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Abstract—Teaching robots desired skills in real-world envi-
ronments remains challenging, especially for non-experts. A key
bottleneck is that collecting robotic data often requires expertise
or specialized hardware, limiting accessibility and scalability. We
posit that natural langnage offers an intuitive and accessible
interface for robot learning. To this end, we study two aspects:
(1) enabling non-experts to collect robotic data through natural
language supervision (e.g., “move the arm to the right”’) and
(2) training robot policies directly from this supervision. Specif-
ically, we introduce a data collection framework that collects
robot demonstrations based on natural language supervision
and further augments these demonstrations. We then present
CLIP-RT, a new vision-langnage-action (VLA) model that learns
language-conditioned visuomotor policies from this supervision.
CLIP-RT adapts the pretrained CLIP model and learns to predict
language-based motion primitives via contrastive imitation learn-
ing. We train CLIP-RT on the Open X-Embodiment dataset and
finetune it on in-domain data collected by our framework. In real-
world evaluations, CLIP-RT demonstrates strong capabilities in
learning novel manipulation skills, outperforming OpenVLA (7B
parameters) by 24% in average success rates, while using 7x
fewer parameters (1B). We further assess CLIP-RT’s capabilities
in few-shot generalization and collaborative scenarios involving
large pretrained models or humans. In simulated environments,
CLIP-RT also yields strong performance, achieving a 92.8% av-
erage success rate on the LIBERO benchmark with an inference
throughput of 163 Hz.

1. INTRODUCTION

Building robots that can understand natural language in-
structions and perform various real-world tasks is a long-
standing goal of robotics and artificial intelligence. The re-
search community has studied such robots in various domains,
such as robotic manipulation [37, 6, 7], navigation [2, 11, 54,
32], and other instructions-following tasks [50, 42].

One key challenge for intelligent robots is grounding natural
language to vision and action, bridging the abstraction gap
between natural language instruction and visuomotor control
in real-world tasks. Prior works on robotic manipulation have
addressed this challenge by training language-conditioned
policies, primarily through imitation learning [53, 35, 51,
26, 37, 6, 7]. This line of research has shown remarkable
success as large amounts of robotic data become available [41].
However, even state-of-the-art models [7, 41, 3, 29] trained in
large-scale robot data struggle to easily expand their set of
manipulation skills for a wide range of real-world tasks. We
argue that a major bottleneck lies in how robot demonstrations
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Fig. 1: Overview of language-guided teleoperation.

are typically collected. Specifically, obtaining real-world robot
demonstration data often requires expertise in robot control
or access to specialized hardware, such as teleoperation or
virtual reality (VR) systems [58, 18]. This barrier severely
limits accessibility, restricting the number of participants and
environments from which data can be gathered. Consequently,
this limited accessibility inherently hinders both the scalability
(the volume of data) and the diversity (the range of scenarios
and behaviors recorded) of the resulting datasets. We thus ask:
how can non-experts train robotic policies without relying on
specialized expertise or devices for data collection?

We argue that natural language is an intuitive and acces-
sible interface for robot learning. We thus explore a method
for training robotic skills through natural language. To this
end, we propose a data collection framework that enables
non-experts to collect in-domain robot data through natural
language. It consists of two steps: language-based teleopera-
tion and stochastic trajectory augmentation (STA). Figure 1
illustrates language-based teleoperation in which a human
collects data for a skill described in the instruction (e.g.,
“pour the dog food into the bow!l””). The human first provides
natural language supervision (e.g., “move left a lot”) in each
state. The large language model (LLM) [39] then translates
this supervision into appropriate robotic behavior, which is
ultimately executed by the robot. By repeating this process, we
obtain a collection of robot demonstrations, where each state
transition is associated with corresponding language supervi-
sion. After the language-based teleoperation, STA augments
the demonstration into alternative trajectories. Specifically, it
stochastically drives the robot into novel states that were not
explicitly covered in the original demonstrations. STA then
automatically labels the appropriate behavior at these novel
states using a simple heuristic. In other words, STA generates
new trajectory data, expanding the diversity of the training



dataset beyond the original demonstrations.

We introduce a vision-language-action (VLA) model that
learns language-conditioned visuomotor policies from natural
language supervision, which we call CLIP-RT (CLIP-based
Robotics Transformer). A key idea is to leverage natural
language as supervision to train visuomotor policies—inspired
by CLIP [45], which uses language as a training signal for
visual representation learning. CLIP-RT employs CLIP models
trained in Internet-scale data [47, 17] and directly adapts
them to predict language-based motion primitives (e.g., “move
the arm forward by 10cm”) through contrastive imitation
learning. Specifically, our model learns to measure the pair-
wise similarity between language supervision and contextual
information (i.e., current scene and language instruction) for
language-conditioned policies. We train CLIP-RT through a
two-step process: pretraining and in-domain fine-tuning. In the
pretraining stage, we train our model on the large-scale robot
learning dataset—Open X-Embodiment [41]—to improve gen-
eralization capabilities. The dataset does not contain language
supervision, so we transform existing low-level robotic actions
into templated natural language supervision to train CLIP-RT.
During in-domain fine-tuning, CLIP-RT learns diverse robotic
skills using our collected data.

