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Abstract—Global localization is a fundamental capability re-
quired for long-term and drift-free robot navigation. However,
current methods fail to relocalize when faced with significantly
different viewpoints. We present ROMAN (Robust Object Map
Alignment Anywhere), a global localization method capable of lo-
calizing in challenging and diverse environments by creating and
aligning maps of open-set and view-invariant objects. ROMAN
formulates and solves a registration problem between object
submaps using a unified graph-theoretic global data association
approach with a novel incorporation of a gravity direction prior
and object shape and semantic similarity. This work’s open-
set object mapping and information-rich object association al-
gorithm enables global localization, even in instances when maps
are created from robots traveling in opposite directions. Through
a set of challenging global localization experiments in indoor,
urban, and unstructured/forested environments, we demonstrate
that ROMAN achieves higher relative pose estimation accuracy
than other image-based pose estimation methods or segment-
based registration methods. Additionally, we evaluate ROMAN as
a loop closure module in large-scale multi-robot SLAM and show
a 35% improvement in trajectory estimation error compared to
standard SLAM systems using visual features for loop closures.
Code and videos can be found at https://acl.mit.edu/roman.

1. INTRODUCTION

Global localization [1] refers to the task of localizing a
robot in a reference map produced in a prior mapping session
or by another robot in real-time, i.e., inter-robot loop closures
in collaborative SLAM [2]. It is a cornerstone capability for
drift-free navigation in GPS-denied scenarios. In this paper,
we consider global localization using object- or segment-level
representations,” which have been shown by recent works [3—
6] to hold great promise in challenging domains that involve
drastic changes in viewpoint, appearance, and lighting.

At the heart of object-level localization is a global data
association problem, which requires finding correspondences
between observed objects and existing ones in the map without
an initial guess. Earlier approaches such as [7-10] rely on
geometric verification based on RANSAC [11], which ex-
hibits intractable computational complexity under high outlier
regimes. Recently, graph-theoretic approaches [4, 12-16] have
emerged as a powerful alternative that demonstrates superior
accuracy and robustness when solving the correspondence
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Fig. 1: Pair of segment submaps matched by two robots traveling in
opposite directions in an off-road environment. Associated segments
found by the proposed method are connected by lines and projected
onto the image plane. (Top) Each pair of associated segments is
drawn with the same color. The remaining, unmatched segments
are shown in random colors and all other background points are
shown in gray. (Bottom) The same associated segments and their
convex hulls are visualized in the original image observations. Further
visualization is shown in the supplementary video.

problem. In particular, methods based on consistency graphs
[12-16] formulate a graph where nodes denote putative object
correspondences and edges denote their geometric consisten-
cies. The data association problem is then solved by extracting
large and densely connected subsets of nodes yielding the
desired set of mutually consistent correspondences. While
segment-based matching has become an established strategy
for loop closures, prior approaches were largely demonstrated
in indoor/structured settings [17], with limited object varia-
tions, or with accurate lidar sensing [9, 16, 18]. In contrast,
we focus on unseen environments (i.e., we do not make
assumptions about the type of environment in which we
operate), noisy segmentations, extreme viewpoint changes
(Fig. 1), and RGB-D only sensing. Our key claim is that the
proposed work is the only method that performs reliably in
such extreme regimes and clearly outperforms state-of-the-art
segment-based [11, 12, 19] and visual-feature-based [20, 21]
methods in global localization tasks.

Performance in these challenging scenarios is made possible
by extending graph-theoretic data association to use infor-
mation beyond mutual (pairwise) geometric consistency. We
enhance the representational richness of association affinity



metrics by developing a unified formulation that incorporates:
(1) open-set semantics, extracted as semantically meaningful
3D segments [22, 23] with descriptors obtained from vision-
language foundation model, CLIP [24]; (ii) segment-level
geometric attributes, such as the volume and 3D shapes of
segments that provide additional discriminative power; and
(iii) an additional prior about gravity direction that is readily
available from onboard inertial sensors.

Contributions. We present ROMAN (Robust Object Map
Alignment Anywhere), a robust global localization method in
challenging unseen environments. In detail, ROMAN consists
of the following contributions:

1) A graph-theoretic data association formulation with a
novel method to incorporate segment-level similarities
computed using CLIP descriptors and geometric at-
tributes based on shape and volume. When gravity direc-
tion is known, a gravity-direction prior is also utilized.
Our method implicitly guides the solver to correct 3D
segment-to-segment associations in challenging regimes
when object centroids alone are insufficient for identify-
ing correct associations (e.g., due to repetitive geometric
structures or scenes with few distinct objects)

2) A pipeline for creating open-set 3D segment maps from a
single onboard RGB-D camera, using FastSAM [23] for
open-set image segmentation and CLIP [24] for comput-
ing open-set feature descriptors. These maps compactly
summarize the detailed RGB-D point clouds into sparse
and view-invariant representations consisting of segment
locations and metric-semantic attributes, which enable
efficient and robust global localization.

