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Fig. 1: Uni-NaVid learns general navigation skills across four embodied navigation tasks using 3.6 million navigation samples.
Uni-NaVid only takes online RGB video frames and language instructions as input and output actions, achieving general

navigation ability in a real-world deployment.

Abstract—Embodied Navigation is a fundamental capability for
intelligent robots, requiring robots to follow human commands
and move autonomously within physical environments. Despite
significant advancements, most existing navigation approaches are
tailored to specific navigation tasks, such as instruction following,
searching objects, answering questions, tracking people, and
more. However, the increasing demands on advanced embodied
navigation pose the challenge of designing a practical navigation
agent that can incorporate multiple navigation tasks naturally
and benefits from the synergy between these tasks. To this end, we
present Uni-NaVid, a video-based vision-language-action (VLA)
model to unify different paradigms of navigation tasks and
improve navigation performance by encouraging the synergy
among different navigation sub-tasks. This VLA model can directly
take natural language instructions and RGB video streams as
inputs and output low-level robotic actions in an end-to-end
manner. To efficiently process extensive RGB video streams,
we propose an online token merge strategy that spatially and
temporally consolidates similar visual information which improves
the inference speed to 5 Hz. For training Uni-NaVid, we collect
3.6 million navigation data samples across different navigation
tasks. Extensive experiments on diverse navigation benchmarks
demonstrate that Uni-NaVid achieves state-of-the-art performance

1 indicates corresponding authors. Contact authors at (zhngjizh@gmail.com,
zhangzz @ galbot.com, hewang@pku.edu.cn).

within a unified framework by using only ego-centric RGB
video as inputs. Additionally, real-world experiments confirm
the model’s effectiveness and efficiency, shedding light on its
strong generalizability.

I. INTRODUCTION

Embodied navigation [101, 79] is a critical capability for
intelligent robots and has drawn significant attention in the
robotics community. For successful embodied navigation,
robots must be able to move autonomously within physical
environments based on human instructions. However, nav-
igation tasks vary significantly, and most existing studies
are designed for specific tasks, e.g., vision-and-language
navigation [42, 44], object goal navigation [12], embodied
question answering [21, 84], and following [102, 34, 65].
Consequently, most current approaches are developed to address
only one type of navigation task, often relying on specialized
modules and task-specific datasets. This narrow scope limits
their applicability to multi-purpose navigation applications and
prevents these methods from leveraging potential synergies
across diverse navigation tasks.

Developing a versatile navigation model presents significant
challenges, as it requires the unification of navigation task



modeling and the integration of heterogeneous data for joint
use. Initial efforts adopt imitation learning (IL) [79, 87, 63] or
reinforcement learning (RL) [97, 90] to learn general navigation
skills in simulation environments or limited diverse real-world
environments. However, due to the limited rendering quality
and diversity of simulators, these approaches often encounter
the “sim-to-real” gap and suffer from poor generalization across
diverse navigation tasks [27, 5, 38]. Recent studies [108, 103,
58, 57, 72] have attempted to achieve a higher degree of
unification using pre-trained large language models (LLMs).
However, due to the low frequency of LLM inference, they
simplify the problem to some extent by adopting discretized
modeling approaches. They rely on pre-defined graphs for
decision-making learning, which sacrifices output flexibility
and introduces additional challenges for real-world deployment.

In this work, we propose Uni-NaVid, a video-based Vision-
Language-Action (VLA) model for unifying diverse commonly
demanded navigation tasks (Tab. I). Uni-NaVid takes egocen-
tric RGB video streams and natural language instructions as
inputs, and directly generates low-level actions for navigation
in continuous environments. To achieve multi-task navigation
while supporting efficient navigation, Uni-NaVid extend video-
based VLM [48] by incoprating two key components: (1)
an efficient VLA architecture based on an online token
merge mechanism, which enables efficient processing of
online-captured video streams for LLM inference; and (2)
an extensive collection of 3.6M samples across four widely
studied navigation tasks. We provide a detailed elaboration
below:

During navigation, the agent is required to process a
substantial volume of online captured frames, which results
in memory overload and computational latency, particularly in
LLM-based approaches [100, 58]. To this end, we propose an
online token merging mechanism to compress near historical
frames with a relatively low ratio while compressing far
historical frames with a relatively high ratio. This merging
mechanism operates in an on-the-fly manner, maximizing
the reuse of previous navigation history. In this way, Uni-
NaVid learn compact representations that maintain not only
fine-grained spatial information but also structured temporal
information, thus speeding up the model inference by reducing
the token number. Besides, Uni-NaVid adopts a foresight
prediction to generate actions for a future horizon at once
instead of step-by-step. This enables Uni-NaVid to achieve
5Hz inference, facilitating the deployment of a non-blocking
navigation robot powered by a VLA model in real-world
environments (Please refer to the supplementary video).

We aim to build Uni-NaVid as a versatile multi-task navi-
gation agent, incorporating four widely demanded navigation
tasks: vision-and-language navigation, object-goal navigation,
embodied question answering, and human following. These
tasks are distinct from each other, with varying task settings
and objectives. Specifically, for the human-following task, we
construct a new language-guided human-following benchmark
for data collection and evaluation. Finally, we collect 3.6M
navigation samples based on diverse navigation tasks with

Methods Action Embodied Navigation Tasks

D.E. C.E.|VLN [42] ObjNav [71] EQA [84] Follow [65]
VLMaps [32] v v v
NaviLLM [103] | v v v v
InstructNav [58] | v v v
Poliformer [97] v v v
Uni-NaVid v v v v v

TABLE I: Task and setting comparison. Uni-NaVid is de-
veloped to address four embodied navigation tasks, generating
action outputs in continuous environments. C.E.: Continuous
Environment; D.E.: Discrete Environment.

different simulation environments. Additionally, inspired by the
success of manipulation VLAs [9], we further integrate 2.3M
real-world internet data samples for Video Question Answering
(VQA) [7, 48] and video captioning [19] as auxiliary tasks. This
integration aims to enhance scene understanding and promote
sim-to-real generalization.