Our contributions are fivefold. First, we propose CLIP-RT,
a vision-language-action (VLA) model that learns language-
conditioned policies from natural language supervision. Sec-
ond, we propose a data collection framework that enables
non-experts to collect robot data only through natural lan-
guage and augment the human-collected demonstration data.
Third, experiments demonstrate that CLIP-RT outperforms
OpenVLA [29] by 24% in average success rates in 9 novel
manipulation tasks. We further observe two important results:
(1) language-based motion prediction and STA boost general-
ization capabilities of CLIP-RT and (2) CLIP-RT effectively
learns shared structures across diverse robotic tasks, resulting
in generalizable and transferable policies. Fourth, we demon-
strate that CLIP-RT’s language-based motion prediction capa-
bility enables collaboration with humans and large pretrained
models [24], resulting in improved generalization. Fifth, to
validate the generality of our method, we adapt CLIP-RT and
evaluate it on the LIBERO simulation benchmark [33] that
includes offline, human-teleoperated demonstrations. CLIP-RT
achieves strong results, an average success rate of 92.8%, with
an improved inference throughput of 163Hz.

II. RELATED WORK

Vision-Language-Action (VLA) Models. Vision-language
models (VLM) trained on Internet-scale data have been widely
studied in robotics, including high-level planning [13, 22],
success detection [14], and physical reasoning [19]. In par-
ticular, previous work [7, 41, 3, 29] directly fine-tunes VLMs
to predict robotic actions. This category of models is called
vision-language-action (VLA) models. CLIP-RT belongs to
this category. Current VLA models discretize continuous ac-
tion values (e.g., end-effector actions) into discrete action
tokens and learn to generate a sequence of these tokens.

Unlike existing VLA models, CLIP-RT is a discriminative
VLA model that predicts actions in a predefined list of actions,
and these actions are represented in natural language (e.g.,
“move the arm left”) rather than low-level control commands.
Collecting Real-World Robot Demonstrations. Data col-
lection has become an increasingly important challenge in
robot learning. Previous works have collected real-world robot
demonstrations through various interfaces, such as teleop-
eration devices [18, 1], virtual reality (VR) [61, 48], and
kinesthetic teaching [4, 36, 16]. Some studies introduce natural
language interfaces [34, 3] for data collection, but they are
often used in limited scenarios. RT-H [3] and OLAF [34]
first train visuomotor policies using data collected from other
interfaces (e.g., VR). During deployment, humans provide
language feedback to correct robotic behaviors, and policies
are updated based on this feedback. In other words, these
methods focus on refining learned policies for existing skills.
In contrast, our focus is to teach any desired skills by col-
lecting complete demonstration trajectories through language-
based teleoperation. To achieve this, our framework uses
the in-context learning capabilities of large language models
(LLMs) [20] to translate language supervision into action.

Language-Conditioned Policies. The research community
has made extensive efforts to develop robotic systems that
can follow language instructions [31, §, 54, 50, 28, 27], often
training language-conditioned policies [53, 35, 51, 26, 37, 6,
7, 29, 3]. We train language-conditioned visuomotor policies
through imitation learning, similar to existing studies. Unlike
existing studies, we train language-conditioned policies with
contrastive imitation learning, which combines the ideas of
contrastive learning [45] with imitation learning [43] for more
discriminative representations of robotic behaviors.

1II. APPROACH
A. Preliminaries

Language-Conditioned Imitation Learning. A robot dataset
D = {(7n,0,)})_, consists of a demonstration trajectory
7 paired with language instruction ¢. Each trajectory con-
tains a sequence of visual observations and expert actions
o = {(v1,a1),...,(v)7,),0)7,)}. The goal of language-
conditioned imitation learning is minimizing the negative log-
likelihood of the expert action a; given the observation history
vy = (v1, ..., v;) and language instruction £:
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where 7y denotes the policy model with model parameters
f. For vision-language action (VLA) models, @ is initialized
from the parameters of vision-language models (VLMs). To
maintain consistency with the pretraining setup of the VLMs,
existing VLA models [7, 29, 3] typically use a single-image
observation v; rather than utilizing the full observations v1.;.
At test time, the policy model performs closed-loop robot
control until it completes language instructions.
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Fig. 2: Overview of CLIP-RT. CLIP-RT learns to optimize the pairwise similarity between the context and natural language
supervision through contrastive imitation learning. At test time, CLIP-RT predicts the language-based motion primitive with
the highest similarity from a list of language motions. We append a simple text prompt to instructions: What motion should
the robot arm perform to complete the instruction {instruction}?

Contrastive Language-Image Pretraining (CLIP) [45] is a
method to learn visual representations from natural language
supervision at scale. Using the contrastive objective, CLIP
trains an image encoder f(-) and a text encoder g(-) on
400M image-text pairs. Given a mini-batch of M image-text
pairs {(I;, TZ-)}?il, the two encoders are jointly optimized to
maximize the similarity between the correct pairs of image and
text (I;, T;) while minimizing the similarity for incorrect pairs
(I;, T#i). As we describe later, we modify the contrastive loss
to make CLIP-RT learn language-conditioned policies.

