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Benchmark for Scalable and Generalizable Robot Learning

Haoran Geng!", Feishi Wang">3*", Songlin Wei’

*, Yuyang Li>®", Bangjun Wang?*, Boshi An*",

Charlie Tianyue Cheng'*, Haozhe Lou?, Peihao Li'#, Yen-Jen Wang', Yutong Liang?, Dylan Goetting!,
Chaoyi Xu?, Haozhe Chen’, Yuxi Qian®, Yiran Geng?, Jiageng Mao®, Weikang Wan?, Mingtong Zhang?,
Jiangran Lyu?, Siheng Zhao?, Jiazhao Zhang?, Jialiang Zhang'?, Chengyang Zhao’, Haoran Lu?,

Yufei Dingl’z, Ran Gongs, Yuran Wangz, Yuxuan Kuang2’3, Ruihai Wu?, Baoxiong Jia®, Carlo Sferrazzal,

1

Hao Dong?, Siyuan Huang”, Yue Wang?!, Jitendra Malik'f, Pieter Abbeel'f

'UC Berkeley *PKU 3USC #UMich SUIUC ®Stanford 'CMU 3UCLA °BIGAI

* equal contribution | equal advising

~ Ei g VAC/V\LVlNd: &

_ OpenéDOR |
GAPartNet [ ==/ 5
2 £ el

_

DexterousHands ;

1ti-Simuls
pport

~ 2] Maniskill

Correspondence to: Haoran Geng <ghr@berkeley.edu>

- Diverse Tasks and
| Demonstrations

2 Lﬂ =
LIBERO

ag—

—\_— W

&)

| RLBench 7 [ GraspNetr

Cross

VAR S | I AN

Fig. 1: ROBOVERSE comprises a scalable simulation platform, a large-scale synthetic dataset, and unified benchmarks. The
simulation platform supports seamless integration of new tasks and demonstrations through unified protocols, ensuring flexibility
and extensibility. The dataset includes over 1,000 diverse tasks and more than 10 million transitions, constructed through
large-scale data migration, cross-embodiment transfer, and robust augmentation and randomization.

Abstract—Data scaling and standardized evaluation bench-
marks have driven significant advances in natural language
processing and computer vision. However, robotics faces unique
challenges in scaling data and establishing reliable evaluation
protocols. Collecting real-world robotic data is resource-intensive
and inefficient, while benchmarking in real-world scenarios
remains highly complex. Synthetic data and simulation offer
promising alternatives, yet existing efforts often fall short in data
quality, diversity, and benchmark standardization. To address
these challenges, we introduce ROBOVERSE, a comprehensive
framework comprising a simulation platform, a synthetic dataset,
and unified benchmarks. Our simulation platform supports
multiple simulators and robotic embodiments, enabling seamless
transitions between different environments. The synthetic dataset,
featuring high-fidelity physics and photorealistic rendering, is

constructed through multiple approaches including migration
from public datasets, policy rollout, and motion planning,
etc. enhanced by data augmentation. Additionally, we propose
unified benchmarks for imitation learning and reinforcement
learning, enabling consistent evaluation across different levels of
generalization. At the core of the simulation platform is METASIM,
an infrastructure that abstracts diverse simulation environments
into a universal interface. It restructures existing simulation
environments into a simulator-agnostic configuration system, as
well as an API aligning different simulator functionalities, such
as launching simulation environments, loading assets with initial
states, stepping the physics engine, efc. This abstraction ensures
interoperability and extensibility. Comprehensive experiments
demonstrate that ROBOVERSE enhances the performance of imi-
tation learning, reinforcement learning, and world model learning,



improving sim-to-real transfer. These results validate the reliability
of our dataset and benchmarks, establishing RoboVerse as a robust
solution for advancing simulation-assisted robot learning. Code
and dataset can be found at: https://roboverseorg.github.io/.

1. INTRODUCTION

Large-scale datasets, combined with well-established bench-
marks, have fueled rapid advancements in natural language
processing (NLP) [75, 5] and computer vision (CV) [19,
45, 43, 77, 56, 33]. Specifically, large-scale data provides
ample training examples that bolster learning, while uniform
benchmarks enable standardized evaluation and fair comparison
across different methods. However, replicating these successes
in robotics remains challenging due to the difficulty of
collecting high-quality, diverse data and the lack of widely
recognized evaluation protocols.

Real-world approaches [14, 41] to constructing datasets and
benchmarks, though authentically reflecting the complexities of
operational environments, face significant practical constraints.
First, collecting demonstrations is time-consuming and resource-
intensive, and the resulting data is often hardware-dependent
or modality-specific, limiting its adaptability to new scenarios.
Additionally, establishing standardized and widely applicable
benchmarks is inherently challenging since reproducing identi-
cal conditions for fair comparisons is nearly impossible. For
instance, object placements can vary across rollouts, ambient
lighting fluctuates under natural sunlight, and background
environments may change. Consequently, scaling real-world
datasets, evaluating policies, and iterating development in
real-world scenarios remain cost-prohibitive and difficult to
standardize.

Simulators, on the other hand, present a promising alter-
native for large-scale dataset and benchmark construction.
By providing efficient computation, synthetic assets, and
omniscient information in reproducible settings, they enable
cost-effective dataset construction and consistent performance
evaluation. Recent works, exemplified by [104, 37, 9, 27,
80, 98, 59, 48, 97, 94, 50, 51, 73], have demonstrated the
potential of simulation-based methods in various robotic tasks.
Despite these advantages, several challenges impede the broader
adoption of synthetic datasets and benchmarks. First, utilizing
simulators often demands considerable expertise due to both
the complexity of simulator design and the relative immaturity
of many platforms, which complicates the data construction
process. Second, simulators vary widely in their internal
architectures and external interfaces, making it laborious to
transfer data and models or adapt workflows from one to
another. Consequently, reusing existing synthetic datasets and
benchmarks is difficult, resulting in a fragmented ecosystem
that further hinders convenient construction and effective use
of large-scale data in simulation environments.

To fully harness the potential of simulation in robotics, we
introduce ROBOVERSE, a scalable simulation platform that
unifies existing simulators under a standardized format and a
single infrastructure, a large-scale synthetic dataset, and unified
benchmarks. To achieve this, we first propose METASIM, the

core infrastructure of the ROBOVERSE. Through careful design,
METASIM establishes a universal configuration system for
agents, objects, sensors, tasks, and physics parameters while
exposing a simulator-agnostic interface for simulation setup
and control. This architecture enables seamless integration of
tasks, assets and robot trajectories from diverse simulation en-
vironments with minimal adaptation effort. METASIM provides
three key capabilities: (1) Cross-Simulator Integration: Enables
seamless switching between different simulators, fostering uni-
fied benchmarking and facilitating the transfer of environments
and demonstrations across platforms. (2) Hybrid Simulation:
Combines the strengths of multiple simulators—such as pairing
advanced physics engines with superior renderers—to generate
scalable and high-quality synthetic data. (3) Cross-Embodiment
Transfer: Allows the retargeting of trajectories across various
robot arms with parallel grippers, maximizing dataset reuse
from heterogeneous sources.

METASIM enables ROBOVERSE to systematically enhance
the workflow for building and scaling simulation environments
and datasets. Our method features:

e Scalable and Diverse Data Generation: By aligning
multiple benchmarks and task trajectories and leveraging a
robust multi-source integration and data filtering pipeline,
we generate large-scale, high-quality datasets. Addition-
ally, our data randomization and augmentation pipeline
enhances data diversity and volume, further enriching the
dataset for comprehensive model training;

e Realistic Simulation and Rendering: With METASIM’s
hybrid simulation capability, we enable the fusion of ad-
vanced physics engines and rendering systems across mul-
tiple simulators and renderers. Combined with carefully
curated scenes, materials, and lighting assets, ROBOVERSE
enhances realism in physical interactions and sensory
observations;

o Unified Benchmarking and Evaluation: We unify widely
used benchmarks into a cohesive system, streamlining
algorithm development and performance comparison
within a structured evaluation framework. Additionally,
we introduce a standardized benchmarking protocol to
assess varying levels of generalization and sim-to-real
transferability.

o Highly Extensibility and Scalability: The aligned APIs
and infrastructure streamline development and enable
efficient algorithm integration, testing, and deployment
across diverse simulation environments. Additionally, we
develop real-to-sim frameworks, multiple teleoperation
methods, and Al-generative systems for scalable task and
data creation.

Leveraging these workflows in ROBOVERSE, we construct
the largest and most diverse high-quality synthetic dataset
and benchmark to date, all in a unified format. This dataset
includes ~500k unique, high-fidelity trajectories covering 276
task categories and ~5.5k assets. Additionally, we generate
over 50 million high-quality state transitions to support policy
learning.



