVLA [30] 4.1% 0% 33.3% 0% 12.5% 0% 8.3% 4.1% 1.0%
RoboVLM (zero-shot) [32] 37.5% 20.8% 33.3% 25.0% 8.3% 8.3% 0.0% 0% 13.5%
RoboVLM (fine-tuning) [32] 54.2% 29.2% 25.0% 25.0% 45.8% 12.5% 58.3% 58.3% 31.3%
Spatial VLA (zero-shot) 25.0% 20.8% 41.7% 20.8% 58.3% 25.0% 79.2% 70.8% 34.4%
Spatial VLA (fine-tuning) 20.8% 16.7% 29.2% 25.0% 62.5% 29.2% 100.0% 100.0% 2.7%

gap between real and simulated environments. We compare
our model with the latest state-of-the-art generalist manipula-
tion policies, including RT-1 [6], RT-1-X [13], RT-2-X [13],
Octo [48], OpenVLA [30], HPT [65], TraceVLA [71], and
RoboVLM [32]. Where RT-1-X, RT-2-X, Octo, OpenVLA,
HPT, TraceVLA, and RoboVLM are trained with mixtures
of OXE dataset [13]. Since RT-1 is trained with the Google
Fractal Dataset [6], we also compare RT-1 with our method
fine-tuned on the Google Fractal and BridgeData V2 [64].

For a more comprehensive evaluation, we conduct exper-
iments on a real-world WidowX robot platform from the
BridgeData V2 evaluation [64]. As shown in Fig. 5, we
design seven task suites for the WidowX robot, encompassing
language grounding, semantic understanding (unseen back-
ground and poses), and motion distractors (manually move
the object). All generalist manipulation policies, including
Octo, RT-1-X, OpenVLA, and RoboVLM, are evaluated across
7 task suites with 11 trials each, resulting in a total of 77

rollouts. A more detailed breakdown of all tasks and policy
settings can be found in the Appendix.

SimplerEnv Evaluation of Google Robot and WidowX.
Tab. | summarizes the zero-shot and fine-tuning results across
different manipulation policies on the Google Robot setup.
On average, Spatial VLA achieves the highest overall visual
matching and variant aggregation performance with a sig-
nificant margin. Our Spatial VLA model yields 71.9% and
75.1% Visual Matching scores in zero-shot and fine-tuning
settings, surpassing the second-best policy, RoboVLM, by
+15.6% and +11.7% margins. Notably, our model trained from
scratch on OXE mixture with RH20T surpasses the state-of-
the-art closed-source model RT-2-X [13], achieving superior
performance in Visual Matching (71.9% vs 60.7%) and Variant
Aggregation (68.8% vs 64.3%), while using significantly fewer
model parameters (3.5B vs 55B). Qualitatively, we find that
Spatial VLA exhibits greater generalizability and robustness
across diverse robotic manipulation tasks and environmental
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Fig. 5: Zero-shot Robot Control Evaluation on WidowX Robot. We evaluate Spatial VLA across 7 task suites to explore the
language grounding, semantic understanding, and motion sensing capabilities, with varying backgrounds, poses, and motion
distractors. Spatial VLA achieves the highest average success rate, outperforming all generalist manipulation policies.

conditions, characterized by varying visual appearances, which
is further supported by its superior performance in variant
aggregation. In particular, Spatial VLA also matches or outper-
forms the latest SOTA model 7. Tab. Il summarizes the results
across different manipulation policies on the WidowX setup.
Our model surpasses the state-of-the-art RoboVLM policy,
achieving overall success rates of 34.4% and 42.7%. Fine-
tuning on the BridgeV?2 yields a remarkable 100% success rate
in the “Put Eggplant in Yellow Basket” task, demonstrating the
model’s exceptional zero-shot manipulation capability.

