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Fig. 1: We introduce UniVLA, a unified vision-language-action (VLA) framework that enables policy learning across different
environments. By deriving task-centric latent actions in an unsupervised manner, UniVLA can leverage data from arbitrary
embodiments and perspectives without action labels. After large-scale pretraining from videos, UniVLA develops a cross-
embodiment generalist policy that can be readily deployed across various robots by learning an action decoding with minimal
cost. Compared to OpenVLA [39], UniVLA exhibits unanimous improvement on multiple manipulation and navigation tasks.

Abstract—A generalist robot should perform effectively across
various environments. However, most existing approaches heavily
rely on scaling action-annotated data to enhance their capa-
bilities. Consequently, they are often limited to single physical
specification and struggle to learn transferable knowledge across
different embodiments and environments. To confront these
limitations, we propose UniVLA, a new framework for learning
cross-embodiment vision-language-action (VLA) policies. Our
key innovation is to derive task-centric action representations
from videos with a latent action model. This enables us to exploit
extensive data across a wide spectrum of embodiments and
perspectives. To mitigate the effect of task-irrelevant dynamics,
we incorporate langnage instructions and establish a latent action
model within the DINO feature space. Learned from internet-
scale videos, the generalist policy can be deployed to various
robots through efficient latent action decoding. We obtain state-
of-the-art results across multiple manipulation and navigation
benchmarks, as well as real-robot deployments. UniVLA achieves
superior performance over OpenVLA with less than 1/20 of
pretraining compute and 1/10 of downstream data. Continuous
performance improvements are observed as heterogeneous data,
even including human videos, are incorporated into the training
pipeline. The results underscore UniVLA’s potential to facilitate
scalable and efficient robot policy learning.

1. INTRODUCTION

Empowered by the emergence of large-scale robotic
datasets [78, 63, 38, 18], robot policies based on vision-
language-action models (VLA) have made encouraging strides

recently [9, 28, 39]. However, they typically rely on ground-
truth action labels for supervision, which limits their scalability
in utilizing internet-scale data from diverse environments. Fur-
thermore, the heterogeneity of action and observation spaces
across different embodiments (e.g., Franka, WidowX, and even
human hands) and tasks (e.g., manipulation and navigation)
poses a significant challenge to effective knowledge transfer.
This raises a crucial question: could we learn a unified action
representation that enables the generalist policy to plan ef-
fectively, unlocking the potential of internet-scale videos and
facilitating knowledge transfer across different embodiments
and enviromments?

To address these challenges, we propose UniVLA, a gener-
alist policy learning framework that enables scalable and effi-
cient planning across various embodiments and environments.
Much like large language models (LLMs) learn cross-lingual
shared knowledge [22, 17], we aim to construct a unified
action space that facilitates knowledge transfer across video
data, including various robot demonstrations and egocentric
human videos. Our recipe for generalist policy consists of three
key stages: 1) Task-centric Latent Action Learning, where
we extract task-relevant action representations from massive
cross-embodiment videos in an unsupervised manner. This
is achieved by discretizing latent actions from the inverse
dynamics of paired frames using a VQ-VAE [76]. 2) Next-



latent action prediction, where we train an auto-regressive
vision-language model with discretized latent action tokens,
endowing it with embodiment-agnostic planning capabilities.
3) Latents decoding, where we decode latent plans into
physical behaviors and specialize the pretrained generalist
policy for deployment in unseen tasks efficiently.

While recent studies [87, 15] have investigated the via-
bility of learning latent actions from web-scale videos, they
suffer from a critical limitation: their naive reconstruction-
based objectives often capture task-irrelevant dynamics, such
as movements of non-ego agents or unpredictable camera
shifts. These noisy representations hinder policy pretraining
by introducing distractions unrelated to the task. To address
this, we leverage pre-trained DINOv2 features [62] to extract
patch-level representations from pixels, providing both spatial
and object-centric priors that better capture task-relevant infor-
mation. By using the readily available language instructions
as conditions, we further disentangle movements into two
complementary action representations, one of which explicitly
represents task-centric actions.

UniVLA achieves state-of-the-art performance across mul-
tiple manipulation benchmarks and navigation tasks, outper-
forming OpenVLA [39] by a significant margin while re-
quiring merely 1/20 of the pretraining cost (in GPU hours).
This efficiency stems from its task-centric latent action space,
which decouples task-relevant dynamics from extraneous vi-
sual changes. Our action representation not only reduces
computational overhead but also enables efficient scaling - as
dataset size grows, UniVLA’s performance improves, effec-
tively leveraging cross-embodiment, cross-view robot datasets
and even unlabeled human videos to expand its pretraining
corpus and extract transferable knowledge. Remarkably, when
pretrained solely on the Bridge-V2 dataset [78], UniVLA
surpasses OpenVLA and LAPA trained on the larger Open
X-Embodiment [63] dataset, underscoring its ability to distill
transferrable knowledge from limited data.

In addition, we employ a lightweight decoder with only
10.8M parameters to translate latent actions into executable
trajectories, significantly reducing the need for extensive fine-
tuning. This design leverages the compact and informative
nature of the task-centric latent action space, enabling UniVLA
to adapt efficiently to diverse tasks and embodiments with
minimal downstream data. Our comprehensive evaluation,
spanning manipulation, navigation, and real-world deploy-
ment, underscores the framework’s efficiency, scalability, and
generalizability, positioning it as a promising pathway toward
next-generation generalist robotic policies.

In summary, our main contributions are three-folds:

« We propose UniVLA, a recipe towards generalist policy
by planning in a unified, embodiment-agnostic action
space, enabling scalable and efficient decision-making by
learning from web-scale videos.

« We introduce a novel approach for extracting task-
relevant latent actions from cross-embodiment videos,
decoupling task-centric dynamics from irrelevant visual
changes. Both qualitative and quantitative experiments

highlight its merits and advantages over existing works.
o UniVLA achieves state-of-the-art performance on mul-
tiple benchmarks and real-robot tests, achieving an
18.5% increase in success rate over OpenVLA on the
LIBERO [48] benchmark, 29.6% in navigation tasks [3],
and a 36.7% improvement in real-world deployments.

II. RELATED WORK
A. Vision-language-action Models

Building on the success of pretrained vision foundation
models, large language models (LLMs), and vision-language
models (VLMs), VLAs have been introduced to process
multimodal inputs—yvisual observations and language instruc-
tions—and generate robotic actions for completing embodied
tasks. RT-1 [10] and Octo [28] employ a transformer-based
policy that integrates diverse data, including robot trajectories
across various tasks, objects, environments, and embodiments.
In contrast, some prior works [9, 39, 46] leverage pretrained
VLMs to generate robotic actions by tapping into world knowl-
edge from large-scale vision-language datasets. For instance,
RT-2 [9] and OpenVLA [39] treat actions as tokens within
the language model’s vocabulary, while RoboFlamingo [46]
introduces an additional policy head for action prediction.
Building on these generalist policies, RoboDual [12] proposes
a synergistic dual-system that combines the strengths of both
generalist and specialist policy. Other works incorporate goal
image [8] or video [24, 82, 13] prediction tasks to generate
valid, executable plans conditioned on language instructions,
with these visual cues subsequently guiding the policy in
action generation. However, these methods heavily rely on
interactive data with ground-truth action labels, which sig-
nificantly restricts the scalability of VLAs. In contrast, our
approach unlocks the potential of internet-scale, action-free
videos by learning a unified latent action representation from
visual changes, independent of action labels.

