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Abstract—Scaling robot learning requires data collection
pipelines that scale favorably with human effort. In this work, we
propose Crowdsourcing and Amortizing Human Effort for Real-to-
Sim-to-Real(CASHER), a pipeline for scaling up data collection
and learning in simulation where the performance scales super-
linearly with human effort. The key idea is to crowdsource digital
twins of real-world scenes using 3D reconstruction and collect
large-scale data in simulation, rather than the real-world. Data
collection in simulation is initially driven by RL, bootstrapped
with human demonstrations. As the training of a generalist policy
progresses across environments, its generalization capabilities
can be used to replace human effort with model-generated
demonstrations. This results in a pipeline where behavioral data
is collected in simulation with continually reducing human effort.
We show that CASHER demonstrates zero-shot and few-shot
scaling laws on three real-world tasks across diverse scenarios.
We show that CASHER enables fine-tuning of pre-trained policies
to a target scenario using a video scan without any additional
human effort.

1. INTRODUCTION

Robot learning has the potential to revolutionize decision-
making for robots by leveraging data to learn behaviors de-
ployable in unstructured environments, showing generalization
and robustness. Critical to the success of robot learning,
beyond the algorithms and model architectures, is the training
data. As in most machine learning, getting the “right” type,
quality, and quantity of data holds the key to generalization.
Robot learning is still grappling with the question of what the
right type of data and how to obtain it at scale. The type of
data we can train on is inherently tied to the abundance of this
data - good data is both high-quality and abundant. This paper
proposes a system for obtaining this diverse, high-quality data
at superlinear scale with sublinear human effort.

Unlike vision and language, data for learning is not available
passively - there are relatively few robots that are already
finding use in the world. This makes applying the same recipes
we did in vision and language challenging, necessitating more
careful consideration of how and where this data comes from.
One option is to rely on teleoperation to collect this data.
This approach is inherently limited by human effort, since the
cost to collect data scales linearly with human involvement.
Recent work [16, 30, 2] has attempted to scale the amount
of teleoperation data however the quantity of data collected
is still orders of magnitude smaller than the scale at which
vision and language models show emergent capabilities.

So where might we find data that scales superlinearly
with human effort? Simulation offers a potential solution, at

face value providing free data up to the limit of computing.
However, this hides a significant cost - scene, task, and
reward creation per domain is non-trivial, and even with scenes
generated, behaviors are costly to obtain. This suggests that
despite the promise, simulation data isn’t quite free of cost, and
requires considerable amounts of human efforts for content and
behavior creation per environment. While it is possible to gen-
erate random environments procedurally, generating thousands
of environments randomly is unlikely to cover the distribution
of “natural environments”, and generating behaviors randomly
is unlikely to lead to success.

In this work, we propose a method to scale up continual
data collection, ensuring human effort amortizes sublinearly
with the number of environments. Our key idea is to leverage
simulation for data scaling without the corresponding increase
in content and behavior creation effort. For content scaling,
we utilize 3D reconstruction methods, shifting the burden
from designers to non-expert users and cheap data collection.
For behavior generation, we employ techniques that leverage
model generalization to reduce the required human data over
time. The insight is that as we go across many simulated
environments, models will show some levels of generalization.
This generalization can be leveraged to continually reduce
the amount of human data needed as new environments are
encountered. CASHER (1) creates a data flywheel, where data
begets more data through model generalization.

Our contributions include 1) a novel continual data collec-
tion system based on real-to-sim-to-real for training generalist
policies, 2) a novel scanned deployment fine-tuning technique
for improving the accuracy of a generalist policy on a target
environment without additional human demonstrations, 3) a
detailed analysis of the scaling laws for zero-shot performance
of our generalist policies, 4) evaluation of the few-shot per-
formance of the resulting generalist policies.

II. RELATED WORK

Large Scale Data Collection for Robotics: Learning from
real-world demonstrations has proven effective [6, 46, 29].
To facilitate this, various studies have focused on improving
hardware to ease the data collection process for teleoperators
[46, 7, 43]. Efforts have also scaled up the volume of data from
real-world demonstrations [30, 16, 2], staying nevertheless
in the low-data regime. Moreover, real-world data collection
is costly, requiring expert supervision and physical robots,
which limits scalability. CASHER, instead, trains entirely
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Fig. 1.
zero-shot transfer and scanned fine-tuning capabilities.

in simulation, using real-world scans obtained via standard
smartphones. Additionally, while traditional teleoperation data
collection scales linearly with human effort, CASHER reduces
the human effort needed for subsequent learning steps by
leveraging the knowledge acquired during training.

Autonomous Learning: To improve scalability of robot
learning and reduce the amount of human demonstrations
required, the field has explored autonomous data collection
and learning methods. One approach is reinforcement learn-
ing (RL) in the real world [21, 19], but the standard RL
techniques’ need for resets poses scalability issues, as it
requires either human supervision or substantial engineering
efforts for automating resets. Reset-free reinforcement learning
[1, 45, 37, 11] offers a promising alternative, but it still
requires occasional human intervention and struggles with
high sample complexity for learning more challenging tasks,
making it hard to learn in the real-world. Autonomous learning
in the real world presents significant challenges that are
mitigated in simulation, where resets are manageable and data
collection is more abundant. In CASHER, we exploit these
advantages of simulation while minimizing the sim-to-real gap
through real-to-sim scene transfers. Continual learning also
faces challenges, such as catastrophic forgetting, as discussed
in prior work [18]. We address this by decoupling the policy
used to generate trajectories, which is fine-tuned with RL,
from the final generalist policy, which is trained with imitation
learning over the entire dataset.

Prior work studies how to autonomously collect data in
simulation by starting from a set of demonstrations and making
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Overview of CASHER, we propose a system for training generalist policies leveraging real-to-sim simulation on crowdsourced scans. These have

certain assumptions to augment them [22]. These assumptions
are limiting such as free-space movement through linear
interpolation between human-annotated subtasks, rigid objects,
or object-gripper-centric demonstrations. These assumptions
fail in tasks involves circular motion or moving objects in
clutter, where avoiding collisions is crucial. Other works
leverage VLMs to provide reward functions in simulation [42];
however, the policy exploits the physics in unrealistic ways
that do not transfer to the real world. CASHER addresses
these challenges by using human demonstrations to induce
more natural, transferable behaviors, and solves tasks with
RL, which removes the required assumptions and makes our
method more scalable.