Real-world WidowX Evaluation. Fig. 5 presents the re-
sults of the real-world “out-of-the-box” evaluation in Wid-
owX robot platform. We observe that, in simple single-
task scenarios (#1 close microwave), all the policies exhibit
some generalizability, successfully completing tasks in unseen
environments. However, in moderately complex tasks (#3-7),
most policies, such as RT-1-X, Octo, and RoboVLM struggle
with manipulation, frequently encountering issues like object
misidentification and grasp failures. Compared to OpenVLA,
our method demonstrates superior robustness in handling mo-
tion disturbances (human-induced dynamic object movement
in tasks #3 and #4), successfully tracking and grasping carrot
and eggplant. Furthermore, in the instruction-following tasks
(#5-7), our method demonstrates strong instruction-following
ability, accurately executing tasks like picking up a green cup
and placing it on a white plate, not a pink one, based on
color descriptions in the prompts, outperforming OpenVLA
and other generalist policies. Overall, SpatialVLA achieves
a higher average success rate, showcasing robust and gen-
eralizable operation capabilities in unseen scenarios, objects,
language grounding, and dynamic motions.

B. Adapting to New Robot Setups

Evaluation Setup and Comparisons. We present the eval-
uation of Spatial VLA on the LIBERO simulation bench-
mark [36], which consists of a set of diverse robotic ma-
nipulation tasks in simulated environments. Following Open-
VLA [30], we conduct experiments on four task suites, each

comprising 10 tasks with 50 human-teleoperated demonstra-
tions. These suites evaluate the model’s understanding of spa-
tial relationships (LIBERO-Spatial), object types (LIBERO-
Object), task-oriented behaviors (LIBERO-Goal), and its
ability to generalize to long-horizon tasks with diverse ob-
jects, layouts, and goals (LIBERO-Long). We compare our
approach to several generalist manipulation policy methods,
including Diffusion Policy [12], Octo [48], OpenVLA [30],
and TraceVLA [71]. Spatial VLA is fine-tuned on the cor-
responding dataset for 200 epochs using LoRA (r = 32,
o = 32), which incorporates spatial embedding adaption
in Sec. I1I-B from new Gaussian distribution.

To facilitate a more comprehensive evaluation, 13 Franka

tasks are established to validate the model’s manipulation
performance, as shown in Fig. 6. The evaluation consists of
three setups: Single Task, which includes four basic tasks:
pick, place, push, and close; Instruction Following, which in-
volves manipulating different objects in the same scene based
on language instructions; and Multi-tasks, which involves
training on a mixture of all four single-task data and tested
on these tasks. We compare Spatial VLA with mainstream
policies, including Diffusion Policy, Octo, and OpenVLA.
More details can be found in the Appendix. L.
Evaluation Results. Tab. 111 present the LIBERO [36] exper-
imental results. Notably, we observe that Spatial VLA can be
effectively adapted to tasks in the LIBERO environments, as it
obtains the highest average success rate of 78.1% and the first
rank across all the policies. In particular, Spatial VLA achieves
a remarkable 88.2% success rate on the LIBERO-Spatial task,
which consists of different object layouts, demonstrating the
model’s strong understanding of spatial relationships. In most
tasks, Spatial VLA outperforms the state-of-the-art generalist
manipulation policies but struggles with long-horizon tasks
in LIBERO-Long, due to the lack of architecture design for
long-horizon observation.

Fig. 6 summarizes the results of the Franka robot fine-tuning
evaluation. In single-task tests, Spatial VLA and Diffusion
Policy show similar accuracy (82% vs 81%), outperforming
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TABLE 1II: LIBERO Simulation Benchmark Results. We present the success rate (SR) and standard error for each method
across four task suites, which are averaged over three random seeds with 500 trials. Fine-tuned Spatial VLA models achieve

the highest average success rate and ranking, followed by fine-tuned OpenVLA [30] and Octo [48].