B. Cross-embodiment Learning

Training a general-purpose robot policy is challenging due
to the diversity in camera perspectives, proprioceptive inputs,
joint configurations, action spaces, and control frequencies
across robotic systems. Early approach [86] focused on align-
ing action space manually between navigation and manipula-
tion but were limited to wrist cameras in manipulation. Recent
transformer-based approaches [28, 23] address these chal-
lenges by accommodating variable observations and actions,
with CrossFormer [23] co-training across four distinct action
spaces without imposing constraints on observation spaces
or requiring explicit action-space alignment. Flow representa-
tions, capturing future trajectories of query points in images or
point clouds, have been widely explored for cross-embodiment
learning [81, 88, 26, 83]. ATM [81] learns flow generation
from human demonstrations, while Im2Flow2Act [83] predicts
object flows from human videos without in-domain data.
Meanwhile, object-centric representations [32, 7] offer an
alternative approach, with SPOT [32] predicting object trajec-
tories in SE(3) to decouple embodiment actions from sensory



inputs. Existing approaches demand extensive, diverse datasets
to cover all possible state-transition patterns and need explicit
annotations, leading to inefficient data utilization. Our method
sets itself apart by using a discrete codebook to encode latent
actions in an unsupervised manner. Our approach effectively
filters out visual noise and achieves efficient information com-
pression via vector quantization, thereby enhancing training
efficiency and lessening the reliance on data diversity.

C. Latent Action Learning

Several prior works focus on learning variational auto-
encoders [64, 76] on raw action trajectories to structure new
action spaces, emphasizing compact latent representations that
facilitate behavior generation and task adaptation, as seen in
VQ-BeT [44] and Quest [59]. These methods are also adopted
in reinforcement learning to accelerate convergence [2]. Re-
cent works [79, 74] explore vector quantization as action space
adapters to better integrate actions into large language models.
However, a key limitation of these approaches is their reliance
on ground-truth action labels, which limits their scalability.

To leverage broader video data, Genie [11] extracts latent
actions via a causal latent action model, conditioning on next-
frame prediction. Similarly, LAPO [70] and DynaMo [20]
learn latent actions directly from visual data, bypassing meth-
ods using explicit action labels on in-domain manipulation
tasks. LAPA [87] and IGOR [15] introduce unsupervised
pretraining methods to teach VLAs discrete latent actions,
aiming to transfer knowledge from human videos. However,
these approaches encode all visual changes from raw pixels,
capturing task-irrelevant dynamics such as camera shakiness,
movements of other agents, or new object appearances, which
ultimately degrade policy performance. We propose a novel
training framework to decouple task-centric dynamics from
irrelevant visual changes, structuring a more effective latent
action space to enable robust policy planning.

III. METHODOLOGY

We develop three steps to implement UniVLA: 1)
(Sec. III-A) Leveraging language-based goal specifications,
we extract inverse dynamics from extensive video datasets in
an unsupervised manner, yielding a discretized set of task-
centric latent actions that generalize across diverse embodi-
ments and domains; 2) (Sec. III-B) Based on this, we train
an auto-regressive transformer-based vision-language-action
model, which takes visual observations and task instructions as
inputs to predict latent action tokens in a unified latent space;
3) (Sec. II-C) To facilitate efficient adaptation to various
robotic control systems, we introduce specialized policy heads
that decode latent actions into executable control signals.

A. Task-centric Latent Action Learning

The first step establishes the foundational groundwork of
our framework by generating the pseudo action labels (i.e.,
latent action tokens), which serve as the basis for training our
generalist policy in subsequent stages.

Latent action quantization. Fig. 2 illustrates the two-stage
training pipeline and overall architecture of our latent action
model. We start with a pair of consecutive video frames,
denoted as {0, 0¢1k}, separated by a frame interval k. To
ensure a uniform time interval of approximately 1 second
across diverse datasets, the frame interval is calibrated ac-
cording to the recording frequency specific to each dataset.
To derive latent actions from videos, our latent action model
is constructed around an Inverse Dynamics Model (IDM)
based encoder Z(a|o¢, 0+1 1) and a Forward Dynamics Model
(FDM) based decoder F(o0;.p|o:,as). The encoder infers
latent action given consecutive observations, and the decoder
is trained to predict future observations given specified latent
actions. We implement the encoder as a spatial-temporal trans-
former [84] with casual temporal masks, following Villegas
et al. [77]. A group of learnable action tokens a, < RV xd
with predefined dimension d, are concatenated sequentially to
the video features to extract the dynamics.

To further compress the information and align it with the
learning objective [66] of an auto-regressive transformer-based
policy, we apply latent quantization to the action tokens.
Quantized action tokens a, € RY*? are optimized with
VQ-VAE [76] objective, with a codebook of |C| vocabulary
size. The decoder, implemented as a spatial transformer, is
optimized to predict future frames utilizing only the quantized
action tokens. We do not feed decoder with historical frames to
prevent the model from over-relying on contextual information
or merely memorizing the dataset.

While recent works [11, 27, 87] employs raw pixels for
prediction, we observe that pixel-space prediction forces
models to attend to noisy, task-irrelevant details (e.g., tex-
tures, lighting) [30]. This issue is amplified in web-scale
and crowd-sourced video datasets [29], where uncontrolled
capture conditions introduce further variability. Inspired by
joint-embedding predictive architectures (JEPA) [4, 5, 96], we
propose using DINOv2 [62] spatial patch features as semanti-
cally rich representations. Their object-centric and spatially
aware properties make them ideal not only as inputs but
also as prediction targets for latent action models. Our self-
supervised objective minimizes the embedding reconstruction
error: |\Ot+k — Oy k||?. We use {O;,0;: 1} to represent
the DINOv2 feature of paired video frames {o;,0;41}. The
compact latent action must thus encode the transformation
between observations to minimize prediction error.

Latent action decoupling. As discussed earlier, the actions of
the robots are often entangled with irrelevant environmental
variations in web-scale videos. To mitigate the unfavorable
effect of task-irrelevant dynamics, we incorporate readily
available language instructions into the first training stage of
latent action model (Fig. 2 Left). The language inputs are
encoded using a pretrained TS5 text encoder [67] and serve
as conditioning signals in the context for both the encoder
and decoder. This process can be formally described as:

Encode: g = Z([Oy; Ot1r; am; £]), am = VQ(am),
Decode: Ot+k = F([O¢; amr; £]),
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Fig. 2: Task-centric latent action learning. We propose a two-stage training framework aimed at disentangling task-centric
visual dynamics and changes from extraneous factors. In Stage 1, task instruction embeddings, derived from a pre-trained TS
text encoder [67], are utilized as inputs to both the encoder and decoder. These embeddings provide task-relevant semantic
information to enhance predictive accuracy. In Stage 2, a novel set of latent actions is introduced, specifically designed to
replace the role of language and to capture task-centric dynamics from DINOv2-encoded features of video frames.

where [;] denotes sequence-wise concatenation, VQ repre-
sents the codebook for vector quantized action representation,
and ¢ is the instruction embedding from the T5 text encoder.
Sending task instructions to the decoder provides high-level se-
mantic guidance regarding the underlying actions. As a result,
the quantized latent actions are optimized to encode only the
environmental changes and visual details [89], omitting higher-
level task-relevant information due to the constrained capacity
of the codebook [1]. This stage establishes a set of latent
actions that encapsulate rask-irrelevant information, such as
the emergence of new objects, movements of external agents,
or camera-induced motion artifacts. These dynamics, while
critical for grounding the model in the visual environment,
are orthogonal to the specific objectives of the task.