Procedural and Synthetic Data Generation: Creating
realistic environments for robot learning in simulation is a
significant challenge. To address this, prior work has proposed
using large language models (LLMs) or heuristics to generate
scene plans resembling the real world [40, 9, 26, 42], or
utilizing real-world scans to replicate actual scenes [10, 5].
Despite reducing human involvement, these methods often
produce scenes that are unrealistic in appearance or object
distribution, such as failing to accurately simulate real-world
clutter. Generating procedurally accurate training environ-
ments remains an open challenge. However, extracting digital
twins from the real world mitigates this issue, as scans
reflect the actual test distribution. Relevant to our work, [44]
automates the creation of simulatable environments from real-
world scans, which could be integrated into our pipeline to
scale up environment crowdsourcing. Once the environments



are available, generating valid robot trajectories that solve the
task is another challenge. An option becomes procedurally
generating the motions using motion planning techniques [12].

Real-to-Sim-to-Real Transfer for Robotics: Real-to-sim-
to-real techniques have proven effective in learning robust
policies for specific scenarios with minimal human supervision
[39, 41]. However, these policies often fail to generalize to
different scenarios, requiring significant human effort for each
new environment. In this work, we address this limitation
by learning generalist policies through a novel technique
that amortizes the number of human demonstrations through
training. Other research has tackled various challenges in real-
to-sim-to-real, such as enhancing simulator accuracy with real-
world interaction data [23, 35, 3], and automatically generating
articulations from images [5, 14, 27]. These complementary
advancements make simulators more realistic and could reduce
human effort further in CASHER. Additionally, real-to-sim
techniques have shown promise in their use for simulated
evaluation of real-world policies [20].

III. AMORTIZED DATA SCALING FOR LEARNING
GENERALIST POLICIES THROUGH REAL-TO-SIM-TO-REAL

This work presents CASHER, a pipeline for large-scale
continual data collection for robotic manipulation. The pri-
mary challenge for data scaling in the realm of robotics is
the absence of “passive”, easy-to-collect data from naturally
occurring, inadvertent sources, as iS common in vision and
language. While procedural generation in simulation can pro-
vide large amounts of data, the distribution and diversity
of the data does not overlap with real-world environments.
In this work, we argue that a multi-task, multi-environment
real-to-sim-to-real pipeline can enable large-scale data gen-
eration, by leveraging model generalization to scale human-
effort sublinearly as increasing numbers of environments are
encountered. This is opposed to typical human teleoperated
data collection that requires considerable expertise, physical
infrastructure and suffers from linear scaling in human effort.
This approach enables the scaling laws necessary for large
scale data collection and training of robotic foundation models,
showing non-trivial zero-shot generalization performance as
well as cheap and efficient fine-tuning in new environments.
CASHER consists of three elements - 1) fast, accessible
digital twin generation with 3-D reconstruction methods, 2)
multi-environment model learning that amortizes the data col-
lection process through autonomous data collection and model
generalization, 3) efficient fine-tuning in new environments
using 3-D scans, and minimal human demonstrations.

A. Real-to-Sim Scene Synthesis

Our proposed data collection pipeline adopts a real-to-sim-
to-real approach, building digital twins of real-world scenes in
simulation and collecting behavioral data in these simulations
instead of the real world. This method offers several advan-
tages - 1) data collection does not require a physical robot
setup, and hence can occur in a broader variety of realistic

environments 2) it allows for safe, decentralized, and asyn-
chronous data collection 3) digital twins capture the complex-
ities of real-world scenarios more accurately than procedurally
generated simulations. These advantages are crucial to the
democratization and scalability of data collection as it is scaled
up to thousands of non-experts and real environments beyond
the lab. We leverage easily accessible mobile software[8, 32]
for scene reconstruction from sequences of images to easily
crowdsource simulated environments !. These environments
indicate the geometry, visuals and physics of diverse real-
world scenes in simulation but do not have any demonstrations
of the desired optimal behavior. We discuss how this can be
obtained efficiently in the following section.

B. Amortized Data Collection

Algorithm 1 CASHER: Amortized Data Collection for Gen-
eralist Policies

1: Input: Human demonstrator H, crowdsource humans C

2: Initialize vision-based generalist policy mg

3: while True do

4. Sample set of K digital twins from crowdsourced

humans {Exy1,Ex42,---,E1} ~C

s: T+ {}

6: for & in EK,5K+1,---;52K do
7: Te < RolloutPolicy(&;, 7a)
3
9

T <« T UFilterSuccessfulRollouts(7c)
. 7 < RLFinetuning(7,{€x11,Ex 22, .-, &K })
10 Tp <+ {}
11:  F < FailedEnvironments({Ex+1,Ex+2, ...,k },7Ts)
122 for &; in F do
13: Tr < T, U CollectDemos(&;, H)
14 7 <+ PPORLFinetuning(F, 7p)

15 7wg < TeacherStudentDistillation(&, 7, ms, 7h)

Given the diversity of realistic simulation scenes available
through the digital twin pipeline outlined in Section III-A,
learning generalizable decision-making policies requires a
large training set of visuomotor trajectories demonstrating
optimal behavior for each distinct environment. Two natural
alternatives for obtaining these trajectories are: 1) human-
provided demonstrations and 2) optimal policies trained via
reinforcement learning 2. While tabula-rasa reinforcement
learning can provide a robust set of trajectories with extensive
state coverage without expensive human intervention, it faces
considerable challenges related to exploration and reward
design. On the other hand, human demonstrations avoid these
issues but are expensive to collect at scale.

A natural solution is to use sparse-reward reinforcement
learning bootstrapped with human demonstrations [39, 13,

'We provide further details about the real-to-sim pipeline in Appendix
VII-A, including how to stage these scenes, articulate them quickly and so
on.

2QOther techniques such as trajectory optimization or motion planning may
be applicable as well
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Fig. 2. Overview of the proposed continual data collection system for amortizing human data collection.