\ LIBERO-Spatial | LIBERO-Object LIBERO-Goal LIBERO-Long | Average

| SR (D Rank (1) | SR (1) Rank (1) | SR (D) Rank () | SR(D Rank (1) | SR (D Rank ()
Diffusion Policy from scratch | 783 + 1.1% 5 | 925 £ 07% 1 | 683 +12% 5 | 505 + 1.3% 5 | 724 £ 07% 5
Octo fine-tuned 789 + 1.0% 4 85.7 + 0.9% 4 84.6 +£ 0.9% 1 51.1 £ 1.3% 4 75.1 £ 0.6% 3
OpenVLA fine-tuned 84.7 + 0.9% 2 884 + 0.8% 3 792 £ 1.0% 2 537 £ 1.3% 3 76.5 £ 0.6% 2
TraceVLA fine-tuned 84.6 + 0.2% 3 85.2 + 0.4% 5 75.1 £ 0.3% 4 54.1 £ 1.0% 2 74.8 £ 0.5% 4
Spatial VLA fine-tuned 88.2 + 0.5% 1 89.9 + 0.7% 2 78.6 £ 0.6% 3 55.5 + 1.0% 1 781 + 0.7% 1
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Fig. 7: Spatial Understanding Capability Evaluation. Ben-
efiting from the proposed Ego3D Position Encoding, Spa-
tial VLA exhibits superior performance in understanding spa-
tial prompts and complex spatial layout tasks.

OpenVLA and Octo. However, in the instruction following
tasks, Spatial VLA improves by +12% over OpenVLA, while
Diffusion Policy struggles with a 26% success rate. In multi-
tasks, Spatial VLA leverages its pre-training on OXE and
3D perception capabilities to achieve a 57% accuracy rate,
surpassing other generalist policies. In summary, SpatialVLA
demonstrates its versatility as a generalist robot control policy,
achieving better performance across various tasks, and can be
effectively used as an initialization for new robot tuning.

C. Evaluating Spatial Understanding Capability

Evaluation Setup and Comparisons. As shown in Fig.
and Tab. 111, we evaluate the spatial understanding capabilities

of Spatial VLA through on three robot setups: Franka Robot
fine-tuning, WidowX Robot zero-shot, and Libero-Spatial
fine-tuning. The tasks exhibit varying spatial complexities,
with the Franka task involving prompt understanding (e.g.,
#1 place plush toy closest to robot on car), the WidowX
task featuring explicit height changes (e.g., #2 put green cup
on the pink cloth), and the LIBERO-Spatial task involving
object layout variations. Seven mainstream policies, namely
Diffusion Policy, Octo, RT-1-X, OpenVLA, TraceVLA, and
RoboVLM, are employed for comparison.

Evaluation Results. Compared to existing policies, Spa-
tial VLA shows superior spatial understanding, achieving 73%
accuracy in Franka task #1, which involves spatial prompts,
and significantly improving manipulation capabilities for com-
plex positional changes in the out-of-distribution WidowX
Zero-shot tasks #2-4. Similar results are observed in the
LIBERO-Spatial task suite (88.2% success rate). Policies like
Octo, Diffusion Policy, and OpenVLA, which lack integrated
depth information, face significant challenges in adapting to
spatial layout changes, yielding a success rate consistently
lower than 50%. Consequently, we suggest integrating 3D
information (Sec. I1I), including depth or point cloud, into
the VLA framework to improve the model’s adaptability and
robustness in spatial layout variations.

D. Ablations on Design Decisions

In this section, we conduct ablation studies to investigate
the effectiveness of the proposed 3D Spatial Presentation in
both pre-training and post-training stages.



TABLE 1V: Pre-training Ablations on the Mixture Dataset

of Google Fractal and . Initializing a high-

resolution action grid from the data distribution and 3D position encoding enhances the model’s generalization capability.

| Pick Coke Can Move Near
#setting N N X - N R . R
| variant aggregation  visual matching variant aggregation  visual matching grasp carrot  success grasp eggplant success
#AIL 1]. SpatialVLA 81.6% 70.7% 79.2% 85.4% 41.7% 33.3% 91.7% 87.5%
Linear Discretization  [2]. ~ linear 256 bins 40.7% 19.0% 47.1% 52.9% 41.7% 33.3% 87.5% 70.8%
Distribution 3]. ~ uniform distribution 779% 28.0% 64.2% 55.0% 45.8% 12.5% 79.2% 54.2%
4]. resolution 1026 744% 67.3% 59.1% 54.2% 45.8% 25.0% 66.7% 54.2%
Action Grids 5]. resolution 4610 76.7% 68.0% 69.8% 79.2% 41.7% 33.3% 83.3% 75.0%
Resolution 6]. resolution 6166 80.9% 74.0% 74.0% 79.2% 41.7% 33.3% 95.8% 87.5%
7). resolution 8194 81.6% 70.7% 79.2% 85.4% 41.7% 33.3% 91.7% 87.5%
Encoding 8]. — ego3d encoding 68.9% 70.3% 66.7% 62.0% 54.2% 12.5% 75.0% 37.5%
9]. — freeze llm embedding 702% 50.7% 63.1% 62.5% 33.3% 20.8% 95.8% 79.2%