3) Extensive experimental evaluation of the proposed
method using real-world datasets (see Fig. 1) that in-
volve urban, off-road, and ground-aerial scenarios. Our
approach improves pose estimation accuracy by 45% in
challenging, opposite-view global localization problems.
When using ROMAN rather than visual features for inter-
robot loop closures in multi-robot SLAM, our method
reduces the overall localization error by 8% on large-scale
collaborative SLAM problems involving 6-8 robots and
by 35% on a subset of particularly challenging sequences.

II. RELATED WORKS

Object-based maps are lightweight environment represen-
tations that enable robots to match perceived objects with
previously built object maps using object geometry or se-
mantic labels as cues for object-to-object data association.
Compared to conventional keypoints extracted from visual or
lidar observations, object- or segment-level representations are
more stable against sensor noise and viewpoint, lighting, or
appearance changes, which often cause visual feature-based
methods to fail [25]. Furthermore, these representations are
lightweight and efficient to transmit, an important criterion for
multi-robot systems. In this section, we review related methods
for using object maps for global localization and SLAM.

Object SLAM. To incorporate discrete objects into SLAM,
sparse maps of objects are described with geometric prim-

itives such as points [26], cuboids [27] or quadrics [28].
SLAM++ [3] trains domain-specific object detectors for ob-
jects like tables and chairs. Choudhary ez al. [29] use objects as
landmarks for localization, providing a database of discovered
objects. Lin ef al. [30] showed that semantic descriptors can
improve frame-to-frame object data association. Recent works
[6, 31] further leverage open-set semantics from pre-trained
models. Other methods [32, 33] combine the use of coarse
objects for high-level semantic information with fine features
for high accuracy in spatial localization. Object-level mapping
also conveniently handles dynamic parts of an environment
which can be naturally described at an object level [34, 35].

Random sampling for object-based global localization.
Object-level place recognition may be performed by an ini-
tial coarse scene matching procedure (e.g., matching bag-of-
words descriptors for scenes [36]) but is commonly solved
in conjunction with the object-to-object data association by
attempting to associate objects and accepting localization
estimates when object matches are good [5, 37]. Object-to-
object data association may be solved by sampling potential
rotation and translation pairs between maps [6] or object
associations [7-10] using RANSAC [11]. Random sampling
methods often require significant computation for satisfactory
results and the probability of finding correct inlier associations
diminishes exponentially as the number of outliers grows [38].

Graph matching for object-based global localization.
Recently, graph-based methods have emerged as a fast and
accurate alternative for object data association. Objects are
represented as nodes in a graph with graph edges encoding
distance between objects [4, 37, 39]. Data association can be
performed by matching small, local target graphs with the prior
map graph using graph-matching techniques.

Maximal consistency for object-based global localiza-
tion. Different from graph-matching methods, consistency
graph algorithms use nodes to represent potential associations
between two objects in different datasets, and edges to encode
consistency between pairs of associations. Data associations
are found by selecting large subsets of mutually consistent
nodes (associations), which can be formulated as either a
maximum clique [13-16] or densest subgraph [12] problem.
The work by Dubé et al. [16] is one of the early works that
performs global localization by finding maximum cliques of
consistency graphs. Ankenbauer er al. [40] leverage graph-
theoretic data association [12] as the back-end association
solver to perform global localization in challenging outdoor
scenarios. Matsuzaki et al. [41] use semantic similarity be-
tween a camera image and a predicted image to evaluate
pairwise consistency. Thomas ef al. [5] use pre-trained, open-
set foundation models for zero-shot segmentation in novel
environments for open-set object map alignment. Our method
extends these prior works by incorporating object-to-object
similarity and an additional pairwise association prior used
to guide the optimization to correct associations.

Inter-Robot Loop Closures for Collaborative SLAM.
In the context of multi-robot collaborative SLAM (CSLAM),
our approach serves to detect inter-robot loop closures that



fuses individual robots’ trajectories and maps. State-of-the-
art CSLAM systems [42-—46] commonly adopt a two-stage
loop closure pipeline, where a place recognition stage finds
candidate loop closures by comparing global descriptors and
a geometric verification stage finds the relative pose by
registering the two keyframes. To improve loop closure ro-
bustness, Mangelson et al. [13] proposes pairwise consis-
tency maximization (PCM) which extracts inlier loop closures
from candidate loop closures by solving a maximum clique
problem. Do et al. [47] extends PCM [13] by incorporating
loop closure confidence and weighted pairwise consistency.
Choudhary et al. [48] performs inter-robot loop closure via
object-level data association; however, a database of 3D object
templates is required. Hydra-Multi [49] employs hierarchical
inter-robot loop closure that includes places, objects, and
visual features summarized in a scene graph.