B. CLIP-Based Robotics Transformer (CLIP-RT)

Natural Language Supervision. Inspired by CLIP [45],
which uses natural language as a training signal, we built a
model to learn robotic policies from natural language. We de-
fine natural language supervision as language-based guidance
that directs a robot’s motion in specific states to complete
given instructions. This typically involves shifting the robot’s
position, orientation, or gripper state (see Appendix A). As
we discuss later, each supervision is associated with a specific
low-level action. Learning from natural language supervision
offers several advantages. It establishes a clear hierarchy
between initial instruction and language supervision, enabling
models to learn shared structures across diverse tasks [3]. Fur-
thermore, language-based learning fosters collaboration with
language-capable entities like humans or other Al systems.

Contrastive Imitation Learning (CIL). We describe con-
trastive imitation learning in Figure 2 (left). CLIP-RT takes
a mini-batch of M triplets {(v;, ¢;, ui)}ij\il, where v, £, and u
denote image observation, instruction, and language supervi-
sion. CIL aims to optimize the pairwise similarities in the set
{((vs,6:),u5)li, 5 € {1,..., M}}. Specifically, CLIP-RT first
extracts vector embeddings of v;, #; and u; using the CLIP
model’s image encoder f(-) and the text encoder g(-), and

subsequently combines the image and instruction embeddings:

c¢i = f(vi) +9(li), 25 = g(u;) &)

where c; represents the context that encapsulates the robot’s
current visual state and its explicit goal. z; represents the
immediate action that should be taken given the context. We
design the loss function as:
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where ¢, — HCCW and z; = szyﬁ are normalized vector
embeddings of c¢; and z;. o(-) is a sigmoid activation function
and y,;; € {0,1} denotes a label for pairwise similarity. The
loss function maximizes the cosine similarity between context
and language supervision for positive pairs, while minimizing
it for negative pairs. The label y;; is basically one if i = j;
otherwise, it is zero. In other words, ((v;,¢;), u;) are positive
pairs and ((v;,4;),u;;) are negative pairs. However, the
mini-batch often contains semantically interchangeable super-
visions, such as “move upwards” and “raise the arm”. Thus,
CIL consults low-level actions a; associated with language
supervision u; and treats the pair ((v;, £;), uj»;) as positive if
two supervisions share the same low-level action. As a result,
yi; is one if 7 = j or a; = a; (see the blue boxes in Figure 2);
otherwise, it is zero. Consequently, CLIP-RT learns to measure
the likelihood of each motion described in language, given
visual observation and language instruction.

Pretraining. We train CLIP-RT on the Open X-Embodiment
(OXE) dataset [41], which contains 2.4M robotic trajectories
from 70 individual datasets. We specifically use the OXE
data curated by Kim et al. [29] to train CLIP-RT. However,
the data do not contain natural language supervision, so we



extract language supervision from low-level action similar to
recent studies [3, 59]. Specifically, the low-level action is
represented as a 7-dimensional vector consisting of the end-
effector’s delta positions, delta orientations, and the gripper
open/close. We identify the entry with the dominant value
and its corresponding axis for each action. Based on this
information, we transform low-level actions into one of 8§99
templated natural language supervisions (see Appendix A). As
a result, we train CLIP-RT on approximately 18.1M transition
data through contrastive imitation learning. It requires four
H100 GPUs for one day with a batch size of 128.

In-Domain Fine-Tuning. After pretraining, we fine-tune
CLIP-RT on in-domain data via contrastive imitation learning.
The in-domain dataset consists of 21K transitions in 18 robotic
manipulation tasks, collected through our data collection
framework. Details about the dataset and data collection are
discussed in the following sections (III-C and IV-A).

Closed-Loop Robot Control. Figure 2 (right) shows an
overview of closed-loop robot control. At each time step,
CLIP-RT computes pairwise similarities between the context
and a list of language-based motion primitives. Our model
selects the motion with the highest probability. This selected
motion is translated into a lower-level end-effector action
based on a predefined lookup table (see Appendix B). Finally,
the translated end-effector action is executed using inverse
kinematics (IK). Unlike existing Transformer-based policy
models [7, 6, 41, 3, 29] relying on autoregressive decoding,
CLIP-RT predicts each action in a single forward pass since
it is a discriminative model. CLIP-RT runs at 16Hz on one
H100 GPU and 8Hz on one NVIDIA RTX 3090 GPU, both
using float32 precision. These results are achieved without any
speed-up tricks (e.g., model quantization). Details regarding
frequencies are discussed in Appendix F-E.