TABLE V: Fine-tuning Ablations in Domain Datasets. Pretra
Fractual and

ined models are full parameter fine-tuned in individual Google

Dataset. In LIBERO tasks, both full-tuning and LoRA-tuning are applied. fine-tuned with Gaussian

adaptation from new dataset distribution helps align spatial grid features and improve initialization and accelerating convergence.

Hsetting | Pick Coke Can Move Near

| variant aggregation  visual matching variant aggregation  visual matching grasp carrot  success grasp eggplant success
[1]. full params tuning 88.0% 77.0% 72.7% 75.0% 29.2% 20.8% 100% 91.7%
[2]. 4+ Gaussian adaption 90.1% 86.0% 74.6% 77.9% 29.2% 25.0% 100% 100%
#setting | LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long
[3]. Full params tuning 77.7 £0.4% 733 £ 04% 785 + 0.5% 43.9 + 0.8%
[4]. LoRA tuning 836 £0.7% 84.8 +£ 09% 764 + 02% 50.1 £ 0.3%
[5]. 4+ Spatial embedding adaption 88.2 + 0.5% 89.9 + 0.7% 78.6 + 0.6% 555 +£ 1.0%
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Fig. 8: Cross-sectional features visualization in spatial grids.
The proposed spatial embedding adaptation aligns the pre-
trained spatial grid features with those of the target fine-tuned
model, improving initialization and accelerating convergence.

Pre-training in Mixture Dataset. The pre-training ablations
in Tab. are conducted on a mixture dataset that combines
Google Fractal [6] and BridgeData V2 [64]. All the models
are trained from scratch on 8 A100 GPUs with 128 batch
size for 120k steps. We select four tasks from the SimplerEnv
benchmark [35], namely “Pick Coke Can” and “Move Near”
on the Google Robot, as well as “Put Carrot on Plate” and
“Put Eggplant in Yellow Basket” on the WidowX Robot, to
dissect the model’s component-wise performance.

In contrast to the conventional linear 256-bin action space
discretization [6, 13, 30] (#1v.s.#2), the proposed adaptive spa-
tial action grids exhibits significant advantages, particularly
in the Google Robot task, with the promotion of +36.5% and
+42.1% in variant aggregation and visual matching success
rates, respectively. During model training, we also observe that
models using linear 256-bin discretization converge slower,
despite achieving lower L1 Loss. Another suggestion is to ini-
tialize the grid partitioning based on the dataset distribution,
rather than using a uniform grid (#1v.s.#3), which enables the
model to focus on high-frequency action spaces adaptively and

further improves its generalization capabilities.

Compared to 1026-resolution action grids (#1v.s.#4), where
Misans = Mipans = 912, Mg, = 2, Spatial VLA with 8194-
resolution action grids (Mgans = Migans = 4096, Mg, = 2)
achieves significant performance boosts, particularly in “move
near” and “put eggplant in yellow basket” tasks, with success
rate increments of +31.2% and +33.3%. Additionally, we find
that lower-resolution models tend to learn smaller actions,
causing slow motion issues, and high-resolution models exhibit
improved transfer performance in the fine-tuning stage.

According to the ablation results (#1v.5.#8), the proposed
egocentric 3D position encoding (ego3d), incorporating 3D
point cloud features, helps the model overcome varied lighting,
color, textures, and camera poses, yielding stronger general-
izability in diverse manipulation scenarios. Models w/o ego3d
suffer a significant performance drop in variant aggregation,
from 81.6% and 79.2% to 68.9% and 66.7%, due to their in-
ability to adapt to scene changes. During pre-training, we also
observe from (#1v.5.#9) that freezing the language embedding
and sharing a trainable spatial embedding helps to improve
the model’s manipulation capabilities, which is also beneficial
for faster training and instruction following.