III. ROMAN

We now give an overview of the ROMAN global local-
ization method. The core idea behind this work is that small,
local maps of objects near a robot give rich, global information
about the robot’s pose in a previously mapped area. To
leverage this information, ROMAN uses a mapping module
to create object submaps and a robust data association module
to associate objects in the robot’s local map with objects seen
by another robot or mapping session (see Fig. 3).

Our mapping pipeline begins with open-set image segmen-
tation to extract initial observations of objects. Then, object
observations are aggregated into an abstract object map. While
we initially represent mapped objects with a dense point
cloud, once the robot has moved on from an area, objects
are abstracted to a single point and a feature descriptor,
making our world representation communication- and storage-
efficient. A submap centered around a robot’s pose and con-
taining nearby sparse, abstract objects is then created and
used for global localization. Using local 3D segments, global
localization can be achieved by matching objects in a local
submap with objects from another robot or session. This is
accomplished using our robust object data association method
that leverages segment geometry, semantic information, and
the direction of gravity to correctly associate objects. Our
view-invariant global localization formulation enables global
localization even in cases when maps were created by robots
traveling in opposite directions. We first describe ROMAN’s
object data association method in Section IV and then present
our approach for creating open-set object maps in Section V.

A. Notation

We use boldfaced lowercase and uppercase letters to de-
note vectors and matrices, respectively. We define [n] =

{1,2,...,n}. For any n € N and x1,...,z, € R, we use
GM(xy,...,z,) = (I 1351) " to denote the geometric mean
of xy,..., :cn, and GM(x) to denote the geometric mean of

the elements of the vector x. For any vectors x ,y € R™, their

cosine similarity is denoted as cos_sim(x, y) £ m We

FAY
define the element-wise operation ratio(x,y) = min(3, ),

Promoted Associations Penalized Associations

8
g
5
w

Fig. 2: Visuvalization of improved affinity metrics. The gravity-
based distance score, sgviy promotes pairs of associations that are
consistent with the direction of gravity, while Sgape and Ssemantic are
used to encourage individual associations to be consistent in terms
of geometric shape and semantics respectively.

where min and % are also performed element-wise. We use
T§ € SE(3) to denote the pose of frame F; with respect to
frame F,.

IV. ROBUST OBJECT DATA ASSOCIATION

While our data association method can be used for gen-
eral point cloud registration, we focus on the problem of
associating objects between two local object submaps for
global localization. We first detail submap alignment for global
localization in Section I'V-A then briefly review fundamentals
in graph-theoretic data association in Section IV-B before
describing the proposed affinity metrics for object association
in Sections IV-C to IV-E.

A. Submap Alignment

We consider a pair of submaps AM; and M; which are
associated with gravity-aligned poses TZM and TJ . Each
submap M; = {p1,...,pm,;} where p; is a 3D segment,
represented by a 3D point in the gravity-aligned map frame
Fam, and a feature vector containing shape and semantic
attributes (object feature descriptors are discussed in greater
detail in Section IV-D). We formulate global localization as
the problem of estimating the transformation ’i‘; which relates
the two local frames /; and F;. To accomplish this, we
attempt to associate objects in M; with objects in M ;. After
finding these associations, Tﬁi can be computed using the
closed-form Arun’s method [50], enabling the relation between

frames J; and JF; given that T; = T, TM TJ

Thus, the core challenge in this global local1zat10n setup is
to correctly associate segments, a challenging task in the
presence of uncertainty, outliers, and geometric ambiguity. To
this end, we construct a novel map-to-map object association
method leveraging a graph-theoretic formulation incorporating
the direction of gravity within maps and object shape and
semantic attributes.
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Fig. 3: ROMAN employs a front-end mapping module to create maps of open-set objects, representing each object with its centroid and
feature descriptor. Local collections of objects are grouped into submaps and used for global localization by matching objects between two
submaps. Accurate data association is achieved using a graph-theoretic formulation which leverages object shape and semantic similarity

and a gravity prior.

B. Preliminaries: Graph-Theoretic Global Data Association

We follow the formulation used by CLIPPER [12] by first
constructing a consistency graph, G, where each node in
the graph is a putative association a, = (p;,p;) between
a segment p; € M; and a segment p; € M. Edges are
created between nodes when associations are geometrically
consistent with each other. Specifically, given two putative
correspondences a, = (p;,p;) and ag = (g;,¢q;), CLIPPER
declares that a, and a, are consistent if the distance between
segment centroids in the same map is preserved, i.e., if
d(ay,ag) 2 ||le(ps) — c(a:)]| — lle(ps) — clqy)] | is less than
a threshold €, where c(-) € R3 is centroid position of a
segment. In this case, a weighted edge between a, and a4

2
7% d(a];,;zq) ) Intu_

itively, sq(ap,aq) € [0,1] scores the consistency between two
associations, and € and ¢ are tuneable parameters expressing
bounded noise in the segment point representation.