VLM Backbone & Codebase. CLIP-RT maintains the origi-
nal CLIP model architecture without any new parameters. As
our backbone model, we employ ViT-H-14-378-quickgelu [17,
25], an open-source CLIP model of 986M (~1B) parameters
that achieves state-of-the-art performance in zero-shot image
classification [46] at the time of writing. It consists of an
image encoder [12] and a text encoder [44], both built on
Transformer [57]. All model configurations can be found in the
OpenCLIP codebase [25]. A key advantage of this codebase
is that strong CLIP models are continuously updated to the
dashboard, enabling users to easily use them through a plug-
and-play approach.

C. In-Domain Data Collection

Language-Based Teleoperation. This step aims to collect a
few robot demonstrations for each skill only through natural
language. To this end, we employ a large language model
(LLM) [39] and design a scenario where users collect in-
domain data through interactions with the LLM. Specifically,
users first provide an initial language instruction for each skill.
Then, they provide natural language supervision in each state
to complete the instruction. The LLLM translates the language
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Fig. 3: A simplified 2D example of stochastic trajectory
augmentation (STA). (a): a demonstration trajectory from the
start s to the endpoint e, passing through a waypoint w;. (b):
a sampled trajectory generated by the diversification phase.
(c)-(e): a visualization of the recovery phase.

supervision into the low-level end-effector action based on a
detailed text prompt (see Appendix C). Finally, the camera
captures the current image observation and the robot executes
the translated action. Consequently, we can obtain a sequence
of tuples {(vi,fi,ui,ai)}fvzl containing visual observation,
instruction, natural language supervision, and low-level action.
We collect 10 episodes for each skill through this process.

Stochastic Trajectory Augmentation (STA) aims to augment
the demonstration data collected from language-based tele-
operation. Before delving into the details, we first define a
waypoint as a key state in demonstrations that satisfies either
of the following conditions: (1) the gripper state changes (i.e.,
open — close or close — open) or (2) the cumulative progress
of delta positions along any axis reverses. For example, w,
in Figure 3-(a) is a waypoint since cumulative progress on
a horizontal axis starts to reverse at w;. STA consists of
two phases: diversification phase and recovery phase. The
diversification phase first builds alternative trajectories toward
each waypoint (see Figure 3-(b)) by sampling a new action
sequence. The robot then executes each action in the sequence,
recording an image in every state it visits. In the recovery
phase, STA drives the robot into novel states that deviate from
the planned trajectory (see Figure 3-(d)) and then executes a
recovery action, a simple reversal of the deviation to return to
the trajectory (see Figure 3-(e)). Note that STA records only
the recovery actions and images in the deviated states, not
the deviation data. By alternating these two phases, STA auto-
matically expands the diversity of the original demonstrations,
potentially improving the robustness of policies under varied
states. Further details of STA are discussed in Appendix E.
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Fig. 4: Success rates on 9 Common tasks (top) and 9 Novel tasks (bottom). We conduct experiments using all compared
methods on Common tasks and three models (CLIP-RT, OpenVLA and CLIP-RT-Action) on Novel Tasks. The success rate
for each task is measured by averaging the results of ten trials. Average success rates of all tasks are shown on the left for
both Common and Novel task sets. Tasks are arranged from left to right based on their average number of steps per episode
in the training data. The task on the right indicates that it requires more steps in average compared with the task on the left.

IV. EXPERIMENTS ON REAL-WORLD ROBOTIC
MANIPULATION

A. Tasks & Dataset

We train and evaluate our models in 18 robotic manipula-
tion tasks, categorized into two groups: Common and Novel.
Common tasks consist of nine tasks closely aligned with those
in the Open X-Embodiment dataset [41]. These tasks include
common manipulation skills, such as “pick the <ob;j>" and
“place the <obj> on the <obj>". In contrast, Novel tasks
include nine tasks barely observed during pretraining on the
Open X-Embodiment dataset, such as “stamp on <obj>”,
“play with the toy car”, and “erase the whiteboard”. This set of
tasks serves as a benchmark for evaluating the model’s ability
to acquire new skills using in-domain data. We first collect in-
domain data through language-based teleoperation, gathering
10 episodes per task, resulting in 911 transitions for Com-
mon tasks and 1,123 transitions for Novel tasks. Leveraging
stochastic trajectory augmentation (STA), we augment each
demonstration with 3 additional trajectories across all tasks.
This augmentation increases the dataset size to approximately
11K transitions for Common tasks and 10K transitions for
Novel tasks. Unless stated otherwise, all the models compared
were trained on the same dataset. We provide details of each
task, along with visualizations, in Appendix G.

B. Robotic Platform

We perform experiments using a physical robot arm, 6-DoF
Universal Robots (URS5) with a two-finger gripper. We provide
more details about the robotic platform in the Appendix D.

C. Experiments on Common and Novel Tasks

We train and evaluate CLIP-RT on both Common and Novel
tasks, comparing with diverse baselines. We introduce baseline
models and then discuss the results in detail.

Baselines. We compare CLIP-RT with four methods, including
the state-of-the-art method and ablated versions of our model:

o CLIP-RT is our proposed model, pretrained on the Open
X-Embodiment (OXE) dataset [41] and further fine-tuned
using our in-domain data.