Post-training in Domain Dataset. We conduct post-training
ablations in Tab. V, separately fine-tuning on large-scale
datasets Google Fractal and BridgeData V2 and BridgeData
V2, and comparing full fine-tuning and LoRA-tuning on the
small-scale LIBERO datasets [36]. The spatial embedding
adaption denotes partitioning spatial grids from the new
dataset Gaussian distribution and updating the spatial feature
embedding with the grids.

On large-scale datasets (#1v.s.#2), models fine-tuned with
spatial embedding adaptation yield marginal gains of +2.9% in
visual matching on Move Near), as the large-scale dataset dis-



tribution closely matches the pre-training distribution, allowing
the model to learn fine-grained features thereby limiting the
benefits of the adaption. While, on the LIBERO small dataset
tasks (#4v.s.#5), initializing the feature grid with the new dis-
tribution boosts model performance by +4.6%, +5.1%, +2.2%,
and +5.4% on LIBERO-Spatial, LIBERO-Object, LIBERO-
Goal, and LIBERO-Long, respectively. As shown in Fig. §,
feature adaptation from the new distribution aligns pre-trained
spatial features with the target fine-tuned model, improving
initialization and accelerating convergence. Moreover, LoRA
fine-tuning outperforms full-parameter fine-tuning on small
dataset tasks (#3v.5.#4), making LoRA the preferred method
for small datasets.

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK

In this paper, we present Spatial VLA, an innovative vision-
language-action model to explore efficient spatial represen-
tations for generalist robot policy. Spatial VLA introduces
Ego3D position encoding and adaptive action grids to inject
3D awareness into robot observation representation and spatial
action tokenization through robot-agnostic designs, equipping
the VLA models with the spatial understanding ability of the
3D physical world. After pre-training on large-scale hetero-
geneous robot datasets, we find that Spatial VLA is a more
generalizable and transferrable generalist policy for zero-
shot robot control. Our extensive real-world and simulated
robot experiments show that Spatial VLA leads to dramati-
cally improved performance over the previous VLA models,
especially on tasks that require precise spatial understanding.
We also show that the pre-trained Spatial VLA model can
effectively adapt to new robot setups and tasks via action grids
re-discretization, which offers a new way for robot-specific
post-training. In the following, we discuss our limitations of
Spatial VLA and potential solutions, hoping to inspire further
innovative works.

More Generalizable Distribution Fitting. In this paper,
Spatial VLA fits action signals with Gaussian distributions
to encode actions as spatial grids, demonstrating remarkable
generalizability and flexible adaptation to new robot setups
through re-initialized grids and token embeddings. However,
this raises a crucial question: Is modeling data distributions as
Gaussian optimal? We argue that Gaussian modeling is sub-
optimal, as it can lead to grid clustering on specific coordinate
axes in extreme robot operation scenarios, such as single-
axis motion, resulting in lost motion capabilities on other
axes. Moreover, dataset noises can further distort the spatial
grid distribution. One future solution is to combine implicit
data distribution modeling techniques, such as Variational
Auto-Encoder-based high-dimensional feature space mapping,
with explicit grid partitioning, enhancing action presentation
efficiency and noise robustness.

More Flexible VLA architectures. In our implementation,
we predict spatial action tokens through the autoregressive
paradigm and further decode them into actions, resulting in
each action being represented by 3 tokens. Although Spa-
tial VLA achieves 21Hz inference speed, it is slower than

diffusion decoding [5, 12, 32], which decodes tokens into mul-
tiple consecutive actions. In the future, integrating diffusion
decoding with spatial grid action presentation and exploring
dynamic token numbers for action mapping will be valuable.
Furthermore, as the model relies solely on current frame
observations and history tokens for action prediction, it faces
challenges in long-horizon tasks, similar to other generalizable
policies [12, 48]. Future work should focus on designing effi-
cient historical information perception mechanisms to enhance
the model’s long-sequence modeling capabilities, enabling
seamless task switching in real-time manipulation scenarios.
Higher-Quality Diverse Data. Spatial VLA is pre-trained
on OXE and RH20T, but the variable quality of OXE data
can hinder training. Therefore, future work exploring optimal
data composition and distilling high-quality subsets from the
heterogeneous robot data collections is vital for boosting
model efficiency and generalizability.
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