Given the consistency graph G, a weighted affinity matrix
M is created where M, ; = sq(ap, aq) and M, , = 1. CLIP-
PER determines inlier associations by (approximately) solving
for the densest subset of consistent associations, formulated as
the following optimization problem,

u' Mu
u'u (1

subject to  u,u, = 0if M, , = 0, Vp, ¢,

is created with weight s, (a,,a,) £ exp (

max
ue{0,1}»

where 1, is 1 when association a,, is accepted as an inlier and
0 otherwise. In the following sections, we describe methods to
improve affinity metrics. Given our construction of M, we then
use CLIPPER’s solver to find inlier associations u. See [12]
for more details.

C. Improving affinity metrics: general strategies

In its original form, the affinity matrix M in Equation (1)
relies solely on distance information between pairs of cen-

troids. However, when applied to segment maps, unique
challenges are introduced that are often not faced in other
point registration problems (e.g., lidar point cloud registration),
including dealing with greater noise in segment centroids (e.g.,
due to partial observation) and few inlier segments mapped
in both M; and M, which can lead to ambiguity when
performing segment submap registration. To address these
problems, other works [5, 51] have proposed pre-processing or
post-processing methods that leverage additional information
such as segment size and gravity direction to filter incorrect
object associations or reject returned inlier associations if they
result in an estimated ’i‘§ that is inconsistent with gravity.

In comparison to works that use prior information in pre-
processing or post-processing steps which may discard valu-
able information, ROMAN directly incorporates gravity and
object similarity into the underlying optimization problem
in Equation (1). The key to our approach is to extend the
original similarity metric to (i) use additional geometric (e.g.,
volume, spatial extent) and semantic (e.g., CLIP embeddings)
attributes to disambiguate segments, and (ii) directly incorpo-
rate knowledge of the gravity direction (when available) to
guide the data association solver.

Consider the putative association a, = (p;, p;). Intuitively,
if objects p; and p; are dissimilar, then the association a,
is less likely to be correct, which should be represented in
the data association optimization formulation of Equation (1).
Given a segment similarity score s,(a,) comparing objects
p; and p;, [12] and [52] suggest setting the diagonal entries
of M to reflect object similarity information, e.g., by setting
M, , = s,(ap); however, expanding the numerator of Equa-
tion (1) shows that this approach has limited impact,

u' Mu = Yipeln) (Mpypuz + Xgemnl,ap (Mpyqupuq)) -

As the dimension of M increases, the number of off-diagonal
terms (pairwise association affinity terms) increases quadrati-



cally and will quickly dominate the overall objective function.
Alternatively, [47] and [4] propose multiplying the association
affinity score by s,(+) so that M, ; = sq(ap, aq)So(ap)so(aq).
While this gives segment-to-segment similarity a significant
role in the registration problem, the elements of M are skewed
to be much smaller resulting in many fewer accepted in-
lier associations. To incorporate segment-to-segment similarity
without significantly diminishing the magnitudes of the entries
of M, we instead propose using the geometric mean,

M, ¢ = GM(sa(ap, aq), so(ap), so(aq))- (3)

The use of geometric mean in merging scores of potentially
different scales is well-studied in the field of operation re-
search [53]. It was shown that, under reasonable assumptions,
the geometric mean is the only averaging function that merges
scores correctly [54, 55]. With this insight in mind, we incor-
porate additional information into the optimization problem (1)
through careful designs of s4(-,) and s,(-), which will be
explained in the subsequent subsections. An ablation study on
fusion methods is presented in Section VI-F.

D. Improving affinity metrics: incorporating metric-semantic
segment attributes

In this subsection, we design the segment-to-segment sim-
ilarity score s,(-) by comparing geometric and semantic
attributes of the mapped segments (visualized in Fig. 2).
From the relatively dense point-cloud representation created
for online mapping, a low-data shape descriptor and the
averaged semantic feature descriptor are extracted for each
3D segment. These descriptors are compared using a shape
similarity scoring function sshape( -} and a semantic similarity
SCOTE Ssemantic(+), Which we present next. The final segment-to-
segment similarity score s,(-) is set to be the geometric mean
of those two scores.