3413, This approach balances human effort for data collection
and reward specification with state-space coverage. However,
scaling it up to hundreds or thousands of scenes becomes
tedious, as the required human effort increases linearly with
the number of environments. In this work, we learn a gener-
alist multi-environment policy to amortize the cost of human
data collection across environments. We demonstrate that the
capacity of such a multi-environment model to display non-
trivial generalization allows the cost of continual human data
collection to decrease as the number of training environments
increases.

This system, formally stated in the Algorithm 1 and depicted

2, 2,
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While human demonstrations are used to bootstrap the data
generation and training of the first iteration of the generalist
policy mg on the first K environments, our key insight
is that if mg shows non-trivial level of generalization on
visuomotor deployment in the next i simulation environments
- k41, .- -, &2k, then this policy mg can be used to collect
simulated demonstrations 7 = Tr11,TK41,2;---,T2K,N»
where N is the number of demonstration for bootstraping RL,
in place of a human demonstrator. We do so by deploying the
visuomotor policy 7w (at|o) using perceptual observations o
such as RGB point clouds, but since we are in the simulation
we collect T with paired data of visual observations o;, actions
a; and low-dimensional privileged Lagrangian state s;. These
privileged state-based trajectories enable the usage of efficient
demonstration-bootstrapped reinforcement learning of a state-
based policy 7, rather than operating from high-dimensional
perceptual observations. See Eq 1 and Appendix VII-B1 for

3We refer readers to Appendix VII-BI for details of demonstration boot-
strapped reinforcement learning
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>
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in Fig. 2, divides the total number of environments into
batches of size K. For the first batch of K environments
&1,&9,...,Ek, we have a multi-environment visuomotor pol-
icy mg randomnly initialized with no generalization capabil-
ities. Thereafter, we initialize it with data from the first X
environments, using reinforcement learning bootstrapped with
human-provided demonstrations. Demonstration bootstrapped
RL produces optimal visuomotor trajectories per environment
D, that are then distilled into a single perception-based, gen-
eralist multi-environment policy mg with visuomotor policy
distillation [4] (Appendix VII-B2).

mo(as|st)

T o (at |St)

Ay, clip( 1 —e, 1 +e)ds)

Tl (at |St)

(Vo(se) — Vi) ++ > logmg(ails;)
(si,ai)ET

ey

the state-based policy update using PPO [36] with a BC loss,
where A; is the estimator of the advantage function at step ¢
[36], and V, is the learned value function.

T can be used to obtain a single robust, state-
covering optimal multi-environment policy 7+ (a:|s:) for all
Ex+1,--.,E K via demonstration-bootstrapped reinforcement
learning. Nevertheless, in some environments, the policy may
still perform poorly due to the occasional low-quality demon-
strations from mwg. To address this, we define the set of
environments where 75 achieves below r success rate as F C
{€k,EKx+1, .. ., Eak }. For these environments F, we fall back
to querying the human demonstrator for high-quality demon-
strations and learn a second state-based policy 745 (a;|s;) using
demonstration-bootstrapped reinforcement learning on F.

The two learned policies ms; and 755 can then be used
for generating data on {Exi1,Ek42,...,E2x \F and F
respectively with these new trajectories being added into D.
Then, a visuomotor policy can be trained by fitting D on the
first 2K environments with supervised learning (see Appendix
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VII-B2 for implementation details).

@)

TG ¢ max E(0;,0:)~D [log mag(ailoi)]

Then the process repeats for the next K environments.
As the visuomotor generalist policy mg is trained across
more environments, it demonstrates increasingly non-trivial
generalization, gradually replacing the human demonstrator
in more environments. This reduces the amount of human
effort required for data collection as training progresses.
Importantly, the generalization across environments does not
need to achieve perfect success rates but should be sufficient
to bootstrap a demonstration-augmented policy learning algo-
rithm (Equation 1). This suggests an interesting scaling law
- data collection becomes more human-efficient as training
progresses, eventually becoming self-sustaining. For a detailed
outline of the practical data collection pipeline, refer to Algo-
rithm 1.

C. Fine-tuning of Generalist Policies on Deployment

The generalist policies mwg(a¢|o;) pretrained in Section
III-B, show non-trivial generalization across environments but
may not achieve optimal performance in any one environment
upon zero-shot deployment. However, these generalist policies
can serve as a starting point for efficient fine-tuning at test
time. In this section, we present an alternative for fine-tuning
generalist policies mo(a;|o;) during deployment. We make the
observation that we can follow the same procedure as model-
bootstrapped autonomous data collection during training de-
scribed in Section III-B. Given a scanned digital twin £y of
the testing environment in simulation, the pre-trained multi-
environment model 7 (a¢|o;) shows some non-trivial zero-
shot generalization, but may not achieve optimal performance
in Ees. By executing the visuomotor policy wg(atlor) in
Eest, We collect a dataset of only successful trajectories T
consisting of (o¢, as, s¢) tuples in simulation, without the need
for any external human intervention. This model-generated
data can then be used to train a robust, high-coverage state-
based policy 7s(as|s:) using demonstration-bootstrapped re-
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inforcement learning (Eq 1). Finally, for real-world transfer
from visual observations this state-based policy 7s(az|s:) is
distilled into a “fine-tuned” visuomotor policy ¢ ¢(at|ot), by
collecting a set of successful rollouts D with m,(a;|s;) and
fine-tuning the previously obtained generalist policy 7 (a:|o;)
as in Eq 2. This approach allows the model to retain the
generalist capabilities of mg while achieving high success in
&iest- Importantly, this fine-tuning step is accomplished using
only a video scan of the environment, without the need for
human-provided demonstrations or feedback in the physical
environment. (See Algorithm 2, in Appendix VII-C1). Finally,
in the Appendix VII-C2, we propose a second technique
involving few-shot supervised fine-tuning using a limited set
of human-provided demonstrations.

1V. EXPERIMENTAL EVALUATION

Our experiments are designed to answer the following
questions: (a) What are the scaling laws of CASHER? (b)
How much can we amortize the quantity of human data needed
through learning without a loss in performance? (c) What are
the few-shot/scanned fine-tuning capabilities of the learned
generalist policies? (d) Do these scaling laws hold across
different tasks? (e) Do these generalist policies extrapolate to
multi-object environments when trained with single object?