We conduct extensive experiments on benchmarks across
the aforementioned four navigation tasks and compared our
method with strong baselines specifically designed for each
task. Utilizing only RGB video streams and instructions as
inputs, our method demonstrates the superiority of a single
VLA model across diverse benchmarks, achieving SOTA or
SOTA-comparable performance. Furthermore, comprehensive
ablation studies validate the synergistic benefits of learning
multiple navigation tasks jointly. Finally, real-world exper-
iments demonstrate that Uni-NaVid achieves non-blocking
navigation exhibiting impressive robustness in handling diverse
instructions and environments. We believe our work serves
merely as a starting point for general-purpose navigation.

II. RELATED WORKS

Multi-Task Embodied Navigation. Embodied navigation [2,
88, 101, 74] requires agents to navigate in unseen environments
based on human instructions. There is extensive literature on
embodied navigation; here, we focus on four mainstream tasks
that involve both visual information and language instructions:
Vision-and-Language Navigation [4, 42, 44], Object Goal Nav-
igation [12, 40], Embodied Question Answering [21], and Hu-
man Following [35, 65, 106, 107]. Early efforts [79, 87, 63, 90]
towards a generalist-embodied navigation model involved multi-
task navigation datasets and directly learning navigation skills,
showing initial success in multi-task performance. However,
these methods experienced performance drops when deployed
in novel environments, especially in real-world settings. In
recent years, advanced approaches [103, 58, 33, 57, 109, 72]
have leveraged the generalization capabilities of large language
models to improve multi-task navigation. These models show
promising generalizability across navigation tasks but rely on
extensive prompting, which impacts time efficiency. In contrast,
our video-based large language model is trained end-to-end
for multi-task navigation, offering robust generalization and
computational efficiency for tasks like human following.
Embodied Navigation Datasets. To train and evaluate the
performance of a policy for embodied navigation tasks, a
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model to obtain actions for navigation or answers for embodied question-answering.

large body of datasets and corresponding benchmarks have
been proposed [23, 111, 56, 61]. These datasets play a crucial
role in the embodied navigation community. Here, we review
the datasets most relevant to our methods. For vision-and-
language navigation, the most widely used datasets are Room-
2-Room (R2R) [4] and Room-cross-Room (RxR) [45], which
provide navigation instructions and ground truth trajectories
of landmarks. We focus on a variant of R2R and RxR in
continuous environments, called VLN-CE [42], which is more
practical for real-world applications. For object goal navigation,
there are several famous benchmarks such as HM3D [66],
MP3D [11], and Aithor [112], which are built on various scene
environments and simulators. Here, we leverages the HM3D
dataset on Habitat [71], which shares the same action settings
as VLN-CE. For embodied question answering (EQA), there
are diverse datasets focusing on different attributes of EQA,
such as MP3D-EQA [84], MT-EQA [95], Graph-EQA [78],
and MX-EQA [36]. We select MP3D-EQA, which is well-
maintained with the latest baselines. For human-following
[104, 105] benchmarks, there is currently no benchmark
that provides textual descriptions of humans. Therefore, we
have self-built a textual description-based human-following
benchmark using Habitat 3.0 [65]. Note that new benchmarks
are consistently being proposed, covering a diverse range
of navigation attributes. However, our goal is to train and
evaluate our method on mainstream datasets to clearly justify
the performance of our approach.

Large Language Models for Navigation. Large Language
Models (LLMs)[20, 51, 110] have been introduced into

robotic navigation due to their generalization capabilities in
understanding and planning. One straightforward approach[108,
58, 57, 72] is to use off-the-shelf large language models in a
zero-shot manner. These methods employ visual foundation
models [22, 51] to describe surrounding environments in text
format, prompting the language model to select landmarks that
guide the agent. However, abstracting dense visual information
into text and relying on discrete landmarks results in sparse en-
vironmental observations and is limited to static environments.
Another approach [100, 97] trains a video-based large language
model end-to-end with low-level actions to enable continuous
movement. However, it faces efficiency challenges in long-
horizon tasks. In contrast, Uni-NaVid implements an online
visual token merging strategy, optimizing training efficiency
for long-horizon tasks and supporting non-blocking execution
in real-world environments.

III. PROBLEM FORMULATION

Navigation task definition. We define the general-purpose
navigation of Uni-NaVid as follows: At the time 7', given a
natural language instruction 7 consisting of [ words and an
ego-centric RGB video Op comprising a sequence of frames
{x1, -+ ,x7}, the agent is required to plan the next k actions
{Ap, -+, Arip_1} to executed for complete the instruction
within novel environments (k = 4 in our experiments). Here,
we adopt a widely used action setting [71, 12, 42, 21], which
require the agent to take low-level actions a € A, including
{FORWARD, TURN-LEFT, TURN-RIGHT, STOP}. Note that,
our task formulation is compatible with existing embodied



navigation tasks [71, 12, 42, 21], where the discrete low-level
actions [71, 12, 42, 21] represent a small rotation (30 degrees)
or a forward movement (25 cm), making them flexible to be
used in continuous environments such obstacle avoidance. We
provide a detailed explanation of how these actions are applied
in both synthetic and real-world environments in Sec. VI-A

Overview. As illustrated in Figure 2, Uni-NaVid is com-
posed of three main components: a vision encoder, an online
token merge mechanism and a large language model (LLM).
First, the online captured video stream is encoded by the vision
encoder (EVA-CLIP [77] in implementation) to extract frame-
wise visual features in the form of tokens, which we denote
them as visual tokens. The visual tokens are then spatially
and temporally merged by leveraging an online token merge
mechanism. Next, the merged visual tokens are projected
with an MLP projector into a feature space aligned with
language tokens, which are referred to as visual observation
tokens. As common, the instructions are also tokenized as a
set of tokens, known as language observation tokens. Both the
visual observation tokens and language observation tokens are
concatenated and passed to the Large Language Model (LLM),
which infers four action tokens that represent the next four
actions.

IV. MODEL OF UNI-NAVID
A. Observation Encoding.

Given the ego-centric video up to time 7', denoted by Or =
{x1. -+ ,x7}, we encode the video to a sequence of visual
features in the form of tokens. For each frame x;, we first get
its visual feature tokens X; € R¥=*X¢ with a vision encoder
(EVA-CLIP [77] in implementation), where N, is the patch
number (V,, is set to 256) and C is the embedding dimension.