« OpenVLA [29] is a state-of-the-art, open-source vision-
language-action (VLA) model. This model leverages the
7B-parameter Llama2 language model [55] and a vi-
sual encoder that combines pretrained features from DI-
NOv2 [40] and SigLIP [60]. We also fine-tune OpenVLA
on the same in-domain data as CLIP-RT by using low-
level 7D end-effector actions as supervision.

o CLIP-RT-Action is a variant of CLIP-RT where each
motion is mapped to existing text tokens that are not
frequently used in the vocabulary, similar to existing VLA
models [29, 7, 6, 41]. In other words, CLIP-RT-Action
represents actions as learned action tokens, rather than
representing in natural language. It is also pretrained on
the OXE dataset and fine-tuned on in-domain data.

o CLIP-RT-Passive is another ablated model of CLIP-
RT, which excludes data collected from stochastic trajec-
tory augmentation (STA) and relies solely on data from
language-based teleoperation.

o CLIP-RT-Zero is an ablated model trained solely on the
OXE dataset without accessing any in-domain data.
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Fig. 5: A comparison of multi-task and single-task policies
on Novel tasks. The performance of each task is in Figure 12
of Appendix.

Results on Common Tasks. We compare CLIP-RT with all
baseline models on Common tasks. The results are summa-
rized in the upper row of Figure 4. CLIP-RT achieves an
average success rate of 54%, outperforming all baselines,
including OpenVLA and three ablative models. While CLIP-
RT outperforms OpenVLA on average, OpenVLA still shows
better performance on four basic tasks—Point, Pull, Push,
and Move. When comparing CLIP-RT with CLIP-RT-Action,
we observe that the use of natural language supervision
significantly increases performance on Common tasks (43%
— 54%). We hypothesize that CLIP-RT effectively leverages
the rich vision-language representations of the pretrained
CLIP model [45], allowing it to align language-based motions
with semantic concepts. Furthermore, CLIP-RT-Passive, which
omits stochastic trajectory augmentation (STA), struggles in
most tasks, highlighting the critical role of STA in per-
formance. This suggests that STA enhances robustness and
generalization, enabling CLIP-RT to adapt to novel situations.
We refer readers to Appendix F-B for a more detailed analysis
on the effect of STA. Finally, CLIP-RT-Zero, despite being
trained in the large-scale robot learning dataset [41], shows
8% on average success rates, underscoring the need for in-
domain fine-tuning.

Results on Novel Tasks. We compare CLIP-RT with Open-
VLA and CLIP-RT-Action on 9 Novel tasks. In the lower row
of Figure 4, CLIP-RT achieves an average success rate of 53%,
outperforming these baselines. Notably, CLIP-RT maintains
its average success rates on Novel tasks compared to those of
Common tasks, but we observe a significant performance drop
of OpenVLA on Novel tasks (51% — 29%). These findings
suggest that CLIP-RT generalizes more effectively to tasks that
are barely observed in the pretraining dataset. To verify the
statistical significance of the performance difference between
CLIP-RT and OpenVLA, we conduct a t-test. The resulting p-
value is p = 1.74x 10~?, indicating that CLIP-RT significantly
outperforms OpenVLA.

D. In-Depth Analysis of Generalization

We investigate the source of CLIP-RT’s improved general-
ization on Novel tasks. We conduct analyses along three axes:

== CLIP-RT == OpenvLA

X # of Transition,
Y : Success Rate

10 10

0 200 400 600 800 1000 0 200 400 600 800

70 70

50 / 50
—

30 30

1000

Average Open the Cabinet
70 70
50 // 50 / //
30 30
10 10

0 200 400 600 800 1000 0 200 400 600 800 1000

Erase the Whiteboard Close the Laptop

Fig. 6: Results on few-shot learning. We report the perfor-
mance of CLIP-RT, CLIP-RT-Action, and OpenVLA with 1,
5, and 10 demonstrations (from left to right in each graph).
The x-axis denotes the number of transitions actuall provided,
and the y-axis indicates the task success rate.

(1) a comparison between multi-task and single-task policies,
(2) the effect of natural language supervision, and (3) few-shot
generalization.

Comparison Between Multi-Task and Single-Task Policies.
Where does the significant performance gap between CLIP-
RT and OpenVLA on Novel tasks come from? One of our
hypotheses is that CLIP-RT effectively learns the shared
structure across diverse robotic tasks by utilizing language-
based motion primitives as basic building blocks. To verify
this, we train a single-task policy for each Novel task and
evaluate the performance of each model. In other words, 9
individual single-task policies for both CLIP-RT and Open-
VLA are evaluated. The results are summarized in Figure 5.
OpenVLA-Single and CLIP-RT-Single denote the performance
of single-task policies for each model. Compared to multi-task
policies, both models show performance drops with single-task
policies—3.3% drop for OpenVLA and 11.1% drop for CLIP-
RT. This suggests that multi-task policy learning benefits both
models, but CLIP-RT, with its larger performance gap, benefits
more from shared knowledge across tasks. This highlights that
CLIP-RT facilitates the learning of more generalizable and
transferable policies compared with OpenVLA.