a) Semantic similarity metric: To incorporate semantic
information, we define the segment-to-segment semantic sim-
ilarity score by taking the cosine similarity of their CLIP
descriptors: Seemantic (ap) = cos_sim(CLIP(p;), CLIP(p;)). We
observe that the cosine similarity score of pairs of CLIP
embeddings from images is usually higher than (0.7, which
does not allow semantic similarity to play a significant role in
determining data associations in Equation (1). We propose to
rescale the cosine similarity score using hyperparameters ¢y,
and ¢y, so that scores less than ¢, are set to 0, scores
larger than ¢y, are set to 1, and scores between ¢y, and
¢max are scaled linearly so that they range from O to 1.

b) Shape similarity metric: 'To incorporate segment
shape attributes, we define a segment-to-segment shape simi-
larity score:

Sehape (@p) = GM (ratio(f(p:), £(p;))) , “)

where f(p) returns a four-dimensional vector of the shape
attributes of p and is defined as follows. For each segment
p, £1(p) is the volume of the bounding box created from the
point cloud of segment p, and f2(p), f3(p), and £4(p) denote
the linearity, planarity, and scattering attributes of the 3D

points computed via principle component analysis (PCA). The
interested reader is referred to [56] for details. The scoring
function Ssnape(-) € [0,1] allows direct feature element-to-
element scale comparison. Intuitively, if one element is much
larger than the other, the score will be near 0, while if the
element is very similar in scale, Sgap. Will be close to 1.
E. Improving affinity metrics: incorporating gravity prior
We additionally address implicitly incorporating knowledge
of the gravity direction in the global data association formu-
lation. Due to the geometric-invariant formulation of Equa-
tion (1), the solver naturally considers registering object maps
as a 6-DOF problem. Often in robotics, an onboard IMU
makes the direction of the gravity vector well-defined, so we
are only interested in transformations with x, y, 2z, and yaw
components. Because the optimization variable of Equation (1)
18 a set of associations rather than a set of transformations, it is
not immediately clear how to leverage this information within
the optimization problem, motivating the post-processing re-
jection step from [5]. In this work, we propose a method to
leverage this extra knowledge within the data association step
by replacing s, (-, ) with a redesigned pairwise score metric,
sgmhy( -, ), to guide the solver to select pairs of associations
that are consistent with the direction of the gravity vector.
Specifically, we represent this prior knowledge of the gravity
vector by decoupling computations in the z-y plane and along
the z axis:

1 d?: (ap’aq) dz(ap,aq)
Sqlap,aq) =exp [ —z y2 5 ; (5)
2 50'2 50'2
where

doy(ap, ag) =|l[€ay(pi) = Cay(@)ll — l[€ay(ps) — caylgy)ll |
d-(ap, aq) = (cx(pi) —e2(a:)) — (e=(p;) —c2(g;)) |-

In effect, this prohibits selecting pairs of associations where
the vertical distances between objects within the same submap
are dissimilar, as visualized in Fig. 2. It is important to note
that we use the difference in the z-axis since we have direc-
tional information from the gravity vector while we only use
distance in the x-y plane. The directional information helps
further disambiguate correspondence selection in scenarios
where distance information is insufficient.

V. OPEN-SET OBJECT MAPPING

This section describes ROMAN’s approach to creating
open-set object maps used for global localization in diverse
environments. A map containing accurate and concise metric-
semantic, object-level information is important for accurate
object-based global localization. However, creating such a
map has historically been difficult due to the need for an
object classifier. Using recent zero-shot open-set segmentation,
object-level environment information can easily be extracted
from each image, but aggregating this information is difficult
due objects or groups of objects being segmented incon-
sistently between views, occluded object observations, and
drift in robot odometry. To overcome these difficulties, we



propose the following open-set object mapping pipeline, which
is visualized in Fig. 3.

A. Mapping

The inputs to ROMAN’s mapping module consist of RGB-D
images and robot pose estimates (e.g., provided by a visual-
inertial odometry system). Per image object observations are
made by segmenting a color image using FastSAM [23]
and applying a series of preprocessing steps to filter out
undesirable segments. Distinct and stationary objects are most
likely to be segmented consistently across different views, so
our segment filtering aims to capture only such segments.
We use YOLO-V7 [57] to reject segments containing people.
Additionally, we project segments into 3D using the depth
image and remove large planar segments which are often
large ground regions or non-distinct walls which cannot be
represented well as an object. Each of the remaining segments
is fed into CLIP [24] to compute a semantic descriptor.
Observations, made up of CLIP embeddings and 3D voxels,
are then sent to a frame-to-frame data association and tracking
module.