D

The visual features provide rich information that enables the
agent to understand its navigation history and plan subsequent
actions. However, during navigation, the progressively increas-
ing number of visual tokens (7" x N, ) results in progressively
longer inference times for the LLM (typically 1-2 seconds
per inference) [100]. This increased latency renders LLM-
based navigation impractical for deployment in real-world
environments.

Xy.p = Encoder(x1.7)

B. Online Visual Token Merging

To reduce the number of visual tokens while preserving
sufficient navigation visual information, we design an token
merging mechanism. This strategy is based on the key insight
that recent observations are more critical for navigation, and
that visual information between consecutive frames (temporally)
and within neighboring pixels (spatially) may be redundant.

Visual token grouping. Drawing inspiration from the
Atkinson-Shiffrin memory model [6, 75], we categorize visual
tokens into current visual tokens X, short-term visual tokens
Xshort» and long-term visual tokens Xo,.. These visual tokens
are grouped based on their timestamps relative to the current

frame 7" and for each group of visual tokens, we apply a grid
pooling operation at different pooling resolutions:

Xewr = GridPool (Xy, o),  ift=T
X117 = § Xhort = GridPool (X, aghort), if t € [T-B, T)
Xiong = GridPool(Xy, aiong), if t € [1, T-B)

2)

where GridPool(-) is a grid pooling operation [48, 100],
spatially squeezing the tokens from NV, to %, and B (set to 64)
is the length of the buffer of shorter memory. Here, we adopt
the Ceurr = 2, Oghon = 8, Qlong = 16, leads to visual tokens as
Xeur € RXC) X o € R¥XC) Xy € RYXC, respectively.
Here, current visual tokens X, encapsulate comprehensive
visual information, enabling the agent to perceive its immediate
environment and plan subsequent trajectories. Meanwhile,
Xhort and Xong capture temporally rich information from the
captured video stream, facilitating the agent’s comprehension
of its navigation history.

It should be noted that these hyperparameters are obtained
through empirical experimentation to achieve an optimal
balance between manageable token numbers and adequate
visual information representation. These hyperparameters can
be further adjusted when memory capacity and computational
resources are not limiting factors. We provide a detailed
explanation and ablation study of « in the supplemental
material.

Online visual token process. During the navigation pro-
cess, the agent consistently observes new frames. However,
performing encoding and grouping (Eq. 2) for all frames at
each step would be computationally intensive. To address this,
we implement an online visual token processing mechanism
that maximizes the reuse of previously generated visual tokens.
Specifically, when a new frame at time 7" + 1 is received, we
apply grid pooling exclusively to the most recent visual tokens
at time 7" and the oldest short-term visual tokens at time 7" — B.
These processed tokens are then integrated into the short-term
and long-term visual tokens, respectively:

Qlshort

Xcurr—>short — GTidPOOl(Xcurr; —); (3)
. Qlong

Xshon—ﬂong - GTZdPOOl(Xshon; ) (4)
Qshort

To prevent the linear growth of long-term visual tokens
Xiong, we further perform token merging on the long-term
visual tokens by combining adjacent tokens that exhibit high
similarity, following the approach of VLM-based methods [8§,
75]. Specifically, we merge the long-term visual tokens based
on the cosine similarity between X ort—1ong and the most recent
long-term visual tokens X at time T'— B — 1. If the similarity
exceeds a predefined threshold 7, we merge them according
to the number of frames previously merged (denoted as K) in
the latest long-term visual tokens:

1
Xlong - K—H (leong + Xshon—ﬂong) ) (5)
subject to cos (Xiong, Xshort—slong) > T- (6)



Algorithm 1 Online Visual Token Merging
Require:
« Total number of frames T’
« Short memory buffer length B
e Grid pooling scales: oicyrr, Oishorts Ctlong
« Current visual tokens: Xy € RV=X¢
e Previously merged tokens: Xy, Xhorts Xiong
o Number of frames merged in the last tokens of long
memory: K
Ensure:
« Updated merged tokens: X¢,n, X Xiong
« Updated number of frames merged in the last tokens of
long memory: K'

1: if T'==1 then > First frame, empty history tokens
2 Xghon’ Xl/ong — []

3: else > Update short-term visual tokens
4 Xeur—sshont < GridPool(X ey, %)

S Xghon A Xshon + [Xcurr%shon]

6: end if

70 XLy < GridPool(Xp, aeyy) > New current visual token
8: if T'> B + 1 then > Out of short-term tokens buffer
9: Xshon%long < GTidPOOl(XShon [0], %)

10: Xlon ¢ Xshore[1 1]

11: S < COS(Xlong [* 1]; Xshon—ﬂong)

12: if I' > B+ 2 and s > 7 then > Fuse long-term tokens
13: Xlast_long A K#H(leong[fl] + Xshon—ﬂong)

14 Xl/ong < Xlong[: *1] + [Xlast_long]

15: K« K+1

16: else > Add new long-term token
17: Xl/ong A Xlong + [Xshon—ﬂong]

18: K +1

19: end if
20: end if

We insert new long-term visual tokens Xgorslong When
their similarity falls below a threshold T (empirically set
to 7 = 0.95 [75]), indicating that they contain relatively
distinct visual information. This online visual token processing
preserves the navigation visual history in a highly compact
form (with a length of M <« T — B — 1). Notably, only
visual tokens at the boundaries of groups require parallelizable
grid pooling, making the process computationally efficient and
naturally suited for online deployment in real-world navigation
tasks. We give a description of our token merging technique
at Algorithmn 1.

Compared to existing video-based large language mod-
els [100, 75, 48], this online merging strategy significantly
reduces inference time, achieving an average of 0.2 seconds
per inference. This improvement becomes increasingly notable
when handling longer video sequences. A detailed analysis of
time efficiency is provided in the Supplementary Materials.