Beyond dataset and benchmark construction, we explore
the potential of ROBOVERSE through extensive experiments
on imitation learning (Sec. VI-B), reinforcement learning
(Sec. VI-C), and world model learning (Sec. VI-E). Our results
demonstrate that ROBOVERSE enables reliable policy learning
and evaluation, supports strong sim-to-sim and (Sec. VI-G)
sim-to-real transfer (Sec. VI-F) via high-fidelity physics and
rendering, and facilitates efficient data expansion through
teleoperation (Sec. I'V-C), trajectory augmentation (Sec. IV-D1),
domain randomization (Sec. IV-D2) and generative models
(Sec. IV-C). These findings highlight the framework’s robust-
ness, scalability, and real-world applicability.

1I. RELATED WORK
A. Robotics Simulators

Advancements in computer graphics have contributed to
the development of high-fidelity simulators, which are widely
used in robotics research and development. CoppeliaSim [79],
Bullet [15], and MuJoCo [90] provide accurate physics sim-
ulations and are extensively utilized in applications such as
reinforcement learning and robotic benchmarking [3, 99, 71,
13]. More simulators have been developed to fully exploit
parallelism for better efficiency. Isaac Gym [60], Isaac Sim [69],
SAPIEN [30, 88], MuJoCo MJX [90, 103], and Genesis [2]
utilize GPU power for enhanced performance, enabling large-
scale reinforcement learning and efficient data collection,
significantly improving training speed and scalability. Some
simulators focus on bridging the simulation-reality gap (Sim-
to-Real Gap), incorporating technologies including ray-tracing
and customized renderers for photo-realistic rendering [69, 88].
Furthermore, Isaac Sim [69] and Genesis [2] offer high-
fidelity soft-body and liquid simulation, expanding the scope of
realistic robotic interactions. ROBOVERSE proposes a unified
platform that supports multiple simulators, facilitating seamless
transitions between them and enabling hybrid integration to
utilize the strengths of each simulator.

B. Large-Scale Robotics Dataset

The scarcity of large-scale, high-quality, and diverse datasets
in the robotics community has long been recognized. Several
works have shown the possibility of collecting demonstration
data directly on real robots. RoboNet [18] is a large-scale
manipulation dataset containing roughly 162k trajectories from
multiple robot platforms. DROID [41] has collected over
76k contact-rich robotic manipulation demonstrations across
86 tasks. RH20T [24] proposed a dataset with over 100k
demonstrations and 147 tasks. At the same time, RT-1 [4]
set the record further to 130k demonstrations on over 700
tasks. Recently, Open X-Embodiment [14] has demonstrated a
promising approach to unite the community’s efforts, collecting
over 1M trajectories on 160,266 tasks with 22 different
embodiments. At this stage, real-world datasets became difficult
to scale up due to the proportional effort and cost required to
collect more demonstrative trajectories.

Simulation-based data collection provides a promising solu-
tion to the high cost and inefficiencies of real-world datasets.

Hussing et al. [35] proposed a dataset containing 256M
transitions on 256 tasks for offline compositional reinforcement
learning. RoboCasa [67] introduced a dataset of 100 tasks
and over 100k trajectories for generalist robots. DexGraspNet-
2.0 [104] has collected over 400M demonstrations for dexterous
grasping. Despite these efforts, synthetic datasets often exist
in disparate simulators, leading to a fragmented ecosystem
with limited diversity and quality. Moreover, simulation-based
data often fails to capture complex physics and diverse task
variations found in the real world [52, 22], potentially causing
overfitting to specific simulators and hampering generalization
to real-world scenarios.

ROBOVERSE provides a unified solution for large-scale,
high-quality, and diverse synthetic data. It enables agents to
train on a large set of environments and simulators to reduce
overfitting, thereby improving the robustness of the learned
policies.

C. Benchmarking in Robotics

Benchmarking remains a critical yet highly challenging
problem in the robotics community. Compared to super-
vised learning tasks, it is relatively difficult to evaluate the
performance of a robotics model. Meta-World [102] is an
early attempt in multi-task benchmarking. This is followed
by RLBench [36], BEHAVIOR-1K [49], Habitat [§7], and
ManiSkill [66, 30, 88, 85], covering a large variety of robotic
tasks. Grutopia [95] and InfiniteWorld [78] make a leap toward
general-purpose robot benchmarking.

Despite significant efforts dedicated to these benchmarks,
it is not guaranteed that the results are reproducible across
different benchmarks. The uncertainty comes from multiple
aspects including simulation accuracy, rendering style and asset
properties [52, 22]. To address these challenges, ROBOVERSE
enables researchers to evaluate their policies across multiple
benchmarks and simulators seamlessly, without familiarizing
themselves with each one individually.

II1. INFRASTRUCTURE: METASIM
A. METASIM Overview

We present METASIM, a high-level interface above specific
simulation environment implementations. It is also the core in-
frastructure of ROBOVERSE. As illustrated in Fig. 2, METASIM
empowers the ROBOVERSE simulation platform, allowing for
the generation of a large-scale high-quality dataset, as well as
the construction of a unified benchmark.

B. METASIM Implementation

As illustrated in Fig. 3, METASIM employs a three-layer
architecture including a universal configuration system, a
simulator-agnostic interface, and a user-friendly environment
wrapper. The universal configuration system unifies specifica-
tions for a simulation scenario and ensures consistent format
across simulators. The simulator-agnostic interface interprets
these specifications, translates them into simulator-specific
commands, and therefore aligns different simulator backends. In
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Fig. 2: ROBOVERSE consists of a simulation platform, a large-
scale, high-quality dataset, and unified benchmarks. At the core
of the simulation platform is METASIM, the infrastructure of
ROBOVERSE. Powered by METASIM, the simulation platform
facilitates dataset creation and benchmark construction.

addition, the environment wrappers encapsulate the simulator-
agnostic interface into a standarized learning environment, such
as a Gym [91] environment. We describe each layer with more
details in the following sections.

1) Universal Configuration System: A typical simulation
environment comprises agents, objects, tasks, sensors, and
physics parameters. They collectively define who performs
the actions (agents), what the environment looks like (objects),
what the agents should do (tasks, including instructions, success
metrics, and rewards), how the environment is perceived and
measured (sensors), and the governing physical laws (physics
parameters). Ideally, these components should be simulator-
agnostic, requiring a unified standard of simulation scenarios.
Such a standard would enable researchers to work across
different simulators seamlessly and integrate existing efforts
from the community through cross-simulation.

Based on such a principle, we design a configuration system,
MetaConfig, to abstract simulation scenarios in a simulator-
agnostic way. As illustrated in Fig. 4, MetaConfig is a nested
class that contains the above-mentioned core components. It
can be interpreted by different simulator backends to build
the corresponding simulation. Additionally, MetaConfig
supports optional simulator-specific hyperparameters (e.g.,
solver type), allowing fully leveraging the unique features
of different simulators through customization.

2) Aligned Simulator Backends: Different simulators have
their own implementations and specializations. However, rou-
tine operations — such as initializing a scene, loading objects,
stepping the physics engine, retrieving observations, time man-
agement, and determining success states — tend to follow similar
patterns. To standardize these shared operations, we create a
unified interface through a Handler class. Each simulator
has its own handler instance implementing this interface. The
handler class implements the common methods including
launch (), get_states (), and set_states (), etc.,
spanning the whole lifecycle of simulating a task. The usage of
the APIs is illustrated in Code 1. More information is provided
in the supplementary materials.

Env:
__init_ (self, handler):
self.handler = handler
handler.launch ()

reset (self) :

handler.set_states(

states = handler.get_states()
get_observation(states), \
handler.get_extra ()

step (self, action):

handler.set_states (action=action)

handler.step ()

states = handler.get_states()
get_observation(states), \
get_reward(states), \
get_success (states) \
get_termination (states)
get_time_out (states), \
handler.get_extra ()

14 \

render (self) :
handler.render ()

close (self):
handler.close ()

Code 1: Pseudocode for gym.Env implementation. Each
method of gym.Env is implemented by calling the corre-
sponding methods of the Handler class.

3) User-Friendly Environment Wrapper: Gym [91] is a
widely adopted paradigm in reinforcement learning and
robotics, in which the gym.Env class is fundamental to
building learning environments. We define a wrapper to easily
transform a Handler into an environment equipped with Gym
APIs (step (), reset (), render (), and close ()). As
shown in Code 1, these methods are implemented by leveraging
the underlying Handler methods.

C. METASIM Capabilities

METASIM offers the following three key capabilities.

1) Cross-Simulator Integration: Seamlessly switching be-
tween different simulators, allowing tasks and trajectories
from one simulator to be utilized in other simulators. This
capability enables efficient task and trajectory integration,
unified benchmark construction, and sim-to-sim transfer for
reinforcement learning training. For example, tasks from Meta-
World [102] can be used by Isaac Gym [60] for fast parallel
training, after which the generated trajectories can be deployed
in Isaac Sim [69] for rendering.