Following this, we repurpose the task-irrelevant codebook
and parameters of the latent action model trained in Stage 1
for the following stage (depicted in Fig. 2 Right), where the
objective is to learn a new set of rask-centric latent actions
arc upon which the policy is trained. In this stage, the model
extracts action information through:

{an, arc} = I([O¢; Ot yr; am; arc]),
arr = VQ(am), arc = VQp(arc),
Decode:  Oyyx = F([Or; amr; arel),

Encode:

where VQg- denotes the newly initialized codebook for
learning task-centric dynamics. Building upon the acquired
task-irrelevant representations, we freeze the corresponding
codebook, enabling the model to focus on refining and special-
izing the new set of latent actions. This specialization facili-
tates the precise modeling of task-related dynamics, such as
object manipulation or goal-directed motion trajectories. The
explicit decoupling of latent action representations enhances
our generalist policy’s generalization capability across diverse
environments and tasks. Compared to naive latent action
learning approaches (e.g., LAPA [87]), training exclusively
on task-centric representations yields faster convergence while
achieving robust performance, suggesting these latent actions

are more informative for subsequent policy learning.

B. Pretraining of Generalist Policy

With the latent action model trained in the preceding step,
we proceed to label any video frame o, with latent actions
az, given os. We then employ those labels to develop a
generalist policy. To align with Kim et al. [39], our gen-
eralist policy is built upon the Prismatic-7B [37] vision-
language model (VLM). The architecture integrates a fused
visual encoder derived from SigLip [90] and DINOv2 [62], a
projection layer to align visual embeddings with the language
modality, and the LLaMA-2 large language model (LLM) [75].
Unlike prior LLM-based generalist policies (i.e., RT-2 [9] and
OpenVLA [39]) that directly plan in low-level action spaces
by mapping infrequently used words in the LLaMA tokenizer
vocabulary to uniformly distributed action bins within [—1, 1],
we extend the vocabulary with |C'| special tokens, specifically
{ACT_1, ACT_2, ACT_3,.., ACT_C}. Latent actions are
projected into this vocabulary based on their indices in the
action codebook. This approach preserves the original model
architecture and training objectives of the VLM, fully lever-
aging its pretrained knowledge for transfer to robotic control
tasks. Specifically, our policy model 74 receives observation
o4, task instructions [ and prefixes of latent action tokens a, .,
and is optimized to minimize the sum of next-latent-action
negative log-probabilities:

N
= Eot,l,a2,<i - Zlog 7T¢)(€Lz,i = Oz, | Ot, l; az,<i) y

i=1

where N represents the total length of action tokens. We set

N = 4 for all our experiments. Moreover, empirical evidence

indicates that a compressed action space (e.g., reducing from

2567 in OpenVLA [39] to 16* when |C] = 16) signifi-

cantly accelerates model convergence. Our approach achieves

competitive results with only 960 A100-hours of pretraining,

a substantial reduction compared to the 21,500 A100-hours

required for OpenVLA pretraining.
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Fig. 3: Architecture of the generalist policy. Our policy
architecture is founded on the Prismatic-7B Vision-Language
Model (VLM) [37], which processes projected visual em-
beddings and tokenized task instructions as inputs to predict
latent action tokens in an auto-regressive manner. To adapt
to specific robotic systems, specialized action decoder heads
are employed. These decoders leverage visual information
to extract context-specific features from latent actions and
subsequently translate them into executable control signals of
robotic systems with heterogeneous action spaces.

By training our policy within a unified latent action space,
the model capitalizes on transferable knowledge derived from
cross-domain datasets. Unlike Yang et al. [86] which neces-
sitates manual alignment of action spaces through visually
similar egocentric motions, such as wrist camera movements
in manipulation tasks and egocentric navigation, our method
eliminates this requirement. Consequently, UniVLA expands
the scope of utilizable datasets and enhances overall perfor-
mance, demonstrating the efficacy of leveraging task-centric
latent action representations for scalable policy learning.

C. Post-training for Deployment

Latent action decoding. During downstream adaptation,
the pre-trained generalist policy maintains its embodiment-
agnostic characteristics by predicting the next latent action
during downstream adaptation. To bridge the gap between
latent actions and executable behaviors, additional action de-
coders are employed (as depicted in Fig. 3). Specifically, the
sequence of visual embeddings is first aggregated into a single
token through multi-head attention pooling [43], which then
functions as the query to extract information from the latent
action embeddings. This process is formulated as:

Visual Embed.: F, = A(Q = q,, K =V = E,),
Action Embed.: F,=A(Q =g, +E,, K=V =E,),

where A represents multi-head attention, {F,, F,} are visual
and latent action embeddings from the last layer of VLM, and
{qu, ¢ } are randomly initialized queries to extract visual and
action information respectively. The resultant action embed-
ding F! is subsequently projected linearly into the desired
action space of the target robotic system. Given that latent
actions are designed to represent actions occurring within

approximately a one-second interval (mentioned in Sec. III-A),
they can be naturally decoded into action chunks [93]. The
chunk size can be easily customized for specific embodiments
to achieve smoother and more precise control.

In practice, we employ parameter-efficient fine-tuning using
LoRA [33] to achieve efficient adaptation. With the addition
of the action head comprising merely 12.6M parameters, the
total number of trainable parameters is approximately 123M.
The entire model is trained end-to-end, optimizing both the
next-latent action prediction loss and the L1 loss between the
ground-truth and predicted low-level actions.

Learn from history outputs. Historical observations have
been demonstrated to play a critical role in enhancing sequen-
tial decision-making processes for robotic control [60, 42, 45].
However, directly providing large vision-language-action mod-
els with multiple historical observations introduces significant
inference latency and results in redundant information within
visual tokens [94, 45]. Drawing inspiration from the well-
established Chain-of-Thought (CoT) reasoning paradigm [80]
in large language models (LLMs), which generates interme-
diate reasoning steps to address complex tasks, we propose
leveraging historical latent action outputs to facilitate decision-
making in robotic control. Much like LLMs resolve questions
step-by-step, we incorporate past actions into the input prompt
at each timestep during rollouts. This establishes a feedback
loop for the robot policy, enabling policy to learn from its own
decisions and adapt to dynamic environments.

To operationalize this approach, we employ the latent action
model to annotate actions extracted from historical frames.
These annotated actions are then mapped into the LLaMA
token vocabulary and appended to task instructions. During
post-training, historical action inputs are integrated as inputs
to endow the model with in-context learning capabilities. At
inference time, one step of historical latent action (encoded
as N = 4 tokens) is incorporated at each timestep, with the
exception of the initial step. Empirical results demonstrate
that this straightforward design improves model performance,
particularly in long-horizon tasks (see Sec. IV-C).