To answer these questions, we design two different tasks:
placing bowls/mugs/cups in sinks and placing boxes in shelves.
We use a single-arm manipulator, the Franka Research 3 arm
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results on the task of pick and place mug/bowl/cups in the sink

with 7 DoF and a parallel jaw gripper, see Appendix XII.
We crowdsourced environment data collection, obtaining (a
maximum of ) 56 and 36 different scenes for the two tasks,
respectively. We evaluated the policies across two institutions
on 8 and 2 real-world scenes not included in the training set.
Further details on the hardware setup and tasks are provided
in Appendix VIII and XII.

A. Zero-Shot Scaling Laws Analysis

In this section, we analyze the zero-shot performance of
multiple generalist policies trained with varying amounts of
training environments on the task of put a mug/bowl/cup in
a sink. For fair comparison, we train these policies using
human demonstrations in each environment. In Section IV-B,
we compare this baseline to the autonomous data collection
system presented in Section III-B.

The first experiment involves a thorough real-world eval-
uation of these policies across two institutions, using three
different kitchens and six different objects, with six rollouts
each (a total of 108 rollouts per policy). As shown in Figure
3 a, we confirm the real-to-sim-to-real pipeline scaling law:
as the number of trained environments increases, the zero-
shot success rate also increases, reaching a 62% when trained
on 56 environments. Furthermore, Figure 3 b shows a linear
correlation between simulation and real world performance,
indicating that our real-to-sim-to-real scaling approach in sim-
ulation proportionally corresponds to improved performance in
the real world.

To verify the robustness of the learned policies, we ran
evaluation on eight additional kitchens. The results highlight
an improvement of 16% to 60% rate as the number of
training environments increased from 9 to 56 (Figure 3 c).
Figure 8 shows a sample of the objects and environments
used for evaluation. Finally, we stress-tested against other
types of robustness (Figure 3), including extreme lighting
changes, clutter and physical disturbances, and observed that
the policies suffer a drop in performance but keep obtaining
success rates above 30% (see Appendix XI-B). On the same
lines we evaluate the policy on multiple objects in the scene
and observe that even though it was only trained to pick up
one object, it still succeeds 10% of the times to clean a scene
with 3 objects (See Figure 5 and Appendix XI-A).

)pen Cabinet Few-Shot

Object-to-Sink Multi-Object
Evaluation

nessee BC (10 demos)
Qurs
30

zis

Success Rate
5
S
—
'_

=

-

[ 5 10 1 2 3
Training environments Number of placed objects

left: results for few-shot fine-tuning on the task of pick and place a box on a shelf middle: results opening a cabinet right: multi-object evaluation

B. Amortized Human Data Needed Through Continual Data
Collection

In this section, we evaluate the amortization of number of
human demonstrations needed as learning progresses across
multiple environments. We compare two approaches: our
proposed system using continual data collection performed
in four sequential batches of 10 environments each, and
another baseline providing human demonstrations for each
environment individually. The evaluation is conducted in a
single real-world kitchen with six different objects for the task
of put a bowl/mug/cup in a sink, performing 6 rollouts per
object. Figure 4(a) shows that the performance per number
of demonstrations significantly increases as the policy starts
developing generalization. Specifically, as shown in Figure
4(b), the quantity of human demonstrations needed decreases
as the policy improves with each subsequent batch. Although
CASHER shifts the burden to compute rather than human
effort, Figure 4(c) indicates that the compute required de-
creases as well when scaling up the system, since the success
rate of the generalist policy is higher, the number of trials
performed to reach the same number of successful rollout
decreases. Finally, we observe that the performance of the
continually learned policy is higher than of the policy learned
solely from human demonstrations. We hypothesize that this
is due to the multimodality in behaviors from the human
demonstrations. When the policy autonomously collects the
data, behaviors remain closer to those already learned, whereas
human-provided demonstrations may introduce more variabil-
ity, making learning harder.

C. Fine-Tuning of Generalist Policies

Unsupervised scanned deployment fine-tuning: To eval-
uate the efficacy of unsupervised fine-tuning through a scan
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Fig. 6. Fine-tuning results. left: CASHER successfully improves its
performance fine-tuning autonomously on a scanned deployment environment.
right: Few-shot fine-tuning on 10 demos we can significantly improve the

performance of the generalist policy on the target scene.



(Section III-C), we select two scenes for the task of placing
a mug/cup/bowl in a sink where the policy trained on 36
environments performs poorly (£ 20%). We then apply the
scanned deployment fine-tuning algorithm as described in
Section III-C. As shown in Figure 6, this results in an average
performance increase of 55% without any additional human
demonstrations.

Few-shot supervised fine-tuning: We select three envi-
ronments where the base policy trained on 36 environments
performs poorly (<£20%). We then collect 10 demonstrations
for each environment and apply the few-shot fine-tuning pro-
cedure described in Section III-C. This fine-tuning improves
the performance of the base policy by an average of a 54% in
success rate.

D. Analysis of CASHER on More Tasks

We attempt to solve two additional tasks, putting a box on a
cabinet and opening a cabinet. The first is a more complicated
manipulation task since it requires more precise grasping to
not make the box fall, and the second shows how our proposed
method works for articulated objects (see Appendix VII-A
where we give more details on how the proposed real-to-sim
pipeline can handle articulated objects). In these two tasks,
we focus our analysis on few-shot fine-tuning as described in
Section III-C. For putting a box on a cabinet, we crowdsourced
36 environments, collected 10 demonstrations for each of
three scenes, and reported the performance after fine-tuning
with 10 demos. For opening a cabinet, we crowdsource
10 environments, collect 10 demonstrations for a new test
environment and report the performance after fine-tuning with
these demos. In Figure 5, we show the performance increases
with the number of training environments, without reaching a
saturation point. Fine-tuning the policy trained on 36 and 10
environments respectively resulted in a significant performance
improvement of 36% and 30% compared to the imitation
learning baseline, which had a 0% success rate. We expect
the performance of the generalist policies to keep improving
as we have not reached a saturation point.