2) Hybrid Simulation: METASIM supports combining the
physics engine of one simulator and the renderer of another
simulator at the same time, allowing users to benefit from
advantages owned by different simulators. Specifically, using a
single command, one could launch a simulator with a powerful
renderer (e.g., Isaac Sim [69]) with a simulator that has
an accurate physics engine (e.g., MuJoCo [90]) to form an
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Fig. 3: METASIM provides a universal configuration system, aligned simulator backends, and a Gym [91] environment wrapper.
This three-layer architecture abstracts simulation environments into simulator-agnostic specifications and aligns simulator
backends, enabling three key capabilities: cross-simulator integration, hybrid simulation and cross-embodiment transfer. Based
on METASIM, we build a pipeline to collect tasks, assets and trajectories from diverse public sources in a unified format,
employ data augmentation methods, and ultimately generate a large-scale high-quality dataset along with unified benchmarks.
This data pipeline forms the foundation of ROBOVERSE, facilitating the generation of large-scale datasets and construction of

unified benchmarks.
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Fig. 4: The MetaConfig is a nested dataclass that abstracts
the core components in any simulation environment in a
simulator-agnostic way.

even more powerful simulation, enabling high-quality data
generation.

3) Cross-Embodiment Transfer: Reusing the trajectories
across different gripper-based robot morphologies by retarget-
ing the end-effector pose, which allows the integration of data
collected from diverse robots into a unified format.

IV. ROBOVERSE DATASET
A. Dataset Overview

On top of METASIM, we generate large-scale high quality
dataset by incorporating multiple data collection methods.
Overall, there are three key data types to collect: tasks,
assets, and robot trajectories. The main source of these data
is migration from existing simulation environments. Beyond
migration, we explore various methods to collect these data,
such as using large language models to generate new tasks,

leveraging the real-to-sim toolset [S7] to reconstruct assets from
the real world, using teleoperation to collect new trajectories,
etc. Additionally, we leverage data augmentation methods for
both trajectories and visual observations. Finally, we report the
statistics for current progress of data migration in ROBOVERSE.

B. Tasks, Assets and Trajectories Collection: Migration

Leveraging the ROBOVERSE format and infrastructure, we
seamlessly integrate a wide range of benchmarks and datasets
into our system with a unified format and clean codebase.
We apply the following approaches to collect tasks and
demonstrations.

« Direct Migration from Other Simulation Environments
Some benchmarks provide essential components integra-
tion into ROBOVERSE. We define environment configura-
tions for task initialization and evaluation, then convert
trajectory data and asset formats for seamless compatibility.
Notably, ROBOVERSE streamlines this migration process
by first aligning formats in the original simulator and
automatically ensuring compatibility across all simulators.

« Motion Planning and RL Rollout When benchmarks
provide only partial manipulation data, such as keypoint
trajectories or grasping poses, we use motion planning to
generate complete trajectories. If no explicit manipulation
data is available but pre-existing policies or reinforcement
learning frameworks exist, we either utilize these policies
or train new ones to collect demonstration data through
rollouts. To ensure high data quality and consistency with



our system standards, we carefully adapt the success
checker and rigorously filter both planned and collected
trajectories.

With the techniques mentioned above, we migrated mul-
tiple existing manipulation datasets into ROBOVERSE. Cur-
rently, we support ManiSkill [66, 30, 88], RLBench [36],
CALVIN [64], Meta-World [102], robosuite [109], Mimic-
Gen [61], GAPartNet [26], Open6DOR [20], ARNOLD [29],
LIBERO [54], SIMPLER [52], GraspNet [23], Garment-
Lab [58], and UniDoorManip [53].

We also integrated datasets from a wider range of embodi-
ments, including dexterous hands, quadrupeds, and humanoids,
covering tasks such as dexterous manipulation, locomotion,
navigation, and whole-body control. Currently, we have mi-
grated VLN-CE R2R [44] and RxR [46] for navigation, as well
as HumanoidBench [84] and Humanoid-X [62] for locomotion
and whole-body control.

ROBOVERSE simplifies and standardizes the migration
process, and we will continue to maintain and expand it.

C. Tasks, Assets and Trajectories Collection: Teleoperation
and Generation

« Teleoperation System for Trajectory Collection . As shown
in Fig. 5, ROBOVERSE integrates teleoperation systems
within the METASIM infrastructure, offering a flexible and
efficient solution for high-quality data collection. It supports
various robotic systems, including arms, dexterous hands [72],
and bimanual setups, enabling seamless teleoperation across
different simulators. To mitigate the high cost and complexity
of professional equipment, we introduce an interactive motion
control system utilizing accessible devices such as keyboards,
joysticks, mobile apps (we developed a new app for Android
and iOS to control robotic arms; see supplementary materials
for more details.), motion capture (Mocap) [93], and VR
systems [11, 74]. These devices’ integrated sensors capture
motion data, allowing natural, gesture-based control along
with real-time, high-frequency communication for precise,
low-cost remote operation. Further details are provided in
the supplementary materials.

o Al-Assisted Task Generation. Leveraging the generalization
capability of large generative models, Al-assisted task gen-
eration provides a mechanism to diversity task varieties and
scenario distribution. By learning from example placements,
it acquires a sense of spatial and semantic constraints [1]
(e.g. by demonstrating specific constraints, it can learn
to spread out objects to avoid potential overlap erc.). It
can arrange objects originally from different benchmarks
into a physically plausible scenes based on METASIM, as
shown in Fig. 6. Incorporating randomization in robot
and object selection [39] with their initial poses, large
generative models can generate various initial states. The
system can automatically output all the required configuration
files in unified format for instant visualization and user-
friendly editing. After task generation, we will process a
two-step filtering to avoid errors and hallucinations: (1)
Format Validation: Tasks that fail to meet ROBOVERSE

Fig. 5: Teleoperation System. ROBOVERSE supports various
user-friendly teleoperation approaches. Currently, it enables
teleoperation via a phone app (second row), motion capture
(middle), VR devices (bottom left), as well as keyboard and
joystick (bottom right). These methods allow control of robotic
arms, dexterous hands, and bimanual systems across different
simulators.

format standards are discarded. (2) Feasibility Check: Since
trajectory data is collected via human teleoperation, tasks
deemed unreasonable by the teleoperator are removed. By
unleashing the extrapolative and few-shot learning abilities of
large generative models, we integrate assets under a uniform
schema automatically, driving task generation that spans
multiple simulators and benchmarks.

« Real-to-Sim for Asset Construction. Video-based recon-
struction proves to be a valuable source for data and asset
creation by leveraging Real-to-Sim techniques. Our approach
integrates multiple reconstruction pipelines to extract high-
fidelity assets from video data. First, we initialize the
structure using COLMAP [81, 82] and employ Gaussian
Splatting [40] for high-quality rendering. Next, we infer
physical properties by feeding both semantic and original
images into a Vision-Language Model (VLM) [108]. For
geometry reconstruction, we estimate surface normals from
video [101], apply surfel splatting [34], and utilize TSDF-
based methods with dynamic filtering to reconstruct detailed
meshes [100]. By leveraging semantic masks [77], we
selectively extract components from both Gaussian and mesh
representations. To further enhance realism, we infer and
learn object kinematics directly from video [55], ensuring
accurate motion representations. Finally, we formulate URDF
models by refining key attributes such as coordinate frames,
orientation, axis alignment, scale, relative 6-DoF poses,
and PD control parameters [57]. This pipeline effectively
bridges the gap between real-world video data and simulation-
ready assets, enhancing robotic learning and simulation
fidelity. We also present comparative experiments in the
supplementary materials, demonstrating that our methods
significantly enhance real-world policy performance.
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Fig. 6: Al-Assisted Task Generation. ROBOVERSE supports
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Fig. 7: Real-to-Sim Tools. We use a mobile device to capture
multi-view images, reconstruct a high-quality mesh, build
a URDF using VLM, and then perform actions in both
ROBOVERSE and the real world.

D. Data Augmentation

1) Trajectory Augmentation: With the unified simulation
interface and data format, ROBOVERSE enables significantly
more efficient data augmentation and supports advanced aug-
mentation techniques. Beyond the visual randomization detailed
in Benchmark Protocol [7], we also provide robust trajectory
space augmentation. We offer an API to generate large-scale
robot trajectory datasets from a limited number of source
demonstrations. Following the MimicGen [61] framework, for
most tasks, we can decompose them into a sequence of object-
centric subtasks (S1(og, ), S2(0s5)s - - -, Sa(0s5,,)), where the
robot’s trajectory within each subtask S;(og,) is relative to

a single object’s coordinate frame (0g, € O, O is the set
of objects in the task M). Additionally, we assume that the
sequence of subtasks in each task is predefined. By leveraging
this minimal human annotation regarding the order of subtasks,
we can efficiently divide each source demo into contiguous
object-centric manipulation segments {7;}}, (each of which
corresponds to a subtask S;(0;)) using a simulator, and then
generate extensive trajectory datasets for various task variants
(in our case: variations in the initial and goal state distributions
of objects (D)) and robots (R)) using MimicGen [61]. This
approach has been shown to significantly benefit generalization
in imitation learning [61, 37, 96, 25, 67], particularly in
scenarios where the number of source demonstrations is limited.
For further details, please refer to the supplementary materials.