C. Action Planning

After obtaining the merged visual tokens from semantic
features [77], we adopt established practices in Vision-and-
Language models [51, 48] to perform vision-language align-
ment, enabling the large language model (LLM) to effectively
interpret visual information. Specifically, we leverage a cross-
modality projector Py (+) to project all merged visual tokens
KXierged = {Xiong, Xshort; Xeurr } i1to visual observation tokens
that are compatible with the LLM’s input representation space:

E¥ - PV (Xmerged); (7)

where the Py (-) is implemented as a two-layter MLP [51]
and optimized in an end-to-end training manner. For instruction
encoding, we use the off-the-shelf language tokenizer and
embeing layer of LLM (Vicuna-7B [20]) to encode navigation
instruction into language observation tokens E% Then we
concatenate the visual observation tokens E¥, a navigation task
indicator (NAV) and language observation tokens EY. form the
final input token sequence. Here, the navigation task indicator
(NAV} is adopted by following [100, 64] for accelerating the
specific task learning and obtaining consistent output format.
Finally, the complete input token sequence is fed into the LLM
to infer four action tokens {E#,--- ,E4 ;}, as described
below. We include a discussion on the input token format in
the Supplementary Material

Input: {Long_term_tokens}{Shot_term_tokens}
{Current_tokens} < NAV > {Instruction}
Output: < Action_0>< Action_1 >< Action_2>

< Action_3>

The action tokens belong to the discrete action set
{FORWARD, TURN-LEFT, TURN-RIGHT, STOP}. Following
the standard configuration in existing navigation settings [71,
97], the forward action corresponds to a movement of 25
cm, and the turning actions represent a 30° rotation. This
configuration is consistent with all training navigation data
(Sec. V). Empirically, we find that predicting the next four steps
yields optimal performance, which encourages Uni-NaVid to
forecast long-horizon action sequences while still considering
sufficient observations for accurate prediction. This multi-step
prediction also supports asynchronous deployment, enabling
non-blocking navigation performance in the real world. Please
see the Supplementary Material for detailed elaboration.

V. DATA COLLECTION AND TRAINING

To train Uni-NaVidfor mastering multi-navigation tasks,
it is crucial to gather extensive and diverse navigation data
across various tasks and environments. However, directly
collecting large amounts of real-world navigation data can be
prohibitively expensive. To address this challenge, we propose
two key strategies for training Uni-NaVid: First, we collect
multi-task navigation data from a wide range of synthetic
environments (totaling 861 scenes) using a uniform input
and output format, enabling Uni-NaVidto acquire general
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Fig. 3: Visualization of training data. We visualize the
combination of training data (5.9M), video frame counts, and
the most common words in navigation instructions.

navigation skills. Second, we co-tune Uni-NaVidwith real-world
video-based question-answering data, enhancing its ability to
interpret real-world images and supporting its open-vocabulary
knowledge acquisition.

A. Multi-Task Navigation Data.

We process and collect the largest multi-task navigation
dataset to date within the Habitat simulator environment [71],
comprising 3.6 million samples (from approximately 80K
trajectories) across four distinct navigation tasks, as described
below. All tasks are curated within a unified framework. A
detailed data process and collection strategy is provided in the
Supplementary Materials.

(A) Vision-and-language navigation [42, 44] require the
agent to interpret and ground instructions in visual observations,
effectively combining linguistic and visual information to make
sequential decisions. Specifically, the agent has to navigate
based on landmarks and motions described in the text and
stop nearby the correct destination. Here, we process 2.4M
navigation samples of mainstream VLN datasets, VLN-CE
R2R [42] and RxR [45], that focus on continuous environments.

(B) Object Goal Navigation [71] involves an agent nav-
igating an environment to locate a specific object based on
provided visual or linguistic cues. This task evaluates the
agent’s ability to perceive objects, understand scene layout, and
execute efficient search strategies. We collected 483k samples
from datasets in the Habitat Matterport 3D dataset (HM3D
ObjectNav) [67]. Note that, in HM3D ObjectNav, the agent is
required to locate objects from a predefined category set (e.g.,
sofa, chair, and bed). Nevertheless, experiments demonstrate
that our method generalizes to SOTA-level open-vocabulary
object goal searching, as shown in Table V.

(C) Embodied question answering [84] requires the agent to
navigate to the related area for question answering. It involves
spatial reasoning, object description, and understanding contex-
tual information, requiring the ability to integrate perception,

L Instruction example:

“Follow the woman in a
light gray t-shirt and blue
jeans.”

Fig. 4: Language-described human following benchmark.
We construct our human-following benchmark based on Habitat
3.0 [65] by incorporating textual descriptions for each avatar
(eight in total, top row). The robot is required to comprehend
these descriptions and accurately follow the designated indi-
vidual in crowded environments.

language comprehension, and decision-making. Following the
setup in main stream EQA methods [21, 84], the agent first
navigates to the target related to the question, issues a stop
action, and then provides an answer. We process 240k video-
action samples and 10k video-answering samples on the MP3D-
EQA dataset [21] on Matterport 3D environments [11]. We
provide an additional experiment on OpenEQA [60] in the
supplemental material.

(D) Human following [35, 25] requires the agent to track and
follow a human target with a specific description in dynamic
and crowded environments, e.g., “Follow the man in the blue t-
shirt.”. The agent must recognize the appearance of the human,
follow the correct person described in the instructions, predict
their movement trajectory, and keep an appropriate distance
while avoiding obstacles.

However, there is currently no human-following dataset
that supports language-described human following in crowded
environments (multi-person scenarios). To this end, we extend
the Habitat 3.0 social navigation benchmark [65] by (1) adding
textual descriptions for each avatar (8 in total, as illustrated in
Fig. 4), (2) introducing additional distracting human avatars
to simulate challenging real-world environments, and (3)
deploying the robot and humans in the Habitat Matterport
3D dataset [94], which offers photo-realistic rendering quality
and diverse large-scale scenes. The robot and target human
are initialized nearby (using the same setting as [65]), with
randomly moving distracting human avatars. Based on this
setup, we collected 544k human-following navigation samples.
We also add a detailed description in Supplementary Material.