IV. EVALUATIONS

To demonstrate the performance of our proposed generalist
policy, our evaluation framework assesses the capabilities of
UniVLA across a diverse suite of benchmarks (including
manipulation benchmarks: LIBERO [48], CALVIN [56], Sim-
plerEnv [47], and a navigation benchmark: R2R [3]) and real-
world scenarios. Additionally, we conduct latent action analy-
sis to quantify the task-centric property, and perform ablation
studies to explore critical design choices. With comprehensive
evaluations, we mainly intend to investigate:

1) Performance & Adaptability. Can UniVLA success-
fully transfer the knowledge acquired during pretrain-
ing to novel embodiments and tasks and adapt effi-
ciently? (See Sec. IV-A for manipulation performance
and Sec. I'V-A2 for adaptability to navigation.)
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TABLE I: Results on LIBERO benchmark across four evaluation
suites. Our proposed UniVLA exhibits superior performance across all
benchmarked tasks compared to existing baseline methods, attributable
to its enhanced knowledge transferability and generalization capabil-

ities. Our model achieves state-of-the-art results despite being pre-

trained exclusively on either the Bridge-V?2 [78] dataset or action-free
human video data (denoted as “Bridge” and “Human” respectively).
fMethods use additional wrist-view camera inputs. *We reproduced
results of LAPA using the Prismatic-7B VLM.
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Fig. 4: Task setup on the LIBERO benchmark.

2) Generalizability. How does UniVLA generalize to un-
seen scenarios? (See Sec. IV-A3 for the analysis of its
generalizability in novel settings.)

3) Scalability. Can UniVLA effectively utilize diverse data
sources, even including human videos, and derive scal-
able benefits from the continuously expanding dataset?
(See Sec. IV-C for data scalability analysis.)

A. Main Results
1) Manipulation Benchmark on LIBERO

Experiment setup. We pretrain our full latent action model
on manipulation data, navigation data and human videos
data, which are a subset of Open X-Embodiment (OpenX)
dataset [63], GNM dataset [72], and human videos (Ego4D
[29]) respectively. The pretraining details can be found in
Appendix Al. The LIBERO benchmark [48] comprises four
task suites specifically designed to facilitate research on life-
long learning in robotic manipulation. Our experiments exclu-
sively focus on supervised fine-tuning within the target task
suite, evaluating the performance of various policies trained
through behavioral cloning on successful task demonstrations.
As illustrated in Fig. 4, our experimental setup includes the
following task suites, each consisting of 10 tasks with 50
human-teleoperated demonstrations per task:

1) LIBERO-Spatial requires the policy to infer spatial
relationships to accurately place a bowl, evaluating the
model’s ability to reason about geometric configurations;

2) LIBERO-Object maintains identical scene layouts but
introduces variations in object types, assessing the pol-
icy’s capacity to generalize across object instances;

3) LIBERO-Goal retains consistent objects and layouts
while assigning diverse task objectives, challenging the
policy to exhibit goal-oriented behavior and adaptability;

4) LIBERO-Long focuses on long-horizon manipulation
tasks involving multiple sub-goals, incorporating hetero-

geneous objects, layouts, and task sequences to evaluate
the model’s proficiency in complex, multi-step planning.

We adhere to the data processing pipeline introduced in
OpenVLA [39] to exclude failure cases from the demonstration
data used for training. UniVLA is trained on LIBERO-Long
for 40k steps and other test suites for 30k steps, with a
global batch size of 128. We only use third-person image and
language instructions as inputs. Notably, none of the samples
in LIBERO is included in the pretraining dataset of policy,
and the training data for our latent action model, necessitating
generalizability for both. In addition to presenting the results
of our most performant model, which is pre-trained on the
full dataset, we also provide results from models pre-trained
exclusively on the Bridge-V2 [78] and human data, denoted
as “Bridge” and “Human” in Tab. I, respectively. To minimize
variance, all methods are evaluated over 500 trials per task
suite (ie., 50 trials per task), with the reported performance
reflecting the average success rate across three seeds.

Baselines. Our selected baseline models include the following
five representative models, where OpenVLA and LAPA are
more closely related to our method:

« LAPA [87] introduces an unsupervised framework for
learning latent actions from unlabeled human videos.

e Octo [28] is a transformer-based policy trained on di-
verse robotic datasets, which employs a unified action
representation to handle heterogeneous action spaces.

« MDT [68] leverages diffusion models to generate flexible
action sequences conditioned by multimodal goals.

e OpenVLA [39] is a vision-language-action model that
leverages large-scale pretraining on diverse datasets, in-
cluding OpenX, to enable generalist robotic policies.

« MalL [35] enhances imitation learning by incorporating
selective state space models, which improve the efficiency
and scalability of policy learning.
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Fig. 6: Oracle success rate on R2R in VLN-CE. With only a
single-frame RGB input, UniVLA demonstrates performance
on par with NaVid, a navigation model that incorporates the
entirety of historical observations, while markedly outperform-
ing OpenVLA in success rate.

Results. The results presented in Tab. I demonstrate the
exceptional performance of UniVLA across all four evalua-
tion suites, significantly outperforming prior generalist poli-
cies such as OpenVLA, LAPA, and Octo. Notably, UniVLA
achieves an average performance of 95.4% by pretraining on
the full dataset, surpassing OpenVLA and LAPA by margins of
18.5% and 29.3% respectively. Despite being pretrained solely
on the Bridge-V2 dataset, UniVLA attains 93.0% average
performance, outperforming methods like MalL. (83.5%) and
MDT (76.1%) that leverage additional wrist-view camera
inputs. Pretraining our policy with human data outcompetes
OpenVLA, which is trained with in-domain OpenX data, by a
margin of 12.2%. In conclusion, UniVLA shows unparalleled
knowledge transfer capability and establishes a new state-of-
the-art on LIBERO benchmark. We provide additional results
on CALVIN and SimplerEnv benchmark in Appendix B.

2) Navigation Benchmark on Room2Room

Experiment setup. In this experiment, we evaluate UniVLA
on the VLN-CE benchmarks [41] to assess its performance on
navigation tasks. These benchmarks offer a set of language-

guided navigation tasks and continuous environments for exe-
cuting low-level actions in reconstructed photorealistic indoor
scenes. Specifically, we focus on the Room2Room (R2R) [3]
task in VLN-CE, one of the most widely recognized bench-
marks in vision-and-language navigation (VLN). All methods
are trained on the 10,819 samples in the R2R training split
and evaluated on the 1,839 samples in the R2R val-unseen
split. We use the oracle success rate to evaluate navigation
performance. An episode is considered successful if the agent
arrives within 3 meters of the goal in the VLN-CE.

Baselines. To ensure a fair comparison with UniVLA, we
evaluate RGB-only methods that operate without depth or
odometry data, directly predicting low-level actions within the
VLN-CE environments. Selected baselines are as follows:

« Seq2Seq [40] is a recurrent sequence-to-sequence policy
that predicts actions from RGB observations.
CMA [40] employs cross-modal attention to integrate
instructions with RGB observations for action prediction.
LLaVA-Nav is a modified version of LLaVA [49], co-
finetuned with data proposed by NaVid [91], and encodes
history using an observation-to-history technique.
OpenVLA [39] is a vision-language-action model. We
introduce several special tokens to tokenize navigation
actions and finetune the model on the R2R training split.
NaVid [91] is a video-based large vision-language model
that encodes all historical RGB observations. It uses a
pretrained vision encoder to encode visual observations
and a pretrained LLLM to predict actions.