2) Domain Randomization: We implement domain random-
ization in the Isaac Sim [69] handler of METASIM. This
involves four types of randomization:

« Table, Ground, and Wall. Walls (and ceilings) can be added
for tasks that lack a predefined scene. Customizable tables
can also be included for tasks that are performed on tabletops.
The visual materials for these elements are randomly selected
from a curated subset of ARNOLD [29] and vMaterials [68].
The table has ~300 material options, while the wall and
ground each have around ~150 material options.

« Lighting Condition. Two types of lighting scenarios can be
specified: distant light and cylinder light arrays. For distant
light, the light’s polar angles are randomized. For cylinder
light, a random 7 X m matrix of cylinder lights with random
size is added at a fixed height above the agents. In both
scenarios, the intensity and color temperature of the lights
are randomized within a reasonable range.

« Camera Poses. We carefully select 59 candidate camera
poses, with the majority positioned to face the robot directly
and a smaller subset placed at side-facing angles.

« Reflection Properties. The roughness, specular, and metallic
properties of each surface are randomized within reasonable
ranges.

These randomization options can be freely combined. For
example, a scene can include a customized table, walls with
a ceiling, and a set of cylinder lights to simulate an indoor
environment. For details, please refer to the supplementary
materials.

E. ROBOVERSE Dataset

1) Dataset Statistics:

a) Manipulation Dataset: We migrate diverse manipula-
tion datasets from existing source benchmarks [66, 30, 88, 36,
64, 102, 109, 61, 26, 20, 29, 54, 52, 28, 23, 58, 53, 16] into
ROBOVERSE. The number of task categories, trajectories and
assets contributed by each source benchmarks is summarized
in Tab. L In total, this migration results in 276 task categories,
510.5k trajectories, and 5.5k assets. Representitive tasks with
rich domain randomization are shown in Fig. 8.

b) Navigation Dataset: We migrate vision-and-language
navigation (VLN) tasks into ROBOVERSE. Note that there exists
various VLN tasks with different settings; here, we particularly
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Fig. 8: Dataset Comparison and Gallery. Left: other representative synthetic robotics datasets. Right: the ROBOVERSE dataset.

Source Benchmark ‘ Source ‘ # Taslf # Trajectories # Assets
Simulator | Categories

ManiSkill [66, 30, 88] SAPIEN 6 19k 1.7k
RLBench [36] CoppeliaSim 80 150k 100
CALVIN [64] Pybullet 7 20k 7
MetaWorld [102] MuJoCo 5 5k 6
RoboSuite [109]&MimicGen [61] MuloCo 6 6k 12
GAPartNet [26] IsaacGym 4 4k 151
Open6DOR [20] IsaacGym 69 10k 207
ARNOLD [29] IsaacSim 6 3k 30
LIBERO [54] MuJoCo 10 15k 15
Simpler [52] SAPIEN 6 30k 52
RLAfford [28] IsaacGym 4 40k 40
GraspNet [23] - 58 200k 42
GarmentLab [58] IsaacSim 6 6k 3k
UniDoorManip [53] IsaacGym 7 1k 140
GAPartManip [16] IsaacSim 2 1.5k 42
Total | - | 276 510.5k 5.5k

TABLE I: Migration progress statistics for manipulation tasks
in ROBOVERSE

focus on VLN in continuous environments (VLN-CE) [44], as
it more closely resembles real-world scenarios [10, 105, 106].
Specifically, we construct our dataset based on ROBOVERSE by
integrating MatterPort 3D scenes [8] (90 scenes) and off-the-
shelf instructions from R2R [44] (10k episodes) and RxR [46]
(20k episodes). We provide two types of mobile embodiments,

including the Unitree Dog (a legged robot) and the JetBot (a
wheeled robot), which support different control policies. A
detailed elaboration on the navigation dataset is provided in
the supplementary materials.

c) Humanoid Dataset: We migrate HumanoidBench [84]
tasks for reinforcement learning benchmarks and integrate
tasks, policies, and data samples from Humanoid-X [62] and
SkillBlender [47]. Additionally, we re-implement the UH-1
inference pipeline within our framework. The pretrained policy
successfully enables humanoid robots to follow demonstrated
poses while maintaining stable locomotion across multiple
simulators based on ROBOVERSE.

V. ROBOVERSE BENCHMARK
A. Benchmark Overview

With the collected tasks, assets, and trajectories, ROBO-
VERSE establishes standardized benchmarks for robot learning,
including both imitation learning and reinforcement learning.
We define a unified training and evaluation protocol within the
ROBOVERSE platform and implement standardized baselines
and learning frameworks for benchmarking. Specifically, for
imitation learning, we introduce different levels of general-
ization benchmarks to assess the generalization capability of
models.



(b) Level 1

(a) Level 0

(c) Level 2

(d) Level 3

Fig. 9: Benchmark Protocol: We define a four-level generalization benchmarking protocol, allocating 90% of the data for
training and 10% for generalization evaluation. From left to right, Levels 0 to 3 corresponds to task space generalization,
environment radomization, camera randomization, lighting and reflection randomization, respectively.

B. Imitation Learning Benchmark

For each imitation learning benchmark, we establish a
standardized evaluation framework with a fixed set of demon-
strations and a controlled evaluation environment. Policies
must be trained exclusively on the provided training data and
assessed within this environment to ensure fair comparison.
To rigorously test generalization capability, we curate training
data from specific domains and evaluate policies on unseen
samples, challenging their adaptability to novel scenarios. We
systematically categorize visual generalization factors into mul-
tiple levels, including task space generalization, environment
setup generalization, camera setting generalization, and lighting
and reflection generalization. Each level introduces controlled
variations to assess a policy’s adaptability and robustness in
increasingly diverse and challenging conditions.

a) Level 0: Task Space Generalization: We establish a
controlled evaluation by standardizing the environment with
consistent camera, materials, lighting, and other parameters.
The task space, including object initialization and instructions,
is split into 90% training and 10% validation to assess
generalization within a fixed setting, as shown in Fig. 9 (a).

b) Level I: Environment Randomization: Building on the
standardized setup, we introduce scene randomization while
keeping the camera, materials, and lighting fixed [63]. By
varying house, table, and ground configurations, we create
diverse visual inputs to test robustness against environmental
changes [38]. A fixed set of predefined randomized scenes
ensures structured evaluation, as shown in Fig. 9 (b).

c) Level 2: Camera Randomization: To assess generaliza-
tion across camera variations, we introduce different viewing
heights and angles using carefully annotated, realistic camera
poses. Following the 90/10 training/testing split, we ensure
consistent and rigorous evaluation, as illustrated in Fig. 9 (c).

d) Level 3: Lighting and Reflection Randomization:
Real-world environments involve diverse materials and lighting
conditions [92]. To simulate these challenges, we randomize
lighting and reflections, curating realistic object materials and

illumination setups [17]. This enhances robustness testing under
varying conditions, as shown in Fig. 9 (d).

C. Reinforcement Learning Benchmark

In addition to imitation learning, ROBOVERSE offers a com-
prehensive reinforcement learning (RL) benchmark designed to
accommodate a diverse range of tasks, robot embodiments, and
simulation backends. Specifically, we integrate the PPO [83]
algorithm from both Stable-Baselines3 [76] and rsl_rl [80]
into our METASIM interface, enabling straightforward task
definition, seamless environment switching, and standardized
performance logging.

Building upon this infrastructure, we have successfully ported
multiple humanoid control tasks from the HumanoidBench [84]
benchmark into ROBOVERSE. Through our adapted interface
for rsl_rl [80], we have efficiently extended framework com-
patibility to support the TD-MPC2 [31, 32] algorithm from the
original benchmark while preserving implementation fidelity.

VI. EXPERIMENTAL RESULTS
A. Overview

We conduct extensive experiments to validate the effec-
tiveness and practicality of ROBOVERSE. First, we evaluate
baselines on representative tasks from various benchmark
sources to ensure the reliability of the collected datasets
and established benchmarks. This includes assessments of
both imitation learning baselines Sec. VI-B and reinforcement
learning baselines Sec. VI-C.

Then we further demonstrate the strength of the high-quality
synthetic dataset. We find that synthetic data could significantly
boost world model learning.

B. Results on the Imitation Learning Benchmark

1) Baseline and Task Selection: To genuinely reflect the
data quality of the ROBOVERSE dataset and provide a standard
benchmark for all kinds of imitation learning policy models,

'Due to resource and time constraints, we uniformly sample 20 testing
scenarios for the OpenVLA baseline.