Data association is performed between existing 3D segment
tracks and incoming 3D observations by computing the grid-
aligned voxel-based IOU between pairs of tracks and observa-
tions with 3D voxel overlap [35]. We use a global nearest
neighbor approach [58] to assign observations to existing
object tracks and create new tracks for any unassociated
observation. Semantic descriptors of the associated segments
are merged by taking a weighted average of descriptors of the
existing segment and the incoming segment as in [59]. Because
FastSAM may segment objects differently depending on the
view, we create a merging mechanism to avoid duplications of
the same object. Specifically, 3D segments are merged based
on high grid-aligned voxel IOU or when a projection of the
two segments onto the image plane results in a high 2D IOU.
The result of our mapping pipeline is a set of open-set 3D
objects with an abstractable representation. While performing
mapping, objects are represented by dense voxels helping the
frame-to-frame data association and object merging. However,
our global localization only uses a low-data representation
of segments consisting of centroid position, shape attributes,
and mean semantic embedding, which enables efficient map
communication and storage.

B. Submap Creation

As a robot travels, submaps are periodically created. After
a robot’s odometry estimate reaches a distance greater than cy4
from the previous submap pose, a new submap is instantiated.
The new submap is assigned the current robot’s pose with
pitch and roll components removed using the IMU’s gravity
direction estimate, which ensures that objects are represented
in a gravity-aligned frame for data association. All objects
within a radius r of the submap center are added, and objects
continue to be added until the robot’s distance from the
submap center is greater than r. The submap is then saved,
after using a maximum submap size N to remove objects

(starting at objects farthest from the center) so that the submap
size m; < N thus limiting submap alignment computation.
Finally, a newly created submap is fed to the global data
association module and ROMAN attempts to align the current
submap with previous submaps (e.g., from earlier in the run or
from another robot or session). Resulting ’i‘; estimates from
the submap object data association and alignment are used
for global localization if the number of associated objects is
greater than a threshold, 7.

VI. EXPERIMENTS

In this section, we evaluate ROMAN in an extensive series
of diverse, real-world experiments. Our evaluation settings
consist of urban domains from the large-scale Kimera-Multi
datasets [25], off-road domains in an unstructured, natural
environment, and ground-aerial localization in a manually
constructed, cluttered indoor environment. Experimental re-
sults demonstrate that ROMAN achieves superior performance
compared to existing baseline methods, obtaining up to 45%
improvement in relative pose estimation accuracy in opposite
directions and 35% improvement in final trajectory estimation
error in a subset of particularly challenging sequences from the
Kimera-Multi datasets. The experiments were run on a laptop
with a 4090 Mobile GPU and a 32-thread 19 CPU.

A. Experimental Setup

Baselines. We compare the alignment performance of
ROMAN against the following baselines. RANSAC-100K and
RANSAC-1M apply RANSAC [11], as implemented in [60],
on segment centroids with a max iteration count of 100,000
and 1 million respectively. CLIPPER runs standard CLIP-
PER [12] on segment centroids, and CLIPPER / Prune
prunes initial putative associations using semantic and shape
attributes and rejects incorrect registration results using gravity
information (so it has access to similar information as the
proposed method). TEASER++ / Prune runs the robust
registration of [19] using the same pruning mechanism as
CLIPPER / Prune. Binary Top-K, which mimics the
association method of SegMap [9], takes the top-k most similar
segments (in terms of the semantic and shape descriptors)
and constructs a binary affinity matrix that we use for finding
associations with solver from [12]. We also compare against
recent image-based pose estimation methods. MASt 3R and
MASt 3R (GT Scale) use the learned 3D reconstruction model
of [21] to estimate relative camera poses with the model’s
estimated translation scale and the ground truth translation
scale respectively. SuperGlue (GT Scale) similarly esti-
mates relative camera poses using [20] to match SuperPoint
features [61]. Additionally, we incorporate ROMAN as a
loop closure detection module in single-robot and multi-robot
SLAM and compare against KM (Kimera-Multi [42]) and
ORB3 (ORB-SLAM3 [62]) which both use BoW descriptors
of ORB features for loop closures.

Performance metrics. We use the following metrics for
comparing segment-based place recognition, submap align-
ment (equivalent to relative pose estimation for image-based



methods),and full SLAM results. For place recognition, each
algorithm is given a query submap and a database composed
of submaps from every other robot run. Submap registration
is performed on the query submap and every submap from
the database. The database submap with the highest number
of associations is returned and success is achieved if the
query and returned submaps overlap. We vary the threshold on
number of required object association 7 to generate precision-
recall curves, and following [63], precision-recall area under
the curve (AUC) is reported.

To evaluate alignment success rate, an algorithm is given
a pair of submaps whose center poses are within 10m of
each other. We evaluate the image-based methods by giving
an algorithm the two images corresponding to the two submap
center poses. To avoid giving segment-based methods an unfair
advantage, we do not include submaps whose camera fields of
view (FOVs) do not overlap. Following [64], alignment (i.e.,
pose estimation) success is determined when the transforma-
tion error is less than 1m and 5deg, with respect to ground
truth.