V. CONCLUSION

In this work, we present a system for scaling up robot
learning through crowdsourced simulation. We showed that
through the learning of visual generalist policies, we are
able to scale across environments with decreasing amounts of
human effort. The resulting policies are shown to transfer to
the real world, enabling both zero-shot and finetuning results.

Limitations: While with this work we demonstrate superlin-
ear scaling of data with respect to human demonstrations, the
burden shifts to compute. And even though we have shown
a reduction in compute time with scaling, it still exceeds
the time required for collecting real-world demonstrations.
Additionally, training in simulation poses challenges, as not
all real-world objects can be accurately simulated yet, such
as liquids and deformable objects. However, contrary to the
human teleoperation efforts, with advancements in compute
resources and simulator research, systems like CASHER will

benefit from these and further improve scalability. Conclusion:
This work presents CASHER, a real-to-sim-to-real system
that trains generalist policies with sublinear human effort. This
research paves the way for building robotic foundation models
in simulation with larger datasets and enhanced robustness.
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APPENDIX

In the Appendix, we will cover the following details of our

work.

e Method Details Appendix VII: Details about amortized
data collection algorithms, real-to-sim transfer, and au-
tonomous data collection used for fine-tuning and teacher-
student distillation.

o Task Details Appendix VIII: Details of tasks used for
evaluating CASHER.

« Implementation Details Appendix IX: Specification of
hyper-parameters used in the network architectures, point-
cloud processing, and dataset used in CASHER.

¢ Detailed Evaluation Result Appendix XI: Detailed re-
sults of the evaluation, including robustness experiments,
adding disturbance and distractors.

« Hardware Setup Appendix XII: Specification for hard-
ware setup used for training and evaluating CASHER.

« Crowdsourcing Appendix XIII: Specification for crowd-
sourcing real-world 3D scans.

« Compute Resources Appendix XIV: Specifications for
compute resources used for data collection, training, and
evaluating CASHER.

VII. METHOD DETAILS
A. Real-to-Sim Transfer of Scenes

Unlike prior work [39, 5], our goal is not to accurately
master a single environment, but rather to train a generalist
agent capable of generalizing to new, unseen environments. To
obtain a wide distribution of scenes with a variety of layouts,
colors, and lighting conditions, We developed our general
purpose, an easy-to-use, real-to-sim pipeline that supports the
crowdsourcing contribution of 3D scans (See Figure 7 for
an overview of the GUI [39]). Digital twins are obtained
directly from real-world videos or image sequences using
photogrammetry methods such as Gaussian splatting [15]
and neural radiance fields [24]. High-fidelity 3D meshes can
be scanned in under five minutes using off-the-shelf mobile
software such as Polycam [32] and ARCode [8]. In Table I,
we show the low average time needed to create a scene with
different configurations. This easy-to-use software running on
standard, commercial mobile phones enables crowdsourcing of
real-world scans from non-experts worldwide with minimal
instruction. The crowdsourced scenes demonstrate a natural
distribution of clutter, scene layouts, colors, lighting condi-
tions, and positional variations.

These real-world scans are then easily transferred into a
photo-realistic physics simulator, Issac Sim [28], using an
easy-to-use GUI for scene articulation and curation [39]. This
flexible interface accommodates various scene complexities,
from static to highly articulated environments. Using the GUI,
we also add objects of interest (bowl/mug/cup for putting the
object into the sink, box for putting the box in the cabinet)
into the scene, and additional sites to mark the position of the
sink and cabinet.

With the scene and the object rendered inside the simu-
lation, we use teleoperation with a keyboard to collect 10

demonstrations for each articulated environment. There are 14
different discretized actions to choose from, corresponding to
two directions in all spatial axes and rotational axes, and open
and close the gripper. See Appendix VIII for details.

3D reconstruction

Articulated USD

Scene reconstruction GUI )

{NeRFStudio, ARCode, (
Polycam)

Tt s Addjin
A

-

Fig. 7. Overview of the GUI used for this project, it allows to extract a 3D
mesh from a video, articulate the scene and export it in USD format.

B. Autonomous Data Collection

1) Multi-task bootstrapped RL fine-tuning:: Given a set 7
of 10 demonstrations on each one of the digital twin scenes in
the batch, and an easily defined sparse reward across all tasks,
we leverage the current capabilities of fast multi-environment
training on GPUs and accurate simulators to do RL fine-tuning
using PPO [36] to obtain a policy that is more robust to object
poses, corrections, and disturbances than if we simply learned
from the demos. In addition, this multi-scene policy is being
trained from privileged state space, since this removes the
need for rendering, making the amount of simulated parallel
environments higher, and training becomes faster since we
can use bigger batch sizes. Finally, we observe that although
equivalent in theory, training across multiple scenes instead of
a single environment at a time per GPU in practice brings a big
speedup in training. With the available resources (training on
a 3090 RTX NVIDIA GPU) our experiments are run with 10
different scenes in parallel spread across 2048 environments,
and even though the total training time is the same as for a
single scene, the policy now works across 10 scenes which
corresponds effectively to a 10x speedup.

2) Teacher-student distillation: In the previous RL fine-
tuning step, we obtained a state-based policy that works
across the whole batch of environments. However, in the real
world, we do not have access to this privileged state of the
environment such as object poses. For this reason, we need
our policy to take as input a state representation available in
the real world. We decide to use colored point clouds as the
sensor modality. Thereafter, we use teacher-student distillation
techniques to distill the obtained policies into 7. This consists
of for each one of the scenes we use the working state-based
policy to collect a set of 1000 trajectories. Out of the 1000
trajectories, 500 of them are rendered from two cameras in
simulation and 500 are synthetically generated by sampling
from the meshes, making the point cloud fully observable.
In practice, the synthetically generated point clouds make
learning with point clouds as input much smoother even for the
camera-rendered point clouds. Due to the significant amount of
data available, our experiments go up to 56 environments with



Task  Scanning Scene Scanning Objects

Scene

Setting Up Object-to-Sink

Setting Up
Object-to-Cabinet Scene

Setting Up Open Cabinet
Scene (Articulated)

Time 3 min 15 sec 4 min 50 sec

1 min 30 sec

1 min 30 sec 3 min

TABLE I
AVERAGE TIME NEEDED TO SET UP DIFFERENT KINDS OF SCENES WITH THE PROPOSED REAL-TO-SIM PIPELINE.