Representative Task PickCube  StackCube CloseBox MoveSliderLeft PickChocolatePudding NutAssembly | Average

Benchmark Source ManiSkill ManiSkill RLBench CALVIN LIBERO RoboSuite -
Diffusion Policy [12] | 78M 52.7 53.8 515 76.5 50.0 7.1 48.6

ACT [107] 84M 31.7 36.7 68.3 85.0 78.3 0.0 50.0

TABLE II: Baseline Results on ROBOVERSE Imitation Learning Benchmark. We report baseline results on representative
tasks from various benchmark sources to validate the effectiveness and reliability of the ROBOVERSE benchmark.

Task and Generalization Level

MoveSliderLeft ‘

CloseBox ’ PickCube

Level 0 Level 1 Level 2 Level 3 | Level 0 Level 1 Level 2 Level 3 | Level 0 Level 1 Level 2 Level 3
Diffusion Policy [12] 765 81.3 72.0 60.0 515 42.8 20.0 104 527 111 0.0 0.0
ACT [107] 85.0 833 433 16.6 68.3 733 0.0 20.0 317 30.0 6.7 33
OpenVLA! [42] | 450 40.0 35.0 300 | 0.0 0.0 0.0 00 | 400 15.0 0.0 0.0

TABLE I1I: Generalization Performance on Imitation Learning Benchmark. This table presents the experimental results for
each generalization level in our benchmark across different tasks and methodologies. The tasks are divided into distinct levels
(Level 0, Level 1, Level 2, and Level 3) to evaluate performance under progressively challenging scenarios.

Method Simple Language-conditioned Grasping

¢ PickCube MoveSliderLeft |Object Set 1 Object Set 2 Object Set 3
OpenVLA [42]| 40.0 45.0 46.0 333 14.4
Octo [70] 50.0 30.0 42.0 14.4 22

TABLE 1V: Vision-Language-Action (VLA) Model Results
on ROBOVERSE Imitation Learning Benchmark. Con-
strained with time and resources, we report VLA models’
results on two simple tasks from ROBOVERSE and grasping
tasks with diverse and challenging language instructions. We
split 58 objects in GraspNet into three sets, each containing
progressively more challenging objects based on their geometry.

we select both prevailing specialist and generalist models
as baselines of our ROBOVERSE benchmark. Specifically,
for specialist models, we integrate ACT [107] and Diffusion
Policy [12]. For generalist models, We benchmark our approach
on OpenVLA [42] and Octo [70], both of which we fine-tuned
using our synthetic dataset. ACT is one of the most widely
used methods in bi-manual manipulation. Diffusion Policy [12]
is the first work that applies the conditional denoising ditfusion
process as a robot visuomotor policy and achieves great
generalization capabilities.

Leveraging the ROBOVERSE format and infrastructure
design, we are able to evaluate models on different tasks within
a unified platform. To fully test policy models’ performance
under versatile settings, we select one representative task from
each of the source benchmarks integrated by the ROBOVERSE
dataset as shown in Tab. II. The experiment subset
includes PickCube and StackCube from ManiSKkill [66],
CloseBox from RLBench [36], MoveSliderLeft
from CALVIN [64], PickChocolatePudding from
LIBERO [54], and NutAssembly from robosuite [109].
These tasks not only demand precise pick-and-place skills
but also require contact-rich physical interactions with
articulated objects. Through these tasks, the benchmark results
can provide a comprehensive reflection of each model’s
performance under different scenarios.

2) Implementation Details: Due to time and resource
constraints, we implement specialist and generalist models
using different strategies, and all the results are obtained under
the single-task setting. The training and evaluation settings
follow the 90/10 ROBOVERSE benchmark protocol as specified
in Sec. V-B. During evaluations, we randomly select ten task
settings from training sets and another ten from the validation
sets. The reported success rates are computed as the averages
over three random seeds.

For each step, the inputs are 256 x 256 X 3 RGB images and
a short language description depending on the task settings.
For specialist models, we train from scratch with action in
9-dim robot joint state space. For generalist models, the action
is pre-processed into delta end-effector position space from
absolute end-effector position space, and The gripper action
is discretized into binary values {0, +1}. Owing to the lack
of time and resources, we are only able to fine-tune the
generalist models in the single-task setting. During evaluations,
we employ cuRobo [86] as the inverse-kinematics solver to
transform the action to robot joint state space. Specific model
implementation details and hyperparameters are provided in
supplementary materials.

3) Experiment Results: We present the imitation learning
benchmark results in Tab. II and the generalization evaluation
in Tab. III. We further fine-tune large vision-language-action
models on both simple and complex language-conditioned
tasks, as shown in Tab. IV.

C. Results on the Reinforcement Learning Benchmark

Using Stable-Baselines3 [76] and rsl_rl [80] implementations
of PPO, we train policies on tasks from IsaacLab [65] under
consistent hyperparameters.

For additional tasks (humanoid, dexterous hand), the same
PPO-based workflow applies. We successfully migrate the
HumanoidBench [84] from MuJoCo to ROBOVERSE, enabling
training across multiple simulators (Isaac Sim and MuJoCo)
with consistent interfaces. Experiment results demonstrate



stable policy convergence across simulators, achieving compa-
rable performance to native MuJoCo baselines. Leveraging the
generalizability of rsl_rl [80], we further extend the benchmark
to support TD-MPC2 [31, 32] algorithm , which exhibits robust
training dynamics in all environments. For implementation
details, reward curve, and extended experimental results, please
refer to the supplementary materials.

D. Augmentation Experiments

To verify the effectiveness of our trajectory augmentation
API, on four representative tasks, we compare the success rates
of trained Diffusion Policy on 50 source demonstrations and
200, 1000, and 3000 generated augmentation demonstrations
under the imitation learning setting. The results presented
in Fig. 10 demonstrate a consistent improvement in model
performance as the number of generated data increases, high-
lighting both the effectiveness and scalability of the trajectory

augmentation APL

MoveSliderLeft (CALVIN)

Source-50
Generated-200

mm= Generated-1000

80 | mmm Generated-3000

60
40
20

0

PickCube (ManiSkill) StackCube (ManiSkill) CloseBox (RLBench)

Success Rate (%)

Fig. 10: Effectiveness of Trajectory Augmentation. Success
rates of policy trained with augmented dataset and source
dataset.

E. World Model Learning

Recent advances in general-purpose video generation and
interactive world models [89, 6] have shown promising progress.
Yet, the scarcity of gigantic-scale robotic datasets still impedes
the development of robust world models for a wide range
of robotic applications. In this session, we demonstrate how
synthetic data from the ROBOVERSE simulation can augment
real-world datasets to train more capable robotics world models.

When a model is trained exclusively on 50,000 episodes from
the DROID dataset [41], it generally respects action conditions
but struggles to accurately capture physical interactions between
the gripper and target objects. Notably, the objects appear
“warped” during contact with the gripper, as shown in Fig. 11.
By incorporating an additional 50,000 synthetic episodes from
ROBOVERSE to create a combined dataset of 100,000 episodes,
the model predictions improve with regard to preserving
object geometry. However, merely “watching videos” remains
insufficient for learning the intricate physical interactions in
DROID.

In contrast, training solely on the ROBOVERSE-50K or on
the DROID-RoboVerse-100K dataset and then validating on

Ground Truth Train on DROID

Trained onDROID-Roboverse

Fig. 11: Ablation Study of Action-conditioned World Model
Learning. We compare the qualitative results of an action-
conditioned world model trained on pure DROID and DROID-
RoboVerse datasets, with evaluations sampled from the DROID
dataset.

ROBOVERSE samples, we observe that the generated frames
are physically more realistic in most scenes, with details in the
supplementary materials. This improvement can be attributed
to the extensive randomization and augmentation available in
ROBOVERSE. Conversely, a model trained solely on DROID
data fails to transfer effectively to the ROBOVERSE scene. We
hypothesize that this shortcoming stems from limited samples
per scene coverage in DROID and incomplete gripper visibility
in the camera view.

F Imitating the ROBOVERSE Dataset Enables Direct Sim-to-
Real Transfer

The ROBOVERSE system seamlessly integrates a powerful
physics engine with a high-quality renderer, ensuring the
generation of realistic, high-fidelity data. To demonstrate its
potential, we conduct experiments validating its effectiveness
in direct sim-to-real transfer. As shown in Fig. 12, we fine-tune
OpenVLA [42] on the ROBOVERSE dataset and transfer the
learned policy to real-world scenarios without additional fine-
tuning. The model successfully manipulates unseen objects in
previously unseen real-world environments, showcasing the
robustness and generalization capabilities of our system. The
quantitative results on more challenging language-guided tasks,
as shown in Tab. V, further demonstrate the high success
rate of models trained on the ROBOVERSE dataset. Additional
details are provided in the supplementary materials.