Effect of Natural Language Supervision. In Figure 4,
CLIP-RT outperforms CLIP-RT-Action on both Novel and
Common tasks. This indicates that the use of natural language
supervision also enhances CLIP-RT’s generalization capabil-
ities. We visualize the action embeddings of both models to
further analyze the impact of natural language supervision in
Appendix H.

Few-Shot Generalization. Does CLIP-RT perform effectively
with a limited amount of in-domain data? We further in-
vestigate this by evaluating learned policies, assuming fewer
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demonstrations (i.e., 1, 5, and 10) are provided. Specifically,
we compare CLIP-RT with OpenVLA and CLIP-RT-Action
on three Novel tasks, where all models performs relatively
well on average. As shown in Figure 6, CLIP-RT demonstrates
improved performance in few-shot policy learning, especially
in the single demonstration setting. Such few-shot adaptation
is particularly crucial for robotics, where pretraining data
(e.g., Padalkar et al. [41]) cannot cover all real-world tasks,
necessitating models that can rapidly acquire new skills from
minimal demonstrations.

E. Collaborative Capabilities of CLIP-RT

Learning and reasoning about actions in natural language
offer an additional benefit: collaborative problem-solving with
language-capable entities. In this subsection, we explore how
CLIP-RT collaborates with (1) humans by incorporating cor-
rections and (2) large pretrained models via action refinement.
Collaboration with Humans. When CLIP-RT predicts an
incorrect motion, humans can easily interpret the predictions
and provide a correct motion in a certain state (e.g., “rotate
gripper 90 degrees”). We study two tasks in which CLIP-RT
achieves its lowest success rates—Play with the Car and Hide
the Pooh—and measure how a small number of human inter-
ventions affects performance. We set a maximum limit on the
number of corrections per episode humans can provide: 2 and
4. Figure 7 shows the task success rate with varying numbers
of human interventions (0, 2, and 4). Without intervention,
CLIP-RT’s success rates are 30% and 20% on these two
tasks. With two interventions, these rates increase to 70% and
50%, and with four interventions, both tasks achieve a 100%
success rate. These results demonstrate that even a few human
corrections substantially improve CLIP-RT’s performance in
challenging tasks. Since actions are expressed in language,
humans can easily intervene with language corrections

Collaboration with Large Pretrained Models. We also in-
vestigate how CLIP-RT can collaborate with a large pretrained
model—GPT-40 [24] (GPT for short)—through action refine-
ment. As shown in Figure §, at each transition, we provide the
current image observation and instruction to GPT. GPT then
proposes a set of action candidates and labels them as either
“appropriate” or “inappropriate”. CLIP-RT incorporates this
feedback by boosting the scores of actions deemed appropriate
and penalizing those labeled as inappropriate. In the example
from Figure 8, CLIP-RT initially assigns a high score to

W CLIP-RT Score [l GPT4o0 Score

AY
1
1
:
“Stamp below an American H
corporation founded in H
July 2003, headquartered H
in Austin, Texas” H

1

1

U

V& CLIP-RT ﬁ

m Roll arm five degrees clockwise .76
m Move arm backward by 20cm x1.0
Yaw arm five degrees clockwise x1.0
Move arm to the left by 16cm ] x1.24
Move arm forward by 5cm x0.76
Move arm to the right by 5cm x0.76

Fig. 8: Ensembling CLIP-RT and GPT outputs. Given
an image and language instruction (top), CLIP-RT produces
initial scores for candidate actions (left). GPT then supplies
multiplicative appropriateness factors for each action (right),
which are applied to the CLIP-RT scores to determine the final
action, "Move the arm to the left by Icm”.

“Move arm to the right”, but GPT labels this motion as
inappropriate and provide positive rewards to the motion,
“Move arm to the left”, leading to a correct prediction. This
GPT-guided approach broadens the range of instructions that
CLIP-RT can handle, enabling it to execute instructions that
require commonsense knowledge or high-level reasoning. For
instance, CLIP-RT can benefit from collaboration with large
pretrained models when given instructions like “Stamp below
an American corporation founded in July 2003, headquartered
in Austin, Texas,” as shown in Figure 8. We provide sev-
eral qualitative examples in Appendix I-B to illustrate how
large pretrained models can help perform out-of-distribution
instructions requiring commonsense knowledge or complex
reasoning. Furthermore, Appendix I-A discusses details about
the GPT’s text prompt and how exactly GPT’s decisions are
integrated to CLIP-RT’s scores.

F. Analysis on Failure Cases

We visualize four types of failure cases. First, CLIP-RT
has occasionally failed to comprehend the attributes of objects
specified in instructions. For example, Figure 9-(a) depicts
a scenario in which CLIP-RT is instructed to point to the
blue dice, but mistakenly pointed at the red dice instead. This
examples confirms a need of more precise visual grounding.