Full SLAM results are evaluated using root mean squared
(RMS) absolute trajectory error (ATE) between the registered
estimated and ground truth multi-robot trajectories. We use
open-source evo [65] to compute ATE.

Parameters. For global localization, we use the parameter
values outlined in Table I. We additionally include results for
two larger variants of our work: ROMAN-L, which uses r =
25, N = 60, and ROMAN—-XL, which uses » = 30, N = 80. In
pose graph optimization, we use odometry covariances with
uncorrelated rotation and translation noise parameters. We use
standard deviations of 0.1 m and 0.5 deg for sparse odometry
and 1.0 m and 2.0 deg for loop closures.

TABLE I: Parameters

Parameter Value Description
ole 0.4m/0.6m Pairwise consistency noise parameters
r/ecq 15m/10m Submap radius and spacing distance
Gmin | Dmax 0.85 /0.95 Cosine similarity scaling values
T/ N 4/40 Association threshold and max submap size

B. MIT Campus Global Localization

We first evaluate ROMAN’s map alignment using the out-
door Kimera-Multi Dataset [25] recorded on MIT campus.
Each robot creates a set of submaps using Kimera-VIO [66]
for odometry and our ROMAN mapping pipeline. We use
these submaps to evaluate segment-based place recognition
and submap alignment for global localization, as described
in Section VI-A. We evaluate methods on all multi-robot
submap pairs from this dataset that are within 10m of
each other and whose corresponding camera FOVs overlap.
In Table 11, we show place recognition and submap alignment
results. To highlight performance across different viewpoints,
we bin the alignment tests into three different ground-truth
relative heading groups: # < 60deg (same direction), 60 deg
< 6 < 120deg (perpendicular), and 8 > 120deg. When

TABLE II: Kimera-Multi Outdoor Data Alignment Success Rate

Place Pose Estimation Success Rate

Method Recognition (< 5°, 1 m error) Runtime
(AUC)  0-60° 60-120° 120-180° Mean (ms)
T RANSAC-100K 0.106 0.141  0.000 0.000 0.047 759
& RANSAC-1M 0.160 0.341 0.065 0.054 0.153 488
ﬁ CLIPPER 0.145 0.235 0.043 0.000 0.093 48.2
£ CLIPPER/Prune 0.531 0.429  0.109 0.108 0215 239
TEASER++/Prune 0.426 0441 0.125 0.083 0.216 498.6
% Binary Top-K 0.307 0.377 0.130 0.054 0.187 213
= SuperGlue (GT Scale) — 0.685 0.043 0.000 0243 874
é’ MASt 3R (GT Scale) — 0.775 0.152 0.297 0408 2950
» MASE3R — 0211 0.043 0.000 0.085 2950
@ ROMAN 0.552 0.521 0.152 0.189  0.287  28.9
2 ROMAN-L 0.663 0.723  0.370 0432 0.508 929
ROMAN-XL 0.654 0.745  0.457 0405 0.536 213

the heading difference is small, alignment is comparatively
easier. Aligning submaps from opposite views or from paths
that cross perpendicularly, presents the hardest cases for global
localization.

Table II shows that the ROMAN outperforms other segment-
based methods in terms of place recognition and alignment
success rate in all heading intervals while operating at a
similar runtime. In opposite directions, ROMAN achieves a pose
estimation success rate 75% higher than the next-best segment-
based method, CLIPPER/Prune. Compared to image-based
methods, the ROMAN variant with more objects, ROMAN—-XL
outperforms the next-best method, MASt 3R (which is given
ground truth scale), in every case except for in similar direction
scenarios, all while running 10 times faster. In particular,
ROMAN-XL achieves a pose estimation success rate in opposite
directions that is 45% better than MASt 3R (GT Scale) and
31% better when averaged across the different headings.

In terms of communication and submap storage size, each
object includes a 3D centroid, a four-dimensional shape de-
scriptor and a 768-dimensional semantic descriptor. With each
submap consisting of at most N = 40 objects, a submap
packet size is strictly less than 250 KB. For a trajectory of
length 1km, the entire map could be represented with less
than 25 MB of data.