Results. In Fig. 6, we report the oracle success rate for
each method. UniVLA significantly outperforms Seq2Seq and
CMA, increasing the oracle success rate from 8.10% to 47.1%.
Given the high computational cost of prompting history in
LLaVA-Nav, we refer to NaVid and present its results on
a 100-episode subset of the VLN-CE R2R val-unseen split.
UniVLA surpasses the oracle success rate of LLaVA-Nav
by 33.1% and OpenVLA by 29.6%. Furthermore, UniVLA
achieves an oracle success rate comparable to NaVid, which



TABLE II: Generalizability evaluation. UniVLA demonstrates superior performance across all evaluated tasks, showcasing
its exceptional ability to generalize from high-level semantic comprehension to low-level visual robustness.

Lightning Variation Visual Distractor Novel Object Average T
Method

Succ. Score Succ. Score Succ. Score Succ. Score
Diffusion Policy [16] 20.0 0.60 26.7 0.80 26.7 0.67 24.4 0.69
OpenVLA [39] 13.3 0.93 20.0 0.73 26.7 1.27 20.0 0.98
LAPA [87] 26.7 1.60 6.7 0.6 533 1.87 28.9 1.36
UniVLA (Ours) \ 66.7 2.33 53.3 2.40 86.7 2.73 \ 68.9 2.49

Fig. 7: Setting on generalizability evaluations. We evaluate
the generalizability of policies in 3 different settings. (a)
Lightning Variation: We dimmed the ambient light and applied
strong lighting in a specified direction. (b) Visual Distractor:
We added a bowl, notebook, and tape on the tabletop. (c)
Novel Object: We replaced the object to be manipulated from
a screwdriver to an unseen marker pen.

encodes all historical observations, while UniVLA conditions
only on the current observation and historical latent action.

3) Real-world Robot Deployment

Experiment setup. All real-world experiments are conducted
with a Piper arm from AgileX Robotics featuring a 7-DoF
action space and a third-view Orbecc DABAI RGB-D camera,
which we only utilize RGB images as input. To evaluate
policies, we design a comprehensive set of tasks that span
various dimensions of policy capabilities, including:
1) Spatial Awareness: Pick up the screwdriver to put it into
the cabinet and close the door (“Store the screwdriver”).
2) Tool-usage and Nonprehensile Manipulation: Pick up
the broom and sweep the items on the cutting board into
the dustpan (“Clean the cutting board”).
3) Deformable Objects Manipulation: Fold the towel in
half twice (“Fold towel twice’).
4) Semantic Understanding: Stack the medium tower on
top of the large one first, then stack the small one on
top of the medium one.(““Stack tower of hanoi”)

For each task, we collect 20-80 trajectories, scaled accord-
ing to task complexity, to finetune our model. To evaluate
generalization comprehensively, we design experiments that

span multiple axes of unseen scenarios, including lighting vari-
ations, visual distractors, and object generalization (see Fig. 7).
Recognizing that success rate alone inadequately captures
policy performance or distinguishes their capabilities, we
introduce a step-wise scoring system. For each of the four
tasks, we assign a maximum score of 3 points, reflecting the
completion of distinct stages during task execution. Detailed
scoring criteria, task setup and experiment results are provided
in Appendix C.

Baselines. We choose Diffusion Policy [16], alongside gener-
alist policies, OpenVLA [39] and LAPA [87] as our baselines.
Diffusion Policy is trained in a single-task manner, whereas
the generalist models are trained on all tasks simultaneously
with instruction inputs. For a fair comparison, we reproduce
LAPA with Prismatic-7B VLM [37] and action decoder heads,
aligning its architecture with our method. This setup allows us
to isolate and emphasize the contribution of our task-centric
latent action space. Specific parameters and architectural de-
tails can be found in Appendix C.

Results. We plot task success rates in Fig. 5. The single-
task Diffusion Policy (DP), optimized for trajectory fidelity
and low-latency control, excels in tasks like towel folding,
where success hinges on executing a fixed trajectory once the
correct towel edge is selected. This specialization allows DP
to achieve a higher success rate (53.3%) compared to UniVLA
(46.7%) in this task. However, UniVLA achieves a higher
step-wise score (2.47 vs. DP’s 2.33, detailed in Appendix C),
reflecting its ability to reliably complete intermediate stages
(e.g., edge selection, partial folding) even when final execution
falters—a critical advantage in dynamic real-world environ-
ments where partial progress is valuable.

This trade-off arises from UniVLA’s generalist design: while
DP’s single-task training maximizes trajectory precision for
specific workflows, it struggles in tasks requiring semantic
reasoning (e.g., stack tower of hanoi, where DP achieves only
6.7% success). In contrast, UniVLA demonstrates superior
generalization and semantic understanding, achieving an un-
paralleled 86.7% success rate. This is further evidenced by
a 93.3% success rate in scenarios requiring precise object
manipulation and spatial reasoning (where the object is placed
at varied poses and positions in “Store the screwdriver” task).

In addition, our method achieves a real-time, closed-loop
inference frequency of 10Hz on an NVIDIA RTX 4090 GPU
by planning in a compact latent action space, and allowing
efficient action chunk prediction (we use a chunk size of 12
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Fig. 8: Latent action analysis. We plot image pairs labeled with the same latent action from different sources of data and
embodiments. Each group of latent actions exhibits semantic-consistent actions. More examples are in Appendix B.
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Fig. 9: Data scalability. UniVLA effectively expands its
pretraining corpus by incorporating cross-embodiment data
from OpenX and unlabeled human demonstrations, leading to
continuously improved downstream performance.

in practice). OpenVLA, despite extensive training on large-
scale robot datasets, suffers from execution stuttering due to
inference latency (e.g., 0.18s when predicting a single action
step, 0.68s when predicting action chunks with size 4), result-
ing in poor real-world performance with only a 38.3% average
success rate. In a nutshell, UniVLA outperforms LAPA, the
second best policy, by 36.7% in success rate and 0.68 in
average score, demonstrating its real-world effectiveness and
the advantages of our proposed task-centric latent action space.

Generalizability Analysis. We investigate the generalizabil-
ity of policies from 3 different aspects, with the specific
experiment setups shown in Fig. 7. The results in Tab. II
highlight UniVLA’s exceptional generalizability, significantly
outperforming baseline methods in success rates and step-wise
scores. It achieves a 66.7% success rate under varying lighting
conditions, surpassing Diffusion Policy (20.0%), OpenVLA
(13.3%), and LAPA (26.7%), demonstrating robustness to

environmental change. In scenarios with visual distractors,
policies that rely more on semantic information, such as LAPA
and UniVLA, experience a relatively notable performance
drop. In the novel object setting, we replaced the screwdriver
with a marker and adjusted the language inputs for the
generalist policy accordingly. This change had minimal impact
on our policy as the success rate only drops by 6.6%. Overall,
UniVLA achieves an average success rate of 68.9% and an
average score of 2.49, significantly outperforming prior VLAs
like LAPA (28.9%, 1.36) and OpenVLA (20.0%, 0.98). We
also provide video demos in the supplementary material.

B. Discussion on Latent Action

Qualitative analysis. We investigate the cross-domain trans-
ferability of latent actions by visualizing image pairs from
different data sources sharing the same latent action in Fig. 8.
Each group of latent actions maps to semantically consistent
behaviors across embodiments (e.g., latent actions representing
“Pick up things” in Group A). Notably, our latent action
model, trained without any data from the LIBERO [4§]
dataset, generalizes effectively to label accurate actions in this
unseen domain. Furthermore, LAM learns to align wrist-view
observations in manipulation with ego-centric movements in
navigation, as demonstrated in Group C, highlighting its ability
to bridge diverse modalities and embodiments.