G. Reinforcement Learning in ROBOVERSE Enables Sim-to-
Sim-to-Real Transfer

Large-scale parallel environments offer significant potential
for large-scale exploration and are highly effective for rein-
forcement learning (RL) tasks. However, while they provide
excellent efficiency, their accuracy may be limited in certain
scenarios [21]. To address this problem, Sim-to-sim evaluation
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Fig. 12: Sim-to-Real and Sim-to-Sim-to-Real Experiment Results. We demonstrate that learning within the ROBOVERSE
framework enables seamless direct Sim-to-Real transfer for manipulating unseen objects in new environments (imitation learning)
and Sim-to-Sim-to-Real transfer for whole-body humanoid control (reinforcement learning).

Fig. 13: Generalization of Sim-to-Sim-to-Real. This figure
shows the in-the-wild generalization ability of our lower-body
RL policy with upper-body PD control by the sim-to-sim-to-
real approach.

and fine-tuning present promising solutions [52]. As shown
in Fig. 13, ROBOVERSE platform seamlessly supports such
functionalities, enabling robust sim-to-sim and sim-to-real
transitions. We further demonstrate the effectiveness of sim-to-
sim-to-real generalization through comprehensive experiments,
highlighting the platform’s ability to bridge simulation and
real-world performance.

. Pick up Lift Grasp
GraspNet Objects Wash Soap Mouth Rinse Green Dish
Octo [70] 5.0/10.0 3.0/10.0 6.0/10.0
OpenVLA [42] 7.0/10.0 8.0/10.0 5.0/10.0

TABLE V: Direct Sim-to-Real. We fine-tune two baseline
models using demonstrations adapted from GraspNet [23]
to validate the effectiveness of the RoboVerse dataset. The
final performance score for each task is reported, where
a baseline receives 1 point for successfully grasping the
target. Additionally, we adopt the partial reward scheme from
OpenVLA [42], awarding 0.5 points when the gripper makes
contact with the target.

VII. LIMITATIONS

While ROBOVERSE provides a comprehensive and scalable
platform, several limitations remain. First, the integration of a
unified format for non-rigid objects is not yet fully supported,
which we leave for future work to develop. Additionally,
while our large-scale dataset presents significant potential for
pretraining a foundation model, this exploration falls beyond
the scope of this paper due to resource constraints. Furthermore,
despite our extensive efforts to fully reimplement and optimize
all baseline methods within the ROBOVERSE baselines, some
implementations may still be suboptimal. Qur primary goal is
not to directly compare policy performance but to demonstrate



that the system is comprehensive, supports diverse policies,
and ensures strong alignment between simulation and real-
world performance. While we have made every effort to build
a robust platform, it is inevitable that some oversights or errors
may remain. We encourage the broader research community to
contribute to maintaining and refining the baselines, fostering
collaboration to further enhance the platform’s capabilities.

ACKNOWLEDGEMENT

We thank Hanyang Zhou and Sicheng He for providing
valuable suggestions for setting up robotics hardware. We
thank Yufeng Chi and Sophia Shao for providing humanoid
robots for testing. We thank Jie Yang and Muzhi Han for
valuable discussion. We thank Koushil Sreenath for insightful
feedback. We thank Jiawei Yang, Sumeet Batra, and Gaurav
Sukhatme for their generous help. Pieter Abbeel holds concur-
rent appointments as a professor at UC Berkeley and as an
Amazon Scholar. This paper describes work performed at UC
Berkeley and is not associated with Amazon.

(1]

[6]

[8]

(9]

[10]

[11]

REFERENCES

Unai Antero, Francisco Blanco, Jon Onativia, Damien
Sallé, and Basilio Sierra. Harnessing the power of large
language models for automated code generation and
verification. Robotics, 2024.

Genesis Authors. Genesis: A universal and generative
physics engine for robotics and beyond, 2024. URL
https://github.com/Genesis-Embodied- Al/Genesis.
Tamir Blum, Gabin Paillet, Mickael Laine, and Kazuya
Yoshida. RI star platform: Reinforcement learning for
simulation based training of robots. arXiv preprint
arXiv:2009.09595, 2020.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. RT-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Jake Bruce, Michael Dennis, Ashley Edwards, Jack
Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps,
Yusuf Aytar, Sarah Bechtle, Feryal Behbahani, Stephanie
Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero,
Sherjil Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna,
Jeff Clune, Nando de Freitas, Satinder Singh, and Tim
Rocktischel. Genie: Generative interactive environments,
2024.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron M Dollar. Bench-
marking in manipulation research: The ycb object and
model set and benchmarking protocols. arXiv preprint
arXiv:1502.03143, 2015.

Angel Chang, Angela Dai, Thomas Funkhouser, Ma-
ciej Halber, Matthias Niebner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. Matterport3D:
Learning from RGB-D data in indoor environments. In
International Conference on 3D Vision (3DV), 2017.
Yuanpei Chen, Chen Wang, Yaodong Yang, and Karen
Liu. Object-centric dexterous manipulation from human
motion data. In Conference on Robot Learning (CoRL),
2024.

An-Chieh Cheng, Yandong Ji, Zhaojing Yang, Xueyan
Zou, Jan Kautz, Erdem Biyik, Hongxu Yin, Sifei Liu,
and Xiaolong Wang. Navila: Legged robot vision-
language-action model for navigation. arXiv preprint
arXiv:2412.04453, 2024.

Xuxin Cheng, Jialong Li, Shiqi Yang, Ge Yang, and
Xiaolong Wang. Open-television: Teleoperation with
immersive active visual feedback. arXiv preprint
arXiv:2407.01512, 2024.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric
Cousineau, Benjamin Burchfiel, and Shuran Song. Dit-
fusion policy: Visuomotor policy learning via action
diffusion. In Robotics: Science and Systems (RSS), 2023.
Alberto Silvio Chiappa, Alessandro Marin Vargas, Ann
Huang, and Alexander Mathis. Latent exploration for
reinforcement learning. Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Open X-Embodiment Collaboration. Open X-
Embodiment: Robotic learning datasets and RT-X mod-
els, 2023.

Erwin Coumans and Yunfei Bai. PyBullet, a python
module for physics simulation for games, robotics and
machine learning, 2016-2021.

Wenbo Cui, Chengyang Zhao, Songlin Wei, Jiazhao
Zhang, Haoran Geng, Yaran Chen, and He Wang.
GAPartManip: A large-scale part-centric dataset for
material-agnostic articulated object manipulation. arXiv
preprint arXiv:2411.18276, 2024.

Qiyu Dai, Jiyao Zhang, Qiwei Li, Tianhao Wu, Hao
Dong, Ziyuan Liu, Ping Tan, and He Wang. Domain
randomization-enhanced depth simulation and restoration
for perceiving and grasping specular and transparent
objects. In European Conference on Computer Vision
(ECCV), 2022.

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair,
Bernadette Bucher, Karl Schmeckpeper, Siddharth Singh,
Sergey Levine, and Chelsea Finn. Robonet: Large-scale
multi-robot learning. arXiv preprint arXiv:1910.11215,
2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2009.

Yufei Ding, Haoran Geng, Chaoyi Xu, Xiaomeng Fang,
Jiazhao Zhang, Songlin Wei, Qiyu Dai, Zhizheng Zhang,
and He Wang. Open6DOR: Benchmarking open-
instruction 6-dof object rearrangement and a vlm-based
approach. In International Conference on Intelligent
Robots and Systems (IROS), 2024.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd
Hester. Challenges of real-world reinforcement learning,
2019.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simu-
lation tools for model-based robotics: Comparison of
bullet, havok, mujoco, ode and physx. In International
Conference on Robotics and Automation (ICRA), 2015.
Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu
Lu. GraspNet-1Billion: A large-scale benchmark for
general object grasping. In Conference on Compiiter
Vision and Pattern Recognition (CVPR), 2020.
Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu,
Chenxi Wang, Junbo Wang, Haoyi Zhu, and Cewu Lu.
Rh20t: A comprehensive robotic dataset for learning
diverse skills in one-shot. In International Conference
on Robotics and Automation (ICRA), 2024.

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

Caelan Garrett, Ajay Mandlekar, Bowen Wen, and
Dieter Fox. Skillmimicgen: Automated demonstration
generation for efficient skill learning and deployment.
arXiv preprint arXiv:2410.18907, 2024.

Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu,
Li Yi, Siyuan Huang, and He Wang. Gapartnet: Cross-
category domain-generalizable object perception and
manipulation via generalizable and actionable parts. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

Haoran Geng, Songlin Wei, Congyue Deng, Bokui Shen,
He Wang, and Leonidas Guibas. SAGE: Bridging se-
mantic and actionable parts for generalizable articulated-
object manipulation under language instructions, 2024.
Yiran Geng, Boshi An, Haoran Geng, Yuanpei Chen,
Yaodong Yang, and Hao Dong. RLAfford: End-to-
end affordance learning for robotic manipulation. In
International Conference on Robotics and Automation
(ICRA), 2023.