Unified navigation samples. The data statistics are presented
in Figure 3. It is worth noting that the number of samples
in VLN is relatively larger compared to other tasks. This
is because VLN [42, 44] requires the agent to navigate all
landmarks described in the instructions, which often results
in longer trajectories and, consequently more video-action



samples. Here, we collect all navigation samples in a uniform
format, including an egocentric RGB video, a natural language
instruction, and four corresponding future actions. All data were
collected from synthetic scenes across the Habitat-Matterport
3D (HM3D) and Matterport 3D (MP3D) datasets. We use
the default settings of each environment, with a height range
of 0.88 m to 1.25 m and a robot radius between 0.1 m and
0.6 m. This approach helps prevent overfitting to a specific
robot embodiment. This approach helps prevent overfitting
to a specific robot embodiment. Note that while there exist
insightful techniques [24, 29] investigating navigation for robots
of general sizes, our focus is primarily on uniform multi-task
navigation.

B. Training Strategy of Uni-NaVid

Joint training on synthetic and real-world data. Although
we collect navigation data from various environments, the
diversity in both observations and instructions remains limited
to a specific set of synthetic environments. To incorporate open-
world knowledge, we follow previous Vision-and-Language
Action models [100, 9], integrating open-world video question-
answering during training. Specifically, we adopt a two-stage
training process (a common strategy in Vision-and-Language
models [51, 48, 75]): (1) First, we exclusively train the cross-
modality projector (Equ. 7) using the same modality alignment
dataset as LLaMA-VID [48]. (2) Second, we fine-tune both
the projector and the Large Language Model (LLM) using
2.3M video question-answering data from publicly available
datasets [7, 19, 48], along with 3.6M multi-task navigation
samples. During training, we apply the online token merging
to both the VQA samples and navigation samples, the only
difference is the VAQ samples do not include navigation task
indicator (NAV).

Training configuration. Uni-NaVid is trained on a cluster
server with 40 NVIDIA H800 GPUs for approximately 35
hours, totaling 1400 GPU hours. For video data, we sample
frames at 1 FPS to remove redundant information between
consecutive frames. During training, the vision encoder (EVA-
CLIP [77]) and large language model (Vicuna-7B [20]) are pre-
loaded with default pre-trained weight. Following the training
strategy of VLM [51], we optimize the trainable parameters
for only 1 epoch.

VI. EXPERIMENT

We conduct experiments to evaluate Uni-NaVid on three
specific aspects: (1) How does Uni-NaVid perform on individual
tasks? (2) Does learning multiple navigation tasks lead to
synergistic improvements? (3) Is the key design of our method
effective? To evaluate the general-purpose navigation method,
we conduct extensive experiments on individual navigation
tasks, employing corresponding strong baselines. Additional
details are provided in the supplemental material.

Benchmarks. We evaluate our method on various bench-
marks across different navigation tasks. Given the diversity of
benchmarks spanning various environments and simulators, we

meticulously verify the scene splits to ensure no overlap exists
between the training and validation scenes across benchmarks.

o Vision-and-language navigation: We test our method
on the validation splits of the VLN-CE R2R [42] and
RxR [44] benchmarks.

e Object goal navigation: We use the validation split
of the Habitat Matterport 3D (HM3D) dataset [67],
which requires the agent to find target objects from six
categories (sofa, chair, TV, bed, toilet, and plant) in unseen
environments. Moreover, to test generalizability, we also
evaluate our method on the HM3D-OVON dataset [94],
an open-vocabulary object navigation benchmark, in a
zero-shot manner.

o Embodied question-answering: We use the validation
split of the MP3D-EQA benchmark [84]. Additionally,
we conduct experiments on the more recent Embodied
Video Question Answering benchmark, OpenEQA [60].

e Human following: We evaluate our method along-
side mainstream approaches on our proposed language-
described human following benchmark.

e Video understanding: We follow the evaluation proce-
dures of existing VQA methods [48]. We choose the
ScanQA [7], MSVD [13], MSRVTT [89], and Activi-
tyNet [10] datasets.

Metrics. To evaluate navigation performance, we follow the
standard evaluation metrics [4], including success rate (SR),
oracle success rate (OS), success weighted by path length
(SPL) [3], trajectory length (TL), following rate (FR) [65],
collision rate (CR) [65] and navigation error from goal (NE).
Note that the success criteria change among different navigation
tasks, we therefore use the default success criteria of each
benchmark. For video understanding evaluation, we employ
widely used metrics following existing works [7, 48].

A. Deployment Details of Uni-Navid.

Benchmark evaluation. For each navigation task, we adhere
to the default settings of each navigation task [42, 71, 21, 35].
All tasks take an online captured RGB video (capturing one
frame after each action) and a textual instruction as inputs,
and output the next four actions (Sec. IV-C). The robot then
executes the predicted actions and calls STOP once the first
predicted action is a stop action. For VLN and EQA tasks, we
directly use the text instruction provided by the benchmark
episodes. For human following and object goal navigation, we
transform the target information into an instruction by adding
prefixes such as “Search for” or “Follow.” Further details can
be found in the supplemental material.

It is worth noting that for EQA [21] task, the agent executes
navigation actions until a stop command is issued. We then
remove the navigation-specific token <NAV> and query the
questions using the navigation history. This strategy alleviates
the ambiguity for the LLM in deciding whether to navigate or
answer a question (See Table X).

Real-world deployment. For real-world deployment, we
utilize a remote server with an NVIDIA A100 GPU to run
Uni-NaVid, which processes observations (along with text



Method Observation VLN-CE R2R Val-Unseen

Pan. Odom. Depth SRGB| TL NE| OStT SRt SPL1
HPN+DN* [43] v v v 7.62 6.31 40.0 36.0 34.0
CMA* [30] v v v 10.90 6.20 52.0 41.0 36.0
VLNGBERT*f [30]| v v v 12.23 5.74 53.0 44.0 39.0
Sim2Sim* [41] v v v 10.69 6.07 52.0 43.0 36.0
GridMM* [81] v v v 13.36 5.11 61.0 49.0 41.0
HAMT*{ [83] v v v - 480 - 550 51.0
ETPNav* [1] v v v 11.99 4.71 65.0 57.0 49.0
InstructNav [58] v v v v 7.74 6.89 - 31.0 240
AG-CMTP [15] v v v - 7.90 39.2 231 19.1
R2R-CMTP [15] v v v - 7.90 38.0 264 22.7
LAW [70] v v v 8.89 6.83 44.0 35.0 31.0
CM2 [26] v v v |11.54 7.02 41.5 343 27.6
WS-MGMap [16] v v v’ |10.00 6.28 47.6 38.9 34.3
ETPNav.FF [82] v v v - 5.95 55.8 449 304
Seq2Seq [42] v v 930 7.77 37.0 25.0 22.0
CMA [42] v v 8.64 7.37 40.0 32.0 30.0
NaVid [100] v 7.63 5.47 49.1 374 359
Uni-NaVid v 9.71 5.58 53.3 47.0 42.7

TABLE II: Vision-and-language navigation (R2R). Compari-
son on VLN-CE R2R [42] Val-Unseen. *: Methods use high-
level action space. 7: Methods use the same waypoint predictor
proposed in [30]. 1: Methods use additional visual data than
MP3D scenes [11]. Pan. indicates the use of panoramic
images. Odom. indicates the use of odometry information.
S.RGB indicates a single egocentric RGB image.