Fig. 8. Overview of a selected number of scenes and objects used for the
real-world evaluation of the task of placing bowls/mugs/cups in the sink.

1000 trajectories each, there are some important implementa-
tion details for the point cloud policy that make this learning
feasible. The size of the dataset is 56000 trajectories with
on average 120 steps per trajectory, making the total dataset
size to be 6,720,000 state-action pairs. This dataset of point
clouds does not fit into memory, thereafter, we need to employ
different techniques to keep balanced batches. We store all
of the data in disk and for every batch, we query around 5
trajectories per environment and load them all in memory.
Then we iterate over this new batch in mini-batches as big as
the GPU can hold and keep accumulating gradients to avoid
the GPU running out of memory. Finally, additional details
are explained in Appendix IX-A2. We avoid catastrophic
forgetting by retaining the data from previous batches during
distillation.

C. Fine-tuning

1) Scanned Deployment Fine-tuning: In this section, we
clearly define the algorithm for the scanned deployment fine-
tuning 2

Algorithm 2 Scanned-deployment fine-tuning

1. Input: a generalist policy 7, a digital twin of an envi-
ronment £

2. T < {}

3: while |7] < 10 do

4: T < RolloutPolicy (€, 7q)

T < T U FilterSuccessfulRollouts(7.)

7s < RLFinetuning(7, &)

7g < TeacherStudentDist(&, FreezeEncoder(ng), 7s)

o B A

2) Few-shot Supervised Fine-tuning:: The second proposed
fine-tuning technique involves using small amounts of human-
provided real-world demonstrations for few-shot supervised
fine-tuning. We fine-tune the generalist policy 7¢;(a¢|o:) using
supervised learning on a dataset of human-collected visuomo-
tor demonstrations D), via standard maximum likelihood as
shown in Eq 2.

Architecturally, this involves freezing the preliminary “vi-
sual processing” layers and fine-tuning only the final fully-
connected layers of the pretrained generalist network mg. As
we show in Section IV-C, this straightforward fine-tuning
procedure can yield significant performance improvements
with a small number of real-world demonstrations.

VIII. TASK DETAILS

In this section of the appendix, we describe the specification

of each task for training and evaluating CASHER. For each
task, the state space consists of the concatenation of the fol-

lowing state information: object positions, object orientations,
DOF positions of the tool normalized to its max and min
ranges, end-effector orientation, and end-effector position. The
action space consists of one of the 14 discretized actions,
corresponding to the end effector delta pose. In specific, the
14 actions include the following: 6 actions in position change,
corresponding to +0.03m change in each axis; 6 actions in
orientation change, corresponding to +0.02 radian change in
each axis; 2 actions corresponding to gripper open and close.
We define a sparse reward function for each task in PPO
training:
« Put object into sink: success =
||sink_site — object_site||» < 0.25
&& condition(object_upright) && condition(gripper_open)
« Put object into cabinet: success =

cabinet_z_axis < object_z_axis && condition(object_upright)

&& condition(gripper_open)
« Open cabinet: success =
cabinet_joint > 0.65 && condition(gripper_open)

A. Simulation details

We used the latest physics-accurate with photorealistic ren-
dering simulation platform, Isaac Sim [28] for our simulation
task training. Our environment codebase is inspired by the
Orbit codebase [25], a unified and modular framework for
robot learning built upon Isaac Sim.

For the simulation parameters of the environment, we use
the default value set by the GUI, except we change the
collision mesh of the scene from convex decomposition to
SDF mesh with 256 resolution to reflect high-fidelity collision
mesh. For all the other objects, we use the default value, which
is convex decomposition with 64 hull vertices and 32 convex
hulls as the collision mesh for all objects. We keep all the
physical parameters of the environment as default in the GUL
The default value of physical parameters for all objects are
as follows: dynamic and static frictions of all objects as 0.5,
the joint frictions as 0.1, and the mass as 0.41kg. See Table
I for task-specific randomization parameters, Table III for



Fig. 9. Examples of simulated environment used for RL fine-tuning. The top
ones correspond to environments for the obj2sink task and the bottom ones
correspond to environments for the obj2cabinet task.

task-specific camera parameters, and Figure 9 for examples
of simulated scenes.

IX. IMPLEMENTATION DETAILS
A. Architecture Details

1) State-based policy: As described in Section III-B, we
trained a series of state-based policies with privileged informa-
tion in simulation. The policy model is a simple Multi-Layer
Perceptron (MLP) network, with input as the privileged state
in simulation as specified in VIII and outputs a probability
distribution of 14 classes, corresponding to the probabilities
for each discrete end-effector action. To implement PPO with
the BC loss algorithm, we built upon the Stable Baselines 3
repository [33]. The size of the MLP network is a mix of two
sizes: two layers of size 256 and 256, and three layers of size
256, 512, and 256. See Table IV for more details.

2) Point cloud policy: As mentioned in Section III-C,
when distilling the state-based teacher policy to a fine-tuned
visuomotor policy, we will train a point cloud policy as the
student. We train an MLP network of size 256,256, that takes
the embedding of the point cloud observation, which has 128
dimensions, together with the state of the robot (end-effector
scaled pose, position, and orientation), that has 9 dimensions,
as the input, and a probability distribution of 14 actions as
output. To encode the point cloud observation, we use the
volumetric 3D point cloud encoder proposed in Convolutional
Occupancy Networks [31], which consists of a local point net
that converts the point cloud to 3D features, followed by a
3D U-Net that output a dense voxel of features. The output
features are then pooled by a max pooling layer and an average
pooling layer separately, with the pooling output concatenated
into the resulting encoding of dimension 128. We base our
code in [39].