Quantitative analysis. To evaluate the effectiveness of our
proposed dynamics decomposition approach for task-centric
latent action learning, we assess the deployment performance
of policies trained with labels derived from different latent
actions. The results on LIBERO are shown in Tab. III. We
pre-train policies using only human videos, which contain
significant amounts of unpredictable motion, to amplify the
advantages of our method. In comparison to the latent ac-
tion construction approach introduced in Genie [11], which
captures all visual changes, our method demonstrates clear
superiority. Specifically, we achieve a 6.4% improvement in



TABLE 1I: Performance on LIBERO using various latent
actions. We pretrain policies using different latent actions
on Ego4D [29], which features human videos with diverse
movements and task-irrelevant dynamics, to demonstrate our
successful decoupling of task-centric dynamics. While task-
irrelevant ones yield poor performance, task-centric latent ac-
tion learning produces more meaningful action representations,
ultimately achieving superior deployment success rates.

TABLE IV: Ablations on decoder design. “Auto-regressive”
represents that we follow the approach of OpenVLA and
LAPA, predicting actions sequentially over discretized action
bins in an auto-regressive fashion. “w/o visual” indicates that
visual embeddings are not utilized as query inputs for decoding
latent actions, as depicted in Fig. 3. The proposed action
decoder head, augmented by visual features, proves to be the
most effective, yielding the highest results on all test suites.

Latent Action | Spatial Object Goal Long | Avg Action Decoder | Spatial ~ Object ~ Goal  Long | Avg.

Genie [11] | 898 92.8 77.2 696 | 823 Auto-regressive | 852 81.2 79.0 490 | 736

Task-irrelevant 68.0 90.4 67.2 02 56.5 Ours w/o Visual 95.0 954 93.7 86.0 92.5

Task-centric 91.2 94.2 90.2 79.4 88.7 Ours 96.5 96.8 95.6 92.0 95.2
1 LIBERO-Goal LIBERO-Long
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Fig. 10: Data efficiency. We present the success rate of
UniVLA across varying dataset proportions (10%, 20%, 50%,
and the full dataset). Our policy can be adapted to an unseen
environment without requiring extensive expert demos for
training, showing notable superiority over baselines.

average success rate, with substantial gains in LIBERO-Goal
and LIBERO-Long (13% and 9.8% improvement, respec-
tively). In contrast, latent actions that are task-irrelevant are
poorly aligned with true actions, making it difficult for policies
to infer them from observations and task instructions. This is
reflected in both lower action token prediction accuracy during
training and poorer inference performance. Notably, training
with task-irrelevant latent actions results in near-zero success
rates on the challenging LIBERO-Long benchmark.

C. More Ablations

Data scalability. We show how UniVLA evolves with the
growing data scale and the incorporation of data from dis-
tinct domains in Fig. 9. Though UniVLA already sets a
new state-of-the-art on LIBERO by pretraining only with
Bridge-V2 [78]. Cross-embodiment data in OpenX [63] and
Ego4D [29] further amplifies the average success rate by 2.0%.
While the performance on the LIBERO benchmark appears to
plateau, consistent performance improvements are observed
across our challenging real-world test suites. In real-world
evaluations, expanding the pretraining data to OpenX increases
the average score by (.3, compared to Bridge-only pretraining.
Further incorporating human data, despite the absence of
action labels and the substantial embodiment gap it introduces,
yields an additional 0.28 increase. This trend of performance
improvement is similarly observed in the R2R navigation
benchmark, highlighting the scalability of our approach as it
effectively leverages diverse data sources.

TABLE V: Ablations on the use of history action. Incor-
porating latent action outputs from previous steps as prompt
inputs, despite its simplicity, enhances performance, particu-
larly in long-horizon tasks, such as LIBERO-Long and R2R.

LIBERO (Manip.)

Prompt Input ‘ Goal Long ’ R2R (Navi.)
Instruction-only 95.0 88.1 30.6
w/ History Action 95.6 92.0 47.1

Data efficiency. The preceding section highlights UniVLA’s
scalability with respect to pretraining data, consistently en-
hancing its capabilities. We next explore its ability to adapt
efficiently to unseen environments with minimal data, as de-
tailed in Fig. 10. Specifically, we evaluate performance on the
LIBERO-Goal and LIBERO-Long benchmarks using partial
training data. UniVLA demonstrates superior data efficiency
compared to prior generalist policy, such as OpenVLA [39],
and explicit point prediction methods like ATM [81]. Notably,
with only 10% of the demonstration data, UniVLA achieves
a higher success rate on LIBERO-Goal (86.3% vs. 79.2%)
than OpenVLA trained on the full dataset. Moreover, it sets
a new state-of-the-art performance on both LIBERO-Goal
and LIBERO-Long with only 10% and 50% of the training
episodes, respectively. By planning within a unified latent
action space, UniVLA maximizes pretraining knowledge, en-
abling highly efficient adaptation to new environments.

Latent action decoder. We compare our proposed action
decoding scheme with the auto-regressive approach, which
sequentially generates discretized actions as in OpenVLA
and LAPA. As shown in Tab. IV, our method consistently
achieves higher success rates across all test suites, with a
striking 42.1% improvement in LIBERO-Long. Leveraging
visual embeddings as queries enhances action decoding by
reducing ambiguity in the multimodal distribution, yielding
an additional 2.2% gain in average success rate.
Furthermore, as discussed in Sec. III-A, latent actions are
designed to encapsulate dynamics over a one-second time
horizon. Given this temporal structure, decoding latent actions
as action chunks [93] is an intuitive choice, aligning the chunk
size with the control frequency of the target embodiment. This



is achieved by simply expanding the output dimension of the
final linear projection layer, while introducing negligible addi-
tional inference cost compared to the auto-regressive approach.

History latent actions. As detailed in Sec. 11I-C, we aug-
ment the instruction input with historical latent actions to
enhance sequential decision-making. We evaluate the efficacy
of this minimal architectural modification on manipulation and
navigation tasks, with quantitative results in Tab. V. The ap-
proach proves particularly impactful in long-horizon scenarios:
using only four input tokens (representing one latent action
group) improves success rates by 16.5% (R2R) and 3.9%
(LIBERO-Long). Extending the history horizon yields dimin-
ishing returns. Unlike methods requiring redundant multi-
frame visual tokens for temporal context (e.g., [91, 45]), our
design provides compact historical guidance while enabling
iterative policy refinement through self-referential outputs.
This streamlined integration enhances contextual awareness
without incurring unnecessary computational overhead.

V. CONCLUSION

In this work, we introduce UniVLA, a vision-language-
action model that plans within a unified, task-centric latent
action space, enabling efficient adaptation to novel robotic
setups. Through extensive evaluations, we demonstrate that
UniVLA establishes state-of-the-art performance across mul-
tiple manipulation and navigation benchmarks. The model
also exhibits scalability with heterogeneous pretraining data
to enhance its downstream performance, and remains highly
adaptable even in data-limited scenarios. We aim for our work
to pave the way for the next generation of generalist policies,
capable of leveraging web-scale video data for training, regard-
less of embodiment gaps or the availability of action labels.