Method Observation VLN-CE RxR Val-Unseen
Odom. Depth S.RGB| TL NE] OS{ SRt SPLT
LAW* [70] v v v 4.01 10.87 21.0 8.0 8.0
CM2* [26] v v v |12.29 898 253 144 92
WS-MGMap* [16]| v v v |10.80 9.83 29.8 150 12.1
ETPNav.FF [82] v v v - 8.79 36.7 255 18.1
Seq2Seq* [42] v v 1.16 11.8 5.02 351 343
CMA¥* [42] v v 5.09 11.7 10.7 441 247
A?Navt [17] v - - - 168 63
NaVid* [100] v |10.59 841 345 238 21.2
Uni-NaVid v 15.8 6.24 55.5 48.7 40.9

TABLE III: Vision-and-language navigation (RxR). Compari-
son on VLN-CE RxR [45] Val-Unseen. *: only trained on VLN-
CE R2R. Odomn. indicates the use of odometry information.
S.RGB indicates a single egocentric RGB image.

instructions) and sends commands to a local robot to execute
the predicted actions. Uni-NaVid requires approximately 0.2
seconds to generate the next four actions. During navigation,
the robot asynchronously compresses and uploads the latest
observations to the model while executing pending actions.
Refer to the supplementary video for real-world navigation
performance.

B. Individual Task Results

Comparison on vision-and-language navigation. We eval-
uate our method with mainstream baselines on two publicly
available benchmarks: VLN-CE R2R [42] and RxR [45]. The
results are shown in Table II and Table III. We find that our
methods achieve SOTA-level performance on both datasets
using only RGB videos as observations. In comparison to
NaVid [100], which is also a vision language model that
is solely trained on VLN data, our approach demonstrates

Method Observation HM3D ObjectNav
Odom. Depth S.RGB | SRt SPL1
DD-PPO [85] v v v 279 14.2
Habitat-Web [68] v v v 57.6 23.8
InstructNav [58] v v v 58.0 20.9
PIRLNav-IL [69] v v 64.1 27.1
PIRLNav-IL-RL [69] v v 70.4 34.1
OVRL [92] v v 62.0 26.8
OVRL-v2 [91] v v 64.7 28.1
Uni-NaVid v 73.7 371

TABLE IV: Object goal navigation. Comparison on Habitat
Matterport 3D [67] ObjectNav dataset. Odom. indicates the use
of odometry information. S.RGB indicates a single egocentric
RGB image.

significant improvements, with a +25.7% increase in Success
Rate (SR) on R2R. For zero-shot methods (InstructNav [58]
and A2Nav [17]) that use ChatGPT with only text inputs
for visual language navigation (VLN), these approaches often
face challenges in transitioning between text prompts and
visual information, resulting in less than satisfactory outcomes.
Furthermore, it is important to note that the trajectories in
RxR are more diverse and involve longer paths with detailed
landmark descriptions, making RxR widely regarded as more
challenging than R2R. However, our method achieves consistent
performance across both R2R and RxR, with slightly better
results on RXR (+3.6 SR(%)), demonstrating its ability to
effectively leverage detailed instructions to navigate diverse
trajectories. We add experiments of removing RxR samples in
Supplemntal Material, where our method still achive STOA
performance (+23.9 SR(%)) against NaVid.

Comparison on object goal navigation. We conduct the
experiments on HM3D [67] to compare Uni-NaVid with
mainstream methods [85, 68, 69, 92, 91] that also learn from
ObjectNav data. The results, shown in Table IV, demonstrate
that our approach achieves the best performance. Note that
methods not utilizing odometry face challenges as they must
rely on implicit memory to retain the historical trajectory.
Nevertheless, Uni-NaVid still achieves significant gains in SR
(+4.7%) and SPL (+8.8%) compared to previous state-of-the-
art methods. Additionally, we believe our method’s ObjectNav
performance can be further enhanced by incorporating reinforce-
ment learning techniques, as demonstrated by PIRLNav [69]
and Poliformer [97].

To evaluate the generalization ability for open-vocabulary
objects, we evaluate our method on the open-vocabulary object
goal navigation benchmark (HM3D-OVON [94]) in a zero-shot
manner. The results in Table V demonstrate that our method
achieves significant improvement over the zero-shot method
(VLFM [93]) and even outperforms the fine-tuned method
(DAgRL+OD [94]) on the VAL SEEN and VAL UNSEEN
splits. This proves the generalizability of our method.

Comparison on embodied question answering. The evalu-
ation results on MP3D-EQA [84] are presented in Table VI.
Despite navigating in continuous environments (CE), our
method outperforms existing approaches (e.g., NaviLLM [103]



VAL SEEN
Mothod VAL SEEN | (000 e e | VAL UNSEEN
SRt SPLt | SRt SPL{ | SRt  SPLt
BC 111 45 | 99 38 | 54 1.9
DAgger 111 45 | 99 38 | 54 1.9
RL 181 94 |150 74 |102 47
BCRL 392 187 | 278 117 | 186 75
DAgRL 413 212 | 294 144 | 183 79
VLEM* [93] 352 186 | 324 173 [352 196
DAgRL+OD [94] | 385 211 | 390 214 [371 198
Uni-NaVid* 413 211 | 439 218 [395 198

TABLE V: Object goal navigation. Comparison on HM3D-
OVON [94]. * : denotes zero-shot methods.