X. BASELINE COMPARISONS WITH LARGE SCALE REAL
WORLD DATA COLLECTION

We deployed two of the state-of-the-art robot models trained

on the Open X-Embodiement dataset [30] consisting of more
than 800k real-world trajectories: OpenVLA[17], a vision-

language-action model consisting of fine-tuned Llama 2 7B

fine-tuned and Octo[38], a pre-trained transformer based dif-
fusion policy.

We provided RGB images and language instructions as
inputs to the model and evaluated the model zero-shot on the
task of moving an object to sink. While neither of the two
models successfully completes the task, OpenVLA performs
qualitatively better than Octo (see the additional material
videos).

We then collected 10 demos and fine-tuned the Octo policy
with these. However, we observe that the performance for
finetuned Octo still yields zero success, with qualitatively
better performance than the zero-shot result.

These results, presented in Table V, show that zero-shot and
few-shot performance on the tasks that we are tackling in this
paper is not solved yet. It also shows the need for much more
data to be collected in order to solve these tasks in a variety
of scenarios. Thereafter providing evidence of the benefits of
CASHER and of leveraging data from simulation to scale up
the robot data collection.

XI1. DETAILED EVALUATION RESULTS

We conducted experiments involving disturbance and dis-
tractors for putting the object into the sink task to study the
robustness of the generalist policies. The experiments include
multi-object scenarios, dim lighting scenarios, messy kitchen
scenarios, and disturbance scenarios.

A. Evaluation on Multi-Object Scenes

In this section, we study the extrapolation and robustness
capabilities of the learned generalist policies by evaluating
them on tasks involving multi-object scenes. Specifically, the
robot needs to pick and place multiple objects into the sink
sequentially, even though it was trained on single objects. We
evaluated this by allowing the robot six trials to place the three
objects in the kitchen into the sink. As shown in Figure 5,
despite not being trained for multi-object, the policy succeeds
80% of the time in placing two objects and 10% in placing
all three objects sequentially.

B. Evaluation on Scenes Involving Disturbance and Distrac-
tors

In the dim lighting scenario, there is minimal lighting in the
scene, while the robot is only trained in the environment with
sufficient lighting. The robot was able to complete the task
successfully into the sink for 30% of all trials. See Figure 10
for the experimental setup.

In the messy kitchen scenario, dirty dishes and tableware
are sitting in the sink, closely mimicking the realistic setting
of a household kitchen sink. The robot is only trained in an
environment with a clean sink. The robot was able to complete
the task successfully into the sink for 30% of all trials. See
Figure 10 for the experimental setup.

In the human disturbance scenario, the experimenter pushes
the object the change its position during the evaluation process.
The robot is able to complete the task successfully into the sink
for 50% of all trials. See Figure 10 for the experimental setup.



Task Episode Randomized Position Position Orientation Orientation
length Object Ids Min (x,y,z) Max (x,y,z) Min (z-axis) Max (z-axis)
obj2sink 135 [Background, Object] [[-0.1,-0.1,-0.1], [[0.1,0.1,0.1], [-0.3, -0.3] [0.3, 0.3]
[-0.1,-0.1,0]] [0.1,0.1,0]]
obj2cabinet 150 [Background, Object] [[-0.1,-0.1,-0.05], [[0.1,0.1,0.05], [-0.1, -0.15] [0.1, 0.15]
[-0.1,-0.1,0]] [0.1,0.1,0]]
TABLE II
SPECIFIC SIMULATION PARAMETERS FOR EACH TASK.
Task Position (x,y,z) Rotation (quat) Crop Min Crop Max Size
Parameters Camera Camera Camera Camera Image
obj2sink [-0.01, -0.50, 0.69], [0.84,0.33, -0.15, -0.41], [-0.8,-0.8,-0.3] [0.8, 0.8, 1.0] (640,480)
[-0.01, -0.50, 0.69] [-0.42.-0.22,-0.39,0.79]
obj2cabinet  [-0.01, -0.50, 0.69], [0.84, 0.33, -0.15, -0.41], [-0.2, -0.5, -0.5] [1.5, 05, 1.5] (640,480)
[-0.01, -0.50, 0.69] [-0.42, -0.22, -0.39, 0.79]
TABLE III
CAMERA PARAMETERS FOR EACH TASK.
MLP layers PPO n_steps PPO batch size PPO BC batch size PPO BC weight Gradient Clipping
256,256 or 256, 512, 256  Episode length 31257 32 0.1 5
TABLE IV

STATE-BASED POLICY TRAINING PARAMETERS. THE REST OF THE PARAMETERS ARE THE DEFAULT AS DESCRIBED IN STABLE BASELINES 3[33].

Method CASHER Imitation Learning (point OpenVLA (zero-shot RGB) Octo (zero-shot RGB) Octo (fine-tuned RGB)
clouds)

Success Rate 62 L5 10£5 0+0 0+0 0+0

TABLE V
BASELINE COMPARISON WITH LARGE SCALE REAL-WORLD DATA COLLECTION POLICIES.
# of Env distilled  Kitchen Ids Bowl right of the Bowl left of the sink Mug right of the Mug left of the sink Overall
sink sink

9 Kitchen 1 66.7% 0% 22.2% 0% 22.2%

9 Kitchen 2 66.7% 0% 11.1% 0% 19.4%

9 Kitchen 3 41.7% 0% 16.7% 0% 14.6%

36 Kitchen 1 55.6% 55.6% 22.2% 22.2% 38.9%

36 Kitchen 2 44.4% 333% 22.2% 22.2% 30.6%

36 Kitchen 3 13.3% 46.7% 20.0% 60.0% 35.0%

56 Kitchen 1 55.6% 55.6% 44.4% 66.7% 64.8%

56 Kitchen 2 77.8% 333% 55.6% 22.2% 472%

56 Kitchen 3 58.3% 83.3% 66.7% 91.7% 75.0%
TABLE VI

ZERO-SHOT SUCCESS RATE FOR PUTTING AN OBJECT TO SINK TASK. WE TESTED DIFFERENT TYPES OF OBJECTS SUCH AS BOWLS, MUGS, AND CUPS.

‘WE EVALUATED THE POLICY BY PLACING THE OBJECT ON EITHER SIDE OF THE SINK.