VI. LIMITATIONS AND FUTURE WORK

Latent action design. While UniVLA advances generalist
robotic policies, several limitations remain. The fixed gran-
ularity of the latent action and the predefined codebook size
may not be optimal for all tasks or embodiments. Exploring
adaptive mechanisms to dynamically adjust these based on
environmental conditions could potentially improve perfor-
mance. In addition, UniVLA is primarily evaluated on single-
arm manipulation tasks. The action granularity represented by
latent action tokens are relatively fixed within our framework.
Extending the framework to dual-arm humanoid systems or
dexterous hands could require more complex and finer-grained
action space modeling. We leave this for future exploration.

Requirements on language annotation. Regarding language
granularity, task-relevant latent actions are designed to encode
ego-agent movements critical for task completion, while ex-
cluding non-ego dynamics (e.g., steam rising from a kettle
during “boiling water””). The majority of our dataset comprises
fine-grained instructions that describe short-horizon actions
rather than high-level goals. While more expressive language
instructions could potentially reduce ambiguity in latent action

learning, we want to emphasize that our approach enables scal-
able learning from instructions of varying granularity. Without
any special handling of instruction, our method outperforms
naive latent action learning approaches.

Integration with world model. The decoder of latent ac-
tion model is essentially a world model, predicting future
observations given latent actions. It can be conditioned on
latent actions sampled by our policy on-the-fly and generate
multiple corresponding visual plans. This opens the door to
reference alignment [92] with reinforcement learning and test-
time scaling through planning trees [25], where VLMs [54] or
heuristic functions can be adopted as reward models.

In-context learning capability is critical for enhancing the
performance ceiling of vision-language-action models. Given
our finding that the proposed latent action model can ex-
tract transferable motion representations bridging human and
robotic manipulations, we propose encoding human demon-
stration videos into a sequence of compact latent action
embeddings, serving as in-context samples (conceptually, the
latent action model functions as a video tokenizer). This
approach enables zero-shot skill acquisition without additional
fine-tuning. We will explore this direction in future work.
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APPENDIX
A. Implementation Details

1) Pretraining Details

For robotic manipulation data, we select a subset in Open X-
Embodiment dataset [63] with single arm end-effector control.
For navigation data, we use a sub-split of GNM [72] dataset
containing both indoor and off-road scenes featuring a ego-
view fisheye camera. While actions and proprioceptive states
are available in the robot datasets, these are excluded during
pretraining; only episode frames and text instructions are
used. Additionally, we incorporate open-world human videos,
specifically ego-centric videos that depict daily human activi-
ties from the Ego4D dataset [29]. Notably, with the exception
of the SimplerEnv benchmark [47], which is designed to
replicate the environmental setup of the Bridge-V2 dataset,
none of the downstream evaluation environments have been
seen by either our policy or the latent action model during
pretraining. This necessitates strong generalization capabilities
for both. The detailed composition of the datasets and mixture
weights are listed in Tab. A-L

Training Dataset Mixture

Fractal [10] 13.9%
Kuka [36] 6.3%
Bridge [78] 6.8%
Taco Play [57] 3.5%
Jaco Play [21] 0.6%
Berkeley Cable Routing [51] 0.3%
Roboturk [55] 2.8%
Viola [99] 1.1%
Berkeley Autolab URS [14] 1.4%
Toto [95] 2.4%
Language Table [53] 5.2%
Stanford Hydra Dataset [6] 5.3%
Austin Buds Dataset [98] 0.3%
NYU Franka Play Dataset [19] 1.0%
Furniture Bench Dataset [31] 2.9%
UCSD Kitchen Dataset [85] <0.1%
Austin Sailor Dataset [61] 2.6%
Austin Sirius Dataset [50] 2.0%
DLR EDAN Shared Control [65] 0.1%
[AMlL.ab CMU Pickup Insert [69] 1.1%
UTAustin Mutex [73] 2.6%
Berkeley Fanuc Manipulation [97] 0.9%
CMU Stretch [58] 0.2%
BC-Z [34] 8.8%
FMB Dataset [52] 8.4%
DobbE [71] 1.7%
RECON [38] 8.9%
CoryHall [38] 2.3%
SACSoN [38] 3.5%
EgodD [38] 3.0%

TABLE A-I: UniVLA training data mixture using datasets
from the OXE [63], GNM [72] and Ego4D [29].

During training, we jointly optimize all components of our
generalist policy, encompassing the visual encoders, the large
language model (LLM) backbone, and the token prediction

~ Testing Env.

Fig. A-1: Experiment setting of CALVIN. It consists of four
simulated environments (designated as A, B, C, and D), which
differ in textures and object layouts.

TABLE A-II: Language-conditioned visuomotor control on
CALVIN ABC—D. We report success rates along with the
average length of completed tasks (out of the whole 5 tasks)
per evaluation sequence. UniVLA achieves competitive results
while being the only method that relies on solely third-view
RGB inputs. *Reproduced with action chunks prediction.

Task completed in a row (%) 1 Avg.
Method 1 2 3 4 5 | Len.
RT-1 [10] 533 222 9.4 38 13 0.90
RoboFlamingo [46] 824 619 466 331 235 248
SuSIE [8] 87.0 69.0 490 380 260 2.69
GR-1 [82] 854 712 596 497 401 3.06
OpenVLA™ [39] 91.3 778 620 521 435 3.27
CLOVER [13] 96.0 835 708 575 454 353
RoboDual [12] 944 827 721 624 544 3.66
UniVLA (Ours) | 95.5 858 754 669 565 | 3.80

head. We utilize a batch size of 1,024 (with a per-device
batch size of 32) and maintain a constant learning rate of
2e — 5. Empirical results indicate that 20,000 optimization
steps are sufficient to achieve robust downstream performance,
requiring approximately 30 hours of computation on a cluster
equipped with 32 NVIDIA A100 GPUs. For pretraining on the
“Human” and “Bridge” datasets (as presented in Table Tab. I),
we employ a global batch size of 258 distributed across 8
GPUs, totaling approximately 200 A100 GPU-hours.

B. Additional Results
1) CALVIN

Experiment setup. CALVIN [56] encompasses 34 distinct
tasks, characterized by unconstrained task instructions that
span a spectrum of skills, ranging from basic pick-and-place
operations to articulated object manipulation. The benchmark
includes four distinct environments, as illustrated in Fig. A-
1, each featuring a Franka Panda robotic arm for tabletop
manipulation tasks. In our study, we adopt the challenging
evaluation setting, wherein policies are trained using demon-
strations from environments A, B, and C, followed by zero-
shot evaluations in environment D. The evaluation protocol
comprises a test set of 1,000 unique instruction chains, each
consisting of five consecutive tasks, designed to rigorously
assess the generalization capabilities of the policies.

For OpenVLA, we finetune the officially provided check-
point with LoRA [33] for 200k steps and use an action chunk
with size 8 to maximize performance. UniVLA is optimized
for 100k steps with a batch size of 128. We use a learning
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Fig. A-2: Latent action analysis. We show more image pairs labeled the same latent action from different source of data and
embodiments. Each group of latent action presents semantic-consistent action
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Fig. A-3: Grasp and task success rates on SimplerEnv.
As BridgeData is incorporated in our pretraining dataset, we
investigate only training the decoder for adaptation (Decoder-
only). UniVLA outperforms all baselines in success rate.

rate of 1.5e — 4 for the first 80k steps, and 1.5e — 5 for the
rest. Similar to LIBERO experiments, we only take as inputs
third-view RGB images and language instructions.