Action Type |[MP3D EQA
Method DE. CE GT| ACCt
NavilLLM [103] v 44.5
Uni-NaVid v 47.3
EQA (habitat-lab) [21] v 46.0
NavilLLM [103] v 47.4
Uni-NaVid v 54.4

TABLE VI: Embodied question answering. Comparison on
Habitat Matterport3D EQA dataset [21]. C.E.: Continuous
Environment; D.E.: Discrete Environment.

Method Observation |Human Following Dataset
H.Det. SRGB| SRt  FRf CR|
PoliFormer [97] v 279 2035 293
PoliFormer* [97]| v v 14.67 37.14 429
PoliFormert [97]| v v 2529 4716 6.78
IBVS* [28] v v 46.08 62.64 084
IBVSt [28] v v 50.58 68.89  0.80
Uni-NaVid v 61.21 7193 2.07

TABLE VII: Human following. Comparison on Human Fol-
lowing Dataset. H.Det . with human tracking bounding box.
*: Methods use GroundingDINO [55] as the open-vocabulary
human detector. {: Methods use the ground-truth bounding box
provided by the simulator. S.RGB indicates a single egocentric
RGB image.

leverage the same evaluation strategy in Sec. VI-A) that operate
within discrete landmark-based environments (DE). Moreover,
when provided with the ground truth (GT) navigation trajectory,
our method shows a significant improvement, demonstrating
its ability to understand navigation history effectively. We also
report our performance on the more challenging EM-EQA
benchmark, OpenEQA [60], in the Supplemental Material,
which includes more complex questions. Our method achieves
comparable performance to GPT-4V with scene captions [60].

Comparison on human following. We compared our
method with two most relative methods PoliFormer [97] and
IBVS [28]. Since both methods require a specific human
bounding box as input, obtained from an upstream algorithm,
we use the bounding box from the open-world object detector
GroundingDINO [55] and the ground truth provided by the
simulator to evaluate the human following performance of

ScanQA
Method EM 1 BLUE-1 1 ROUGE 1 METEOR { CIDEr {
VN+MCAN [96] 1971 2946 3097 1207 5823
S.R+MCAN [96] 2056 2785 3068 1197 57.56
3D-LLM(flamingo) [31]| 232  32.60  34.80 135 65.6
NaviLLM [103] 2627 3973 4023 1656  80.77
BridgeQA [62] 3129 3449 4326 1651  83.75
Uni-NaVid 2801 4685  45.74 1924 94.72

TABLE VIII: Embodied video question answering. Compar-
ison on ScanQA [7] benchmark.

Method MSVD-QA \MSRVTT-QA | ActivityNet-QA
Acc?t Scoref|Acct Scoret |AcctT  Scoret
VideoL.LaMA [98] |51.6 25 |29.6 1.8 |124 1.1
VideoChat [46] 563 28 |450 25 |265 2.2
VideoChatGPT [59]| 649 3.3 493 2.8 |352 2.7
BT-Adapter [53] 675 37 |57.0 32 457 3.2
Chat-UniVi [37] 650 3.6 |546 31 |458 3.2
LLaMA-VID [48] |69.7 3.7 |577 32 |474 33
VideoChat2 [47] 70.0 39 |541 33 |49.1 33
Video-LLaVA [50] |70.7 3.9 [59.2 35 453 33
ST-LLM [54] 746 39 |63.2 34 |509 33
Uni-NaVid 696 39 593 35 |514 3.7

TABLE IX: Video question answering. Comparison with
leading methods (all based on Vicuna-7B [20]) on VQA
benchamarks.

the comparison methods under various setups. As shown in
Table VII, Uni-NaVid outperforms the comparison methods
on both SR (+21.0%) and FR (+4.4%) while maintaining
low CR under any setup, even when they use ground truth
bounding boxes as input. This demonstrates that Uni-NaVid can
effectively infer instructions and follow the correct human, as
well as predict the human’s movement patterns accurately. We
include additional human-following experiments in various
environments, such as HSSD [39] and MP3D [11], in the
Supplemental Material. Our method consistently demonstrates
SOTA performance across these settings.

Comparison on video question answering. We first evaluate
our method on ScanQA [7] on Tab. VIII. Compared to
mainstream baselines, we find that Uni-NaVid archives the best
performance on four metrics, including BLUE-1 (+17.9%),
ROUGE (+5.7%), METEOR (+16.2%), and CIDEr (4-13.1%).
This proves the superiority of our methods on spatial scene
understanding. Note that the EM metric requires an exact match
between the question and answer, which is not well-suited to
our method, as it is designed to learn from diverse data and
generate flexible responses.

We further evaluate our method on open-ended video
question-answering benchmarks [13, 89, 10], as presented
in Table IX. To ensure a fair comparison, we focus on
methods that employ the same large language model backbone
(Vicuna-7B [20]). The results indicate that even after extensive
token merging (Sec. IV-B), Uni-NaVidachieves performance
comparable to state-of-the-art methods. This demonstrates the
effectiveness of both our token merging and training strate-
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Fig. 6: Vivusal results of Uni-NaVid on compostional
tasks. The agent is required to execute complex instructions
involving multiple navigation tasks. Our method successfully
accomplishes these navigation tasks sequentially. Notably, both
the instructions and environments are novel to our approach.
Please refer to the supplementary videos.

gies, while also highlighting robust open-world understanding
capabilities.

C. Qualitative Results in Real-World

We conducted extensive experiments on real-world environ-
ments (experiment details are provided in the supplemental
material) under diverse environments in a zero-shot manner.
Notably, both the instructions and environments are novel to

our method. We first evaluated the performance of individual
navigation tasks (Fig. 5), including (A) vision-and-language
navigation, (B) object goal navigation, (C) embodied question
answering, and (D) human following. We found that Uni-NaVid
can understand diverse instructions and demonstrates impressive
performance in long-horizon navigation tasks (e.g., navigating
across hallways and entering rooms), as well as in searching
for out-of-vision objects and answering subsequent questions.
Moreover, the agent is capable of following a human even
when the person’s appearance deviates from the description
of the avatar in the human-following dataset (Sec. V-A). The
statistics of the corresponding real-world experiments can be
found in the Supplemental Material.