Ran Gong, Jiangyong Huang, Yizhou Zhao, Haoran
Geng, Xiaofeng Gao, Qingyang Wu, Wensi Ai, Ziheng
Zhou, Demetri Terzopoulos, Song-Chun Zhu, et al.
ARNOLD: A benchmark for language-grounded task
learning with continuous states in realistic 3d scenes. In
International Conference on Computer Vision (ICCV),
2023.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling,
Xigiang Liu, Tongzhou Mu, Yihe Tang, Stone Tao,
Xinyue Wei, Yunchao Yao, et al. ManiSkill2: A unified
benchmark for generalizable manipulation skills. arXiv
preprint arXiv:2302.04659, 2023.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. In
International Conference on Machine Learning (ICML),
2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-
MPC2: Scalable, robust world models for continuous
control. In International Conference on Learning
Representations (ICLR), 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollar, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger,
and Shenghua Gao. 2D gaussian splatting for geometri-
cally accurate radiance fields. 2024.

Marcel Hussing, Jorge A Mendez, Anisha Singrodia,
Cassandra Kent, and Eric Eaton. Robotic manipulation
datasets for offline compositional reinforcement learning.
arXiv preprint arXiv:2307.07091, 2023.

Stephen James, Zicong Ma, David Rovick Arrojo, and
Andrew J. Davison. RLBench: The robot learning
benchmark & learning environment.
Automation Letters (RA-L), 2020.
Zhenyu Jiang, Yuqi Xie, Kevin Lin, Zhenjia Xu, Weikang
Wan, Ajay Mandlekar, Linxi Fan, and Yuke Zhu.

Robotics and



[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

DexMimicGen: Automated data generation for bimanual
dexterous manipulation via imitation learning. arXivy
preprint arXiv:2410.24185, 2024.

Abhishek Kadian, Joanne Truong, Aaron Gokaslan,
Alexander Clegg, Erik Wijmans, Stefan Lee, Manolis
Savva, Sonia Chernova, and Dhruv Batra. SimZ2real
predictivity: Does evaluation in simulation predict real-
world performance? Robotics and Automation Letters
(RA-L), 2020.

Pushkal Katara, Zhou Xian, and Katerina Fragkiadaki.
Gen2sim: Scaling up robot learning in simulation with
generative models. In [International Conference on
Robotics and Automation (ICRA), 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler,
and George Drettakis. 3D gaussian splatting for real-
time radiance field rendering. ACM Transactions on
Graphics (TOG), 2023.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. DROID:
A large-scale in-the-wild robot manipulation dataset.
Robotics: Science and Systems (RSS), 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong,
Thomas Kollar, Benjamin Burchfiel, Russ Tedrake,
Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea
Finn. OpenVLA: An open-source vision-language-action
model. arXiv preprint arXiv:2406.09246, 2024.
Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
et al. Segment anything. In International Conference
on Computer Vision (ICCV), 2023.

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv
Batra, and Stefan Lee. Beyond the nav-graph: Vision-
and-language navigation in continuous environments.
In European Conference on Computer Vision (ECCV),
2020.

Alex Krizhevsky, llya Sutskever, and Geoftrey E Hinton.
ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems (NeurIPS), 2012.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie,
and Jason Baldridge. Room-across-room: Multilingual
vision-and-language navigation with dense spatiotem-
poral grounding. In Annual Conference on Empirical
Methods in Natural Language Processing (EMNLP),
2020.

Yuxuan Kuang, Amine Elhafsi, Haoran Geng, Marco
Pavone, and Yue Wang. SkillBlender: Towards versatile
humanoid whole-body control via skill blending. In
CoRL 2024 Workshop on Whole-body Control and
Bimanual Manipulation: Applications in Humanoids and
Beyond.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Yuxuan Kuang, Junjie Ye, Haoran Geng, Jiageng Mao,
Congyue Deng, Leonidas Guibas, He Wang, and Yue
Wang. RAM: Retrieval-based affordance transfer for
generalizable zero-shot robotic manipulation, 2024.
Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gok-
men, Sanjana Srivastava, Roberto Martin-Martin, Chen
Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun,
et al. BEHAVIOR-1K: A benchmark for embodied ai
with 1,000 everyday activities and realistic simulation.
In Conference on Robot Learning (CoRL), 2022.
Puhao Li, Tengyu Liu, Yuyang Li, Muzhi Han, Haoran
Geng, Shu Wang, Yixin Zhu, Song-Chun Zhu, and
Siyuan Huang. Ag2Manip: Learning novel manipulation
skills with agent-agnostic visual and action representa-
tions. arXiv preprint arXiv:2404.17521, 2024.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng,
Yuxing Long, Yan Shen, Renrui Zhang, Jiaming Liu, and
Hao Dong. ManipLLM: Embodied multimodal large
language model for object-centric robotic manipulation,
2024.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier
Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa Lunawat,
Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu,
Chelsea Finn, Hao Su, Quan Vuong, and Ted Xiao.
Evaluating real-world robot manipulation policies in
simulation. arXiv preprint arXiv:2405.05941, 2024.
Yu Li, Xiaojie Zhang, Ruihai Wu, Zilong Zhang, Yiran
Geng, Hao Dong, and Zhaofeng He. UniDoorManip:
Learning universal door manipulation policy over large-
scale and diverse door manipulation environments. arXiv
preprint arXiv:2403.02604, 2024.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang
Liu, Yuke Zhu, and Peter Stone. LIBERO: Benchmarking
knowledge transfer for lifelong robot learning. arXiv
preprint arXiv:2306.03310, 2023.

Ruoshi Liu, Alper Canberk, Shuran Song, and Carl
Vondrick. Differentiable robot rendering, 2024. URL
https://arxiv.org/abs/2410.13851.

Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang
Wan, Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang,
and Li Yi. Hoid4d: A 4d egocentric dataset for category-
level human-object interaction. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.
Haozhe Lou, Yurong Liu, Yike Pan, Yiran Geng, Jianteng
Chen, Wenlong Ma, Chenglong Li, Lin Wang, Hengzhen
Feng, Lu Shi, Liyi Luo, and Yongliang Shi. Robo-GS:
A physics consistent spatial-temporal model for robotic
arm with hybrid representation, 2024.

Haoran Lu, Ruihai Wu, Yitong Li, Sijie Li, Ziyu Zhu,
Chuanruo Ning, Yan Shen, Longzan Luo, Yuanpei Chen,
and Hao Dong. GarmentLab: A unified simulation and
benchmark for garment manipulation. In Advances in
Neural Information Processing Systems (NeurIPS), 2024.
Jiangran Lyu, Yuxing Chen, Tao Du, Feng Zhu, Hui-
quan Liu, Yizhou Wang, and He Wang. Scissorbot:
Learning generalizable scissor skill for paper cutting



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

via simulation, imitation, and sim2real. arXiv preprint
arXiv:2409.13966, 2024.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel
State. Isaac gym: High performance GPU-based physics
simulation for robot learning, 2021.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Ireti-
ayo Akinola, Yashraj Narang, Linxi Fan, Yuke Zhu, and
Dieter Fox. MimicGen: A data generation system for
scalable robot learning using human demonstrations. In
Conference on Robot Learning (CoRL), 2023.

Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi,
Junjie Ye, Mingtong Zhang, Haoran Geng, Jitendra
Malik, Vitor Guizilini, and Yue Wang. Learning from
massive human videos for universal humanoid pose
control. arXiv preprint arXiv:2412.14172, 2024.

Pablo Martinez-Gonzalez, Sergiu Oprea, Alberto Garcia-
Garcia, Alvaro Jover-Alvarez, Sergio Orts-Escolano,
and Jose Garcia-Rodriguez. Unrealrox: an extremely
photorealistic virtual reality environment for robotics
simulations and synthetic data generation. Virtual Reality,
2020.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks. Robotics and Automation Letters (RA-
L), 2022.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu,
Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh,
Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck
Babich, Gavriel State, Marco Hutter, and Animesh Garg.
Orbit: A unified simulation framework for interactive
robot learning environments. Robotics and Automation
Letters (RA-L), 2023.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang,
Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei Jia, and
Hao Su. ManiSkill: Generalizable manipulation skill
benchmark with large-scale demonstrations. arXiv
preprint arXiv:2107.14483, 2021.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang,
Adeet Parikh, Aaron Lo, Abhishek Joshi, Ajay Man-
dlekar, and Yuke Zhu. RoboCasa: Large-scale simulation
of everyday tasks for generalist robots. In Robotics:
Science and Systems (RSS), 2024.

NVIDIA. vMaterials, 2024. URL https://developer.
nvidia.com/vmaterials.
NVIDIA. Isaac sim simulator, 2025. URL https:

//developer.nvidia.com/isaac/sim.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You
Liang Tan, Pannag Sanketi, Quan Vuong, Ted Xiao,
Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo:
An open-source generalist robot policy. In Robotics:
Science and Systems (RSS), 2024.