Results. The results in Tab. A-II demonstrate UniVLA’s state-
of-the-art performance in language-conditioned visuomotor
control. UniVLA achieves 56.5% success rate for completing
all five tasks in sequence, surpassing the prior best method,
CLOVER (45.4%) by 11.1%, and OpenVLA by 13%. The av-
erage number of consecutively completed tasks increases from
OpenVLA’s 3.27 to 3.80. Notably, UniVLA’s performance gap
widens progressively with task length, reflecting its ability to
tackle complex, long-horizon manipulation tasks.

2) SimplerEny

Experiment setup. SimplerEnv [47] are developed to gen-
uinely reflect the performance of real-world policies by mir-
roring physical dynamics and visual appearances. We focus
on four tasks concerning the “WidowX + Bridge” setup:
1) “Put spoon on table cloth”, 2) “Put carrot on plate”, 3)

Bridge

Fig. A-4: Task-centric Latent action analysis. We show the
attention heatmap between task-centric latent actions and im-
age patches, demonstrating concentrated focus on the robotic
end-effector and target objects.

“Stack green cude on the yellow cude”, and 4) “Put eggplant
in basket”. The pose and position of objects to be grasped
will be randomly initialized given different seeds. Given that
Bridge-V2 [78] data is included in our pretraining dataset,
we investigate training the action decoder head exclusively
while keeping the remaining components of our model fixed,
denoted as decoder-only in Fig. A-3. Additionally, we perform
further fine-tuning using LoRA [33] on the complete Bridge-
V2 dataset and evaluate the resulting policy. Our evaluation
follows the pipeline proposed by Li et al. [45], wherein each
task is assessed over 24 independent trials to ensure robust
performance metrics.

Results. The bar plot in Fig. A-3 underscores UniVLA’s
superior performance in both grasp and task success rates
on the SimplerEnv-Bridge benchmark, even under the con-
strained decoder-only adaptation setting. Specifically, decoder-
only adaptation achieves a 35.4% success rate, demonstrating
its ability to retain pretrained knowledge while minimizing
adaptation costs. However, full fine-tuning results in a reduced
grasp rate compared to decoder-only training, likely due to
overfitting to seen scene layouts in training samples. Overall,
UniVLA achieves a 42.7% task success rate, outperforming
OpenVLA and Octo-Base by 41.7% and 26.7%, respectively.



TABLE A-III: Scores of tasks. Each sub-goal corresponds to one point.

Task Name Total Score

Sub-goals

Store the screwdriver 3

Pick up the screwdriver.
Place the screwdriver into the cabinet.
Close the cabinet

Clean the cutting board 3

Pick up the broom.
Sweep the items into dustpan.
Sweep all items into dustpan.

Fold towel twice 3

Grasp the correct edge of the towel.
Fold towel for the first time.
Fold towel for the second time.

Stack tower of hanoi 3

Choose the right tower.

Stack the medium tower on top of the large one.

Stack the small tower on top of the medium one.

TABLE A-IV: Experiment result. We bold the best result and underline the second.

Store screwdriver Clean cutting board Fold towel twice Stack tower of hanoi Average T
Method

Succ. Score Succ. Score Succ. Score Succ. Score Succ. Score
Diffusion Policy [16] 40.0 1.20 33.3 0.67 53.3 2.33 6.7 1.6 33.3 145
OpenVLA [39] 40.0 147 53.3 1.27 333 1.87 26.7 1.93 38.3 1.63
LAPA (OXE) [87] 60 2.0 40 147 333 22 46.7 2.13 45 1.95
UniVLA (Bridge) 66.7 2.13 73.3 1.87 333 2.07 46.7 2.13 55.0 2.05
UniVLA (OXE) 80.0 2.73 73.3 1.93 333 2.13 60.0 2.60 63.3 2.35
UniVLA (Full) 93.3 2.87 100.0 2.33 46.7 2.47 86.7 2.87 81.7 2.63

3) More Visualization

Additional examples for latent action analysis. As discussed
in Sec. IV-A2, We explore the cross-domain transferability
of latent actions by presenting image pairs from diverse data
sources that share the same latent action. Additional examples
with distinct actions are provided in Fig. A-2.

Task-centric Latent action analysis. We visualize the at-
tention maps between learned task-centric latent actions and
image patches in Fig. A-4. The heatmaps reveal concentrated
attention on task-critical regions: the robotic arm’s end-effector
(e.g., gripper) and interacted objects (e.g., egg), while ignoring
irrelevant background. This demonstrates that the latent action
inherently encodes task-centric spatial priors, focusing only on
entities necessary for downstream learning.

C. Real-world Robots

1) Task setup and evaluation

In task “Store the screwdriver”, we randomly placed the
screwdriver in three different positions for position general-
ization in training data, and tested it at four positions during
evaluation. In task “Store the screwdriver”, we randomly
placed items on the cutting board, some of which in some
cases could be swept into the dustpan in a single motion,
while others required two sweeps during data collection. For
task “Fold towel twice”, we use a 20cm x 20cm towel and
lay it flat on the table. During both training and testing, we
randomly rotated the towel by different angles for evaluating
generalization. In “Stack tower of hanoi”, we randomly shuffle

three cups and cover six different arrangements during both
training and testing.

Considering that success rate alone cannot comprehensively
and fairly reflect the model’s performance and capabilities
during task execution, we introduce scores, which allow us
to evaluate the policy based on its progress in achieving sub-
goals. Tab. A-III shows the detailed scoring criteria.

We evaluate policies by combining both success rate and
scores. The detailed experimental results are presented in
Tab. A-IV. As observed, some policies achieve the same
accuracy, but their scores vary based on their performance.
For example in task “Fold towel twice”, while OpenVLA
and LAPA have the same success rate, LAPA receives a
higher score, indicating that LAPA achieves a higher degree
of task completion in failed cases. This demonstrates that the
scoring system enables a more nuanced differentiation between
policies. Diffusion Policy trained in a single-task manner
do well in task Fold towel twice, which requires smoother,
continuous, and relatively fixed action execution. Although it
has a higher success rate, its score is lower than UniVLA due
to weaker generalization across different rotation angles. The
generalizability allows UniVLA to handle more positions, and
still achieves a higher score even if it fails to complete the
task fully.

2) Architecture of the action decoder

In the design of the action decoder architecture for both
LAPA and our method, we use 2 multi-head attention blocks
to process the latent action and visual embeddings (also refer
to Sec. III-C), with a MLP layer to process proprioceptive



TABLE A-V: Architecture details of action decoder in real-
world experiment. Additional proprioceptive state projection
module is only adopted in real-world experiments.

Architecture of Action Decoder

Heads 8
Latent Action Head Dim. 64
Attention Pooling Hidden Size 512
MLP Ratio 4
Heads 8
Visual Embedding | Head Dim. 64
Attention Pooling Hidden Size 512
MLP Ratio 4
. L Layers 1
Action Projection Hidden Size 512
. o Layers 2
Proprio. Projection Hidden Size 512
Parameters | 12.6M

states. The resulting embeddings are then concatenated and
mapped to the desired action dimensions through a projection
layer. Detailed parameters are shown in Tab. A-V.