Second, CLIP-RT sometimes fail to execute tasks that re-
quire fine-grained control, such as Stamp on <ob7j>. Figure 9-
(b) illustrates an example of such a task. Based on the
image observed from the current distance, it may be difficult
to precisely determine whether the z-axis of the gripper is
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(d) Slide the blue car to the red car

Fig. 9: Example failure cases of CLIP-RT. (a) CLIP-RT
incorrectly identifies the target, pointing at the red dice instead
of the blue dice. It is difficult to detect the correct spatial
relationship between the cup and the hanger based on the
initial visual input. (b) Failure in executing the “Stamp on
the star”. The left figure demonstrates a correct grasp of
the stamp, whereas the right figure illustrates an incorrect
grip that prevents successful task completion. (c) The robot
arm completely obstructs the objects of interest, preventing
accurate perception and manipulation. (d) The robot slips
while attempting to slide the blue car and fails to recover by
reopening the gripper and attempting to re-grasp the object.

properly aligned to stamp on <ob j>. This limitation is likely
due to the reliance on 2D image inputs, which makes it
challenging to accurately infer the 3D spatial information
necessary for precise manipulation. The models, pretrained
on large-scale image-text datasets, may not capture the depth
and spatial nuances required for such tasks. Utilizing inputs
like RGB-D images or point clouds might alleviate this issue.
Third, relying on images from a single viewpoint can lead
to occlusions, as visualized in Figure 9-(c), particularly when
the robot’s arm obstructs the object of interest. Employing
multiple camera angles could alleviate this issue by providing
a more comprehensive view of the scene.

Fourth, stochastic trajectory augmentation (STA) relies on
heuristic algorithms that may not capture the full diversity of
possible trajectories. This is particularly evident in scenarios
requiring recovery from failure states, such as when an object
slips from the gripper, as shown in Figure 9-(d). The heuristics
does not adequately represent the multitude of ways a robot
might recover or adapt in these situations, potentially hindering
the model’s ability to generalize to unforeseen circumstances.
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Fig. 10: Overview of CLIP-RT+ for LIBERO.

V. EXPERIMENTS: ADAPTING CLIP-RT TO SIMULATED
ENVIRONMENTS

While our primary focus is on training real-world robots
through language-guided data collection, we further evaluate
CLIP-RT on the LIBERO simulation benchmark [33] to study
the following questions:

o Generality: Is CLIP-RT applicable to environments with
offline, human-teleoperated demonstration data?

¢ Performance: Does CLIP-RT remain effective in a con-
trolled simulation setting?

A. Tasks & Dataset

We evaluate on four task suites of the LIBERO bench-
mark: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and
LIBERO-Long. These task suites assess policy generalization
to diverse spatial relationships, objects, task goals, and long-
horizon tasks. Each task suite contains 500 human-teleoperated
demonstration data for 10 different tasks. By following the
experimental setup in existing studies [30, 29, 21], we train
and evaluate CLIP-RT on each task suite individually.

B. Adapting CLIP-RT to the LIBERO Benchmark

Before describing how we adapt CLIP-RT to the LIBERO
simulation benchmark, we acknowledge the inherent difficulty
of directly representing the fine-grained, continuous human-
teleoperated actions in LIBERO using natural language at a
comparable level of abstraction. This discrepancy in abstrac-
tion levels necessitates the design of an alternative model
architecture to enable effective action prediction in this setting.
Accordingly, we simply add a 0.3B-parameter action decoder
to the original CLIP-RT model to predict continuous actions.
We refer to this model as CLIP-RT+. By following Kim
et al. [30], we employ action chunking and parallel decoding.
As shown in Figure 10, the action decoder takes the image
and instruction embeddings vectors from CLIP-RT and zero-
valued empty tokens as inputs. We use the L1 regression-based
objective to optimize the model. The action decoder shares the
same model architecture with the CLIP-RT’s text encoder. As
a result, CLIP-RT+ is a 1.3B-parameter model. The size of the
action chunk is 8, and the dimension of each action is 7. We
train CLIP-RT+ using 8 NVIDIA H100 GPUs for 128 epochs
with a batch size of 256.



Inference Efficiency

LIBERO Task Success Rates

Throughputt Latencyl Spatialf Objectt Goalt Longt Averaget
Model Size (Hz) (Sec) (%) (%) (%) (%) (%)
Octo [38] 93M - - 78.9 85.7 84.6 51.1 75.1
DP (scratch) [10] 157M - - 78.3 92.5 68.3 50.5 724
Dita [21] 334M - - 84.2 96.3 85.4 63.8 824
OpenVLA [29] 7.5B 42 0.240 84.7 884 79.2 53.7 76.5
OpenVLA-OFT [30] 7.7B 109.7 0.073 96.2 98.3 96.2 90.7 95.3
CLIP-RT+ (ours) 1.3B 163.8 0.049 95.2 99.2 94.2 82.6 92.8

TABLE I: LIBERO task performance and inference efficiency results. All models, except Diffusion Policy (DP) [10], were
fine-tuned. Boldface scores represent the highest score, while underlined scores indicate the runner-up.