In addition to individual navigation tasks, we also evaluate
our method on more complex instructions involving multiple
navigation tasks (Fig. 6). In this scenario, the agent is required
to sequentially execute the navigation tasks described in the
language instructions. Our model demonstrates impressiove
performance in aligning the current navigation process with
the instructions to reason about the current state of navigation.
Furthermore, we provide a detailed illustration of action
prediction during navigation in Fig. 7, where we plot the
predicted action probabilities of Uni-NaVid. Notably, with
only slight differences in object descriptions, e.g., 'chair with
a toy’ and ’‘chair with a sweater’. Specifically, our method
successfully distinguishes between the locations and predicts
actions accordingly. Interestingly, the action probabilities (for
the next four actions) reveal a sequential order of actions: first
turning right/left, followed by moving forward. We provide
additional visual results of our method in the Supplemental
Material and encourage the audience to view our video, which
showcases the real-world performance of our method.

D. Ablation Study

Visualization of training strategy. We present a visual-
ization of the training strategy’s performance in Figure 8. In
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Fig. 8: Comparsion on multi-task training and data scale. (a)
We present the multi-task synergy of our method, illustrating
the performance comparison between training with a single
task and training with multiple tasks; (b) we demonstrate the
performance across different navigation tasks under varying
numbers of training samples.

Fig. 8 (a), we compare training on a single navigation task
with training across multiple tasks. The results demonstrate
the synergistic benefits of multi-task learning, which yields
consistent performance improvements across all navigation
tasks. Notably, VLN, ObjectNav, and EQA exhibit more
significant improvements, while Following shows relatively
smaller gains. We attribute this difference to the lower reliance
of the Following task on historical context. Additionally,
we investigate the influence of data scale on navigation
performance (Figure 8 (b)). We observe that performance

improves across all navigation tasks with larger data volumes.

However, the incremental gain diminishes (from 3M to 6M
samples), potentially due to limitations in the data diversity
of simulators. Specifically, for the Following task, the reason
for the slower convergence is the heavy occlusion caused by

Type VLN (SR?T) ObjNav (SRT) EQA (ACCT) Follow (SRT)
No «Nav>> token 35.2 69.1 204 55.1
No VQA data 40.5 50.6 1.19 58.8
Curr. 9.61 44.3 325 56.3
Curr.+Short. 39.7 67.8 44.1 59.7
Curr.+Short.+Long. 48.7 73.7 473 61.2

TABLE X: Ablation study on training strategy and archi-
tecture. For each ablation type, we retrain the entire model
and evaluate its performance across four navigation tasks.

obstacles or other humans. This highlights the need for more
high-quality following data samples, which can enable our
model to learn more effectively and perform better in highly
dynamic environments.

Ablation on training strategy and architecture. We
conduct experiments to evaluate the effectiveness of the training
strategy and token merging designs (Tab. X). Our results
indicate that the absence of <NAV> and VQA data leads to
a performance decline across all tasks, similar findings can
be found in [14, 100]. Notably, the performance drop is most
obviously in EQA, as the lack of <NAV> special token makes
the model misinterpret whether it should answer questions or
output actions. Additionally, without VQA data, the agent’s
ability to answer questions drops significantly, almost rendering
it incapable of correctly answering questions. We believe this
is due to the catastrophic forgetting problem in LLMs, where
the model loses open-world knowledge by being trained solely
on navigation-related data.

From the performance of different memory designs, we
find that both short-term and long-term memory visual tokens
contribute to performance improvements. In particular, the VLN
task shows the most significant performance drop (—80.3%
SR) when visual memory is removed, as the lack of memory
hinders the alignment of visual history with instructions. For
the Following task, the absence of memory results in only a
minor performance decline (—8% SR), as this task primarily
relies on recent frames to track the target. Additional ablation
studies on architecture and hyperparameters are provided in
the Supplementary Material.

VII. LIMITATIONS

Despite the promising results, Uni-NaVid has several limita-
tions. First, Uni-NaVid is trained and evaluated on four well-
defined navigation tasks, while there exists a large body of lit-
erature on insightful and practical navigation datasets [80, 101].
We believe that collecting data from these datasets could
further enhance the navigation capabilities of our method.
Second, our method is designed to acquire multi-task navigation
capabilities under the assumption that the robot is of standard
size (see Section V-A). To extend it to robots of general sizes,
a convincing approach is to incorporate prior knowledge of the
robot’s size, as demonstrated in [24, 29]. Third, our method
is currently limited to predicting simple trajectories composed
of a short horizon of future low-level discrete actions. This
limitation could be alleviated by extending the moel to predict



continuous and smooth trajectories with techniques from motion
planning [73, 76] or autonomous driving [18, 49].

VIII. DI1SCUSSION AND CONCLUSION

In this paper, we introduce an efficient vision-language-action
(VLA) model, Uni-NaVid, designed to acquire general embod-
ied navigation skills through learning multi-task navigation
data. To efficiently encode the online-captured video sequences
during navigation, we develop an online visual token merging
mechanism that separately processes current observations, short-
term observations, and long-term observations. This design
enables our approach to operate at an average speed of 5 Hz. We
also collect 3.6 million navigation data points across four highly
demanded embodied navigation tasks, including vision-and-
language navigation, object goal navigation, embodied question
answering, and human following. Extensive experiments and
ablation studies demonstrate that our method achieves SOTA-
level performance using only monocular videos as input,
highlighting our model’s superior capability in learning multiple
navigation tasks. Moreover, we deploy Uni-NaVid in real-world
environments, demonstrating impressive generalizability and
versatile navigation performance in real worlds.

Future works. Our work serves merely as a starting point of
general-purpose navigation, and we hope it will inspire future
directions in this field:

e Benchmarking. With the consistent development of em-
bodied navigation, there is a growing need for general-
purpose navigation benchmarking. Such a benchmark
would help researchers better position their work and
drive progress in the navigation community.

o Architecture. We would like to further enhance the prac-
ticality of our architecture by tackling very long-horizon
tasks (e.g., navigating across buildings) and incorporating
advanced motion planning techniques [76, 18].

o Application. We would like to apply our method to applica-
tions such as robotic guide dogs and home service robots.
Additionally, we are excited to extend this technique to
other embodied Al tasks, such as mobile manipulation
[99, 86, 52].
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