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu,
Amanda Prorok, and Angela P Schoellig. Learning
to fly—a gym environment with pybullet physics for
reinforcement learning of multi-agent quadcopter control.
In International Conference on Intelligent Robots and
Systems (IROS), 2021.

Georgios Pavlakos, Dandan Shan, Ilija Radosavovic,
Angjoo Kanazawa, David Fouhey, and Jitendra Malik.
Reconstructing hands in 3D with transformers. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran
Geng, Chunrui Han, Zheng Ge, Li Yi, and Kaisheng
Ma. ShapeLLM: Universal 3D object understanding
for embodied interaction. European Conference on
Computer Vision (ECCV), 2024.

Yuzhe Qin, Wei Yang, Binghao Huang, Karl Van Wyk,
Hao Su, Xiaolong Wang, Yu-Wei Chao, and Dietor Fox.
AnyTeleop: A general vision-based dexterous robot arm-
hand teleoperation system. 2023.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi
Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-Baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learning Research,
2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr,
Roman Ridle, Chloe Rolland, Laura Gustafson, Eric
Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas
Carion, Chao-Yuan Wu, Ross Girshick, Piotr Doll4r, and
Christoph Feichtenhofer. Sam 2: Segment anything in
images and videos, 2024. URL https://arxiv.org/abs/
2408.00714.

Pengzhen Ren, Min Li, Zhen Luo, Xinshuai Song, Ziwei
Chen, Weijia Liufu, Yixuan Yang, Hao Zheng, Rongtao
Xu, Zitong Huang, et al. InfiniteWorld: A unified scalable
simulation framework for general visual-language robot
interaction. arXiv preprint arXiv:2412.05789, 2024.

E. Rohmer, S. P. N. Singh, and M. Freese. CoppeliaSim
(formerly V-REP): a versatile and scalable robot sim-
ulation framework. In International Conference on
Intelligent Robots and Systems (IROS), 2013. URL
www.coppeliarobotics.com.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco
Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning, 2022. URL https:
/larxiv.org/abs/2109.11978.

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.
Johannes Lutz Schonberger, Enliang Zheng, Marc Polle-
feys, and Jan-Michael Frahm. Pixelwise view selection
for unstructured multi-view stereo. In European Confer-



[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

ence on Computer Vision (ECCV), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.
Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin,
Youngwoon Lee, and Pieter Abbeel. Humanoidbench:
Simulated humanoid benchmark for whole-body loco-
motion and manipulation, 2024.

Arth Shukla, Stone Tao, and Hao Su. ManiSkill-HAB: A
benchmark for low-level manipulation in home rearrange-
ment tasks, 2024. URL https://arxiv.org/abs/2412.13211.
Balakumar Sundaralingam, Siva Kumar Sastry Hari,
Adam Fishman, Caelan Garrett, Karl Van Wyk, Valts
Blukis, Alexander Millane, Helen Oleynikova, Ankur
Handa, Fabio Ramos, Nathan Ratliff, and Dieter Fox.
cuRobo: Parallelized collision-free minimum-jerk robot
motion generation, 2023.

Andrew Szot, Alexander Clegg, Eric Undersander,
Erik Wijmans, Yili Zhao, John Turner, Noah Maestre,
Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr
Maksymets, et al. Habitat 2.0: Training home assis-
tants to rearrange their habitat. Advances in Neural
Information Processing Systems (NeurIPS), 2021.
Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin,
Xander Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong
Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li,
Tongzhou Mu, Nan Xiao, Arnav Gurha, Zhiao Huang,
Roberto Calandra, Rui Chen, Shan Luo, and Hao Su.
ManiSkill3: GPU parallelized robotics simulation and
rendering for generalizable embodied Al. arXiv preprint
arXiv:2410.00425, 2024.

Movie Gen team. Movie gen: A cast of media foundation
models, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo:
A physics engine for model-based control. In Interna-
tional Conference on Intelligent Robots and Systems
(IROS), 2012.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U
Balis, Gianluca De Cola, Tristan Deleu, Manuel Gouldo,
Andreas Kallinteris, Markus Krimmel, Arjun KG, et al.
Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032,
2024.

Christine M Vaccaro, Catrina C Crisp, Angela N Fellner,
Christopher Jackson, Steven D Kleeman, and James
Pavelka. Robotic virtual reality simulation plus standard
robotic orientation versus standard robotic orientation
alone: a randomized controlled trial. Urogynecology,
2013.

Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci,
John Barnwell, Markus Gross, Wojciech Matusik, and
Jovan Popovié. Practical motion capture in everyday
surroundings. ACM Transactions on Graphics (TOG),
2007.

Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan,
Yaodong Yang, Li Yi, and He Wang. UniDex-

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Grasp++: Improving dexterous grasping policy learning
via geometry-aware curriculum and iterative generalist-
specialist learning. arXiv preprint arXiv:2304.00464,
2023.

Hanging Wang, Jiahe Chen, Wensi Huang, Qingwei Ben,
Tai Wang, Boyu Mi, Tao Huang, Siheng Zhao, Yilun
Chen, Sizhe Yang, et al. Grutopia: Dream general robots
in a city at scale. arXiv preprint arXiv:2407.10943, 2024.
Jun Wang, Yuzhe Qin, Kaiming Kuang, Yigit Korkmaz,
Akhilan Gurumoorthy, Hao Su, and Xiaolong Wang. Cy-
berDemo: Augmenting simulated human demonstration
for real-world dexterous manipulation. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2024.

Songlin Wei, Haoran Geng, Jiayi Chen, Congyue Deng,
Cui Wenbo, Chengyang Zhao, Xiaomeng Fang, Leonidas
Guibas, and He Wang. D3RoMa: Disparity diffusion-
based depth sensing for material-agnostic robotic ma-
nipulation. In Conference on Robot Learning (CoRL),
2024.

Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu,
Zikang Shan, Hao Shen, Ruicheng Wang, Haoran Geng,
Yijia Weng, Jiayi Chen, et al. Unidexgrasp: Universal
robotic dexterous grasping via learning diverse proposal
generation and goal-conditioned policy. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2023.

Xintong Yang, Ze Ji, Jing Wu, and Yu-Kun Lai. An open-
source multi-goal reinforcement learning environment
for robotic manipulation with pybullet. In Annual
Conference Towards Autonomous Robotic Systems, 2021.
Chongjie Ye, Yinyu Nie, Jiahao Chang, Yuantao Chen,
Yihao Zhi, and Xiaoguang Han. GauStudio: A modular
framework for 3D gaussian splatting and beyond. arXiv
preprint arXiv:2403.19632, 2024.

Chongjie Ye, Lingteng Qiu, Xiaodong Gu, Qi Zuo,
Yushuang Wu, Zilong Dong, Liefeng Bo, Yuliang Xiu,
and Xiaoguang Han. StableNormal: Reducing diffusion
variance for stable and sharp normal. ACM Transactions
on Graphics (TOG), 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning. In Conference on Robot
Learning (CoRL), 2019.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa
Haiderbhai, Samuel Holt, Jing Yuan Luo, Arthur Allshire,
Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo
Sterrazza, Yuval Tassa, and Pieter Abbeel. MuJoCo play-
ground: An open-source framework for GPU-accelerated
robot learning and sim-to-real transfer., 2025. URL https:
//github.com/google-deepmind/mujoco_playground.
Jialiang Zhang, Haoran Liu, Danshi Li, XinQiang Yu,
Haoran Geng, Yufei Ding, Jiayi Chen, and He Wang.
DexGraspNet 2.0: Learning generative dexterous grasp-
ing in large-scale synthetic cluttered scenes. In Confer-



[105]

[106]

[107]

[108]

[109]

ence on Robot Learning (CoRL), 2024.

Jiazhao Zhang, Kunyu Wang, Shaoan Wang, Minghan Li,
Haoran Liu, Songlin Wei, Zhongyuan Wang, Zhizheng
Zhang, and He Wang. Uni-navid: A video-based vision-
language-action model for unifying embodied navigation
tasks. arXiv preprint arXiv:2412.06224, 2024.

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze
Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu, Zhizheng
Zhang, and He Wang. Navid: Video-based vlm plans the
next step for vision-and-language navigation. Robotics:
Science and Systems (RSS), 2024.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea
Finn. Learning fine-grained bimanual manipulation with
low-cost hardware. arXiv preprint arXiv:2304.13705,
2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. Learning to prompt for vision-language
models. International Journal of Computer Vision
(1LICV), 2022.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto
Martin-Martin, Abhishek Joshi, Soroush Nasiriany, and
Yifeng Zhu. robosuite: A modular simulation framework
and benchmark for robot learning. In arXiv preprint
arXiv:2009.12293, 2020.