C. Results & Discussions

We compare CLIP-RT+ with the state-of-the-art models
on the LIBERO simulation benchmarks, including Open-
VLA [29], OpenVLA-OFT [30], Dita [21], DP [10], and
Octo [38]. As shown in Table I, the recent state-of-the-art VLA
model, OpenVLA-OFT [30], achieves the highest average
success rate of 95.3%. However, CLIP-RT+ shows comparable
performance across all task suites with an average score of
92.8%, while using 6x fewer parameters (1.3B) compared with
OpenVLA-OFT (7.7B). Surprisingly, CLIP-RT+ attains a near
perfect success rate (99.2%) on the LIBERO-Object task suite,
indicating strong generalization to unseen objects in simulation
environments. We conjecture that the generalization capabili-
ties of the CLIP model to novel visual categories [45, 17] are
successfully transferred to the LIBERO-Object tasks.

We further analyze the inference efficiency of CLIP-RT+.
We use two evaluation metrics: (1) throughput (the number of
actions predicted per second) and (2) latency (time to predict
an action chunk or single action). By following the setup from
Kim et al. [30], we measure the throughput and latency on an
NVIDIA A100 GPU. As shown in Table I, CLIP-RT+ achieves
39x improved throughput (4.2Hz—163.8Hz) compared with
OpenVLA based on its lightweight design and the action
chunking technique. When compared to OpenVLA-OFT using
the same action chunk size of §, CLIP-RT+ improves both
throughput and latency by approximately 49%.

While LIBERO demonstrations are not compatible with
language-based action representations due to their low-level,
continuous action space nature, we adapt CLIP-RT by adding
a simple action prediction module with an L1 regression
objective for continuous action representations. This modifica-
tion enables us to evaluate the core architectural strengths of
CLIP-RT—language-based policy pretraining and lightweight
design—on a widely used simulation benchmark (LIBERO).
The results demonstrate that CLIP-RT remains effective and
generalizable, even when applied beyond the scope of lan-
guage supervision-based robot learning settings.

V1. DISCUSSION
A. Summary

This paper investigates: (1) how non-experts collect robotic
data using natural language supervision and (2) how pre-

trained vision-language models learn visuomotor policies di-
rectly from this supervision. We present CLIP-RT, a new
vision-language-action (VLA) model that learns generalizable
and transferable policies from natural language supervision.
Furthermore, we propose a data collection framework consist-
ing of language-based teleoperation and stochastic trajectory
augmentation. Experiments show that CLIP-RT outperforms
the state-of-the-art model, OpenVLA by 24%, in acquiring
novel manipulation skills, while using 7x fewer parameters.
Furthermore, CLIP-RT can collaborate with humans and large
pretrained models by using natural language as an interface,
improving generalization and decision-making. Finally, we
validate the effectiveness of CLIP-RT in simulated environ-
ments with offline, human-teleoperated robot data. We believe
that our work represents a promising step towards making
robot learning more accessible and scalable, enabling non-
experts to teach robots directly in their environments.

B. Limitations and Future Work

Inherent Limitations in Human Language Supervision.
Human can provide instructions at varying levels of abstrac-
tion—from high-level commands like “Pick up the cup” to
low-level directives such as “Rorate the second joint by 10
degrees”. Our approach currently assumes that users can offer
supervision at an appropriate intermediate level (e.g., move
arm to the right). This assumption may not hold in real-
world scenarios, as non-experts might struggle to calibrate the
specificity of their instructions. Addressing this limitation may
involve developing adaptive models capable of interpreting
instructions across different levels of abstraction or designing
a two-stage pipeline that first translates high-level instructions
into intermediate commands and subsequently into low-level
actions, as demonstrated in [52, 49].

Lack of Temporal Context. Current vision-language-action
models, including CLIP-RT, do not predict sequences of
actions or consider the history of actions taken. This absence
of temporal context limits the models’ ability to perform tasks
that require an understanding of previous actions or states.
For instance, in a task like Shake the water bottle, the robot
needs to know whether it has already shaken the bottle or
how it should continue shaking. Without incorporating action
history into the context, the model cannot make informed



decisions based on past actions. Future research could explore
integrating mechanisms that account for temporal sequences,
enabling the model to maintain a memory of prior actions and
states, such as hierarchical history encoding [9].

Handling Complex Tasks and Long-Term Planning. The
robotic tasks addressed in this paper are relatively short-
horizon compared with the complexity and duration of every-
day tasks, such as folding laundry [5]. While CLIP-RT suc-
cessfully demonstrates diverse manipulation skills — such as
opening the trash can and closing the laptop — extending these
capabilities to long-horizon tasks requires novel approaches
that can handle increased task complexity. One promising
strategy for long-horizon task execution involves developing a
high-level task planner [23, 52, 49] that decomposes complex
tasks into sequences of primitive skills. For example, a task
planner could break down “set the dinner table” into subtasks
like “retrieve plates,” “place utensils,” and “arrange napkins.”
Integrating such planners with CLIP-RT’s manipulation skills
could execute structured, multi-step tasks.
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