Num. Env distilled  Num. demos Kitchen Ids

Object type Success rate

0 (IL) 10 Kitchen 1
36 10 Kitchen 1
0 (IL) 10 Kitchen 2
36 10 Kitchen 2
0 (IL) 10 Kitchen 3
36 10 Kitchen 3
0 (IL) 10 Kitchen 3
36 10 Kitchen 3

Bowl 10.0%
Bowl 70.0%
Mug 10.0%
Mug 70.0%
Mug 10.0%
Mug 60.0%
Bowl 10.0%
Bowl 60.0%

TABLE VII
IMITATION LEARNING BASELINE AND FEW-SHOT SUPERVISED FINE-TUNING SUCCESS RATE FOR PUTTING AN OBJECT TO SINK TASK.

Num. Env distilled  Num. demos Kitchen Id Success rate for grasping Success rate for placing
0 (IL) 10 Kitchen 1 0.0% 0.0%
16 10 Kitchen 1 10.0% 0.0%
26 10 Kitchen 1 60.0% 20.0%
36 10 Kitchen 1 80.0% 30.0%
0 (IL) 10 Kitchen 2 0.0% 0.0%
16 10 Kitchen 2 10.0% 0.0%
26 10 Kitchen 2 20.0% 20.0%
36 10 Kitchen 2 30.0% 30.0%

TABLE VIII
IMITATION LEARNING BASELINE AND FEW-SHOT SUPERVISED FINE-TUNING SUCCESS RATE FOR PUTTING AN OBJECT TO CABINET TASK. WE RECORDED
BOTH THE SUCCESS RATE FOR GRASPING THE OBJECT AND PLACING THE OBIJECT IN THE CABINET.

Generalist policy
success rate

Num. objects successfully
placed in the sink

Imitation Learning
baseline success rate

Average
num. of episodes

1 100.0% 0.0% 1.6
80.0% 0.0% 35
3 10.0% 0.0% 4
TABLE IX

MULTI-OBJECT SCENARIO EVALUATION. AS SHOWN IN FIG X, THREE OBJECTS ARE PLACED IN THE SCENE. THE POLICY IS ROLLED OUT FOR 6
EPISODES IN TOTAL. THE TABLE SHOWS THE SUCCESS RATE FOR THE AVERAGE NUMBER OF EPISODES IT TAKES TO PLACE A CERTAIN NUMBER OF
OBIJECTS INTO THE SINK.

Fig. 10.

Overview of the experiment setup for evaluating the robustness
capacity of the generalist policy. upper left: multi-object scenario. upper right:
dim lighting scenario. bottom left: messy kitchen scenario. bottom right:
human disturbance scenario. See Table X for success rate.

XII. HARDWARE SETUP

Real-world experiments are run on two different Panda
Franka arms. Both of the Panda Franka arms are mounted
on mobile tables, and run the same experiments, but they are
located in two different institutions and therefore have access
to different real-world kitchen settings.

We mount two calibrated cameras per setup to obtain depth
perception to create an aligned point cloud map for vision-
based policies. In particular, we use the two Intel depth
Realsense cameras D435i for both setups. See Figure XII for
more details on the robot setup.

XIII. CROWDSOURCING

We source the kitchen scans from both expert and non-
expert users. For placing the object-to-sink task, we collected



Scenario name Generalist policy success rate Imitation Learning success rate baseline

Dim lighting scenario 30.0% 0.0%

Messy kitchen scenario 30.0% 10.0%

Human disturbance scenario 50.0% 0.0%
TABLE X

SUCCESS RATE FOR VARIOUS DISTURBANCE AND DISTRACTOR SCENARIOS.

HELP US BRING ROBOTS
TO YOUR HOME!

Please help scan your kitchen so this robot can one day help
out with your household chores!

-
§33

DOWNLOAD POLYCAM APP PS
Works on any iPhone! Just < polycam

search for it in the app store

R - j SCAN YOUR KITCHEN
Open the app. If you're iPhone is LiDAR-enabled (if you have a

Pro model), its preferred to use a LIDAR scan. Otherwise,
. . . . . . . hoto-scans work too!
Fig. 13. Geographical distribution of crowdsourcing contributors. g
* Make sure theres some empty space on the platform
below and the cabinet shelf!

Hit the record button and start capturing different angles
around your opened cabinet & platform until you hit
around 30-50 snapshots.

Realsense D435i

* See example real-world setup on the right!

EXPORT YOUR RENDER
If your render is looking something like the example on the

right, go ahead and send it over to us!

Realsense D435i

« Be careful to check if there are holes that appear in cabinet
shelf! If there are, try scanning again. Sometimes it helps to
have better lighting :)

* Hit the download icon in the top right of the render page,
and export as GLTF. Share the export with the sender of this
flyer, or send to the email listed at the bottom

YOUR HELP IS GREATLY APPRECIATED!

Fig. 12. Poster used for calling crowdsourcing contribution.

Fig. 11. Overview of the hardware used to evaluting CASHER. left: used policies on 29 sink scenes, of which 22 were collected through
to evaluate in Kitchen 2 in both tasks. right: used to evaluate in Kitchen 1 crowdsourcing. For putting the object to cabinet task, we

and 3 in putting objects to sink and Kitchen 1 in putting box to cabinet. .. . .
Priting o) priing collect policies on 26 cabinet scenes, of which 18 are collected
through crowdsourcing. Figure 12 shows the poster we use

for crowdsourcing and Figure 13 shows the geographical
distribution of the crowdsourcing contributors.

XIV. COMPUTE RESOURCES

We run all the experiments on an NVIDIA GeForce RTX
3090, an NVIDIA GeForce RTX 3080, and an NVIDIA RTX
A6000. The first step of RL fine-tuning is to use the GUI to
create a task environment from a crowdsourced kitchen scan
and collect a set of 10 demonstrations in simulation using
teleoperation, which takes 1 hour per environment on average.
We leverage a distributed research computing cluster to run the
RL fine-tuning, where we request an NVIDIA Quadro RTX
6000, and it takes an average of 20 hours to converge. Finally,
during the teacher-student distillation step, it takes 4 hours on
average to collect the simulation trajectories 2 hours to collect
the synthetic trajectories, and 5 days to distill into the vision
policy.