C. Loop Closures in Visual SLAM

We integrate ROMAN as a loop closure detection module
for single and multi-robot pose-graph SLAM and compare
the trajectory estimation results here and in Section VI-D.
We use Kimera-VIO [66] for front-end odometry when creat-
ing initial ROMAN submaps. Then, we attempt to register
each new submap with all existing submaps from the ego
robot and other robots. Loop closures are reported when the
number of associations found is at least 7. Then, sparsified
Kimera-VIO odometry and ROMAN loop closures are fed into
the robust pose graph optimization of Kimera-Multi [42] to
estimate multi-robot trajectories. Root-mean-squared (RMS)
absolute trajectory errors (ATE) in the tunnel, hybrid, and
outdoor Kimera-Multi datasets are reported in Table III.
We compare SLAM with ROMAN loop closures against a
centralized Kimera-Multi (KM) [42] and multi-session ORB-
SLAM3 (ORB3) [62]. Note that in the single-robot case, the
baselines are essentially a single-robot version of Kimera and



TABLE III: Kimera-Multi Data [25] SLAM Comparison Against
Various Loop Closure Methods (RMS ATE m)

Num. Total
Dataset Robots  Dist. (m) ORB3 [62] KM [42] ROMAN
Easy: Single Robot Tunnels
Tunnel 0 1 635 2.08 420 4.16
Tunnel 1 1 780 26.19 1.61 2.15
Tunnel 2 1 854 9.53 529 6.12
Tunnel 3 1 845 16.61 529 3.90
Mean 13.60 4.10 4.08
Medium: Full Multi-Robot Datasets
Tunnel All 8 6753 - 438 4.20
Hybrid All 8 7785 - 5.83 5.12
Outdoor All 6 6044 - 9.38 8.77
Mean - 6.53 6.03
Difficult: Challenging Multi-Robot Combinations
Hybrid 1, 2, 3 3 3551 - 10.34 6.91
Hybrid 4, 5 2 1896 28.09 6.11 2.80
Outdoor 1, 2 2 2011 11.93 10.12 7.67
Mean - 8.86 5.79

single-robot ORB-SLAM3, where a deeper comparison was
made in [67]. Similar to [67], we found that ORB-SLAM3
fails to find reasonable trajectory estimates in some robot
configurations, and this is represented with a dash in Table III.

Estimation errors show that, on average, in easier single-
robot tunnel runs, ROMAN loop closures result in lower
trajectory errors than ORB-SLAM3 and errors comparable to
Kimera-Multi. The full, large-scale multi-robot runs show that
ROMAN’s ability to detect loop closures in challenging visual
scenarios results in moderate gains compared to Kimera-
Multi’s trajectory errors. Improvement is somewhat limited
due to the high-connectivity of robot paths and the fact that
most robot trajectory overlap occurs when robots are traveling
in the same direction, which are loop closure opportunities
in which visual-feature-based methods already perform well.
However, when SLAM results are compared on a subset of
robot trajectories that contain difficult instances for visual loop
closures (e.g., perpendicular path crossing and scenes with
high visual aliasing), results show that ROMAN has a signifi-
cantly lower ATE in these challenging scenarios. The trend is
that as loop closure scenarios become increasingly difficult,
ROMAN demonstrates more significant improvements over
state-of-the-art methods.

D. Loop Closures in Off-Road Environment

We further evaluate the proposed method’s ability to register
segment maps in an outdoor, off-road environment with high
visual ambiguity (Fig. 1). In this experiment, data is recorded
on a Clearpath Jackal using Intel RealSense D455 to capture
RGB-D images and Kimera-VIO [66] is used for odometry.
The robot is teleoperated across four runs, following similar
trajectories but with different runs traversing the same area
while traveling in different directions. We run the ROMAN
pipeline on three different pairs of robot trajectories. We
compare ROMAN to KM loop closures in Fig. 4. The three
pairs consist of an easy, medium, and hard case. The easy
case involves two robots that traverse the same loop in the
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Fig. 4: Off-road qualitative pose graph trajectory estimate. Easy,
medium, and hard cases comparing using ROMAN and KM for loop
closures. Different combinations were paired together to make easy,
medium, and hard cases. In the easy case, robots travel the same
direction; in the medium case, the two runs go in opposite direction
except for the small connecting neck; and in the hard case, robots
only cross paths going opposite directions. Only ROMAN successfully
finds loop closures between robots running in opposite directions.

same direction (with one robot that leaves the loop and later
returns). In the medium difficulty case, the robots travel in
opposite directions except for a short section in the middle
where both robots briefly view the scene from the same
direction. Finally, in the difficult case, robots travel in a large
loop in opposite directions. While ground-truth pose is not
available for this data, Fig. 4 qualitatively shows that ROMAN
successfully detects loop closures in all three cases. More
importantly, ROMAN successfully closes loops in opposite-
direction traversals, while loop closures from KM only work
reliably in same-direction traversals and fail to find any loop
closures in the hard case.

E. Ground-Aerial Cross-View Localization

We also evaluate ROMAN’s robustness to view changes
by conducting indoor localization experiments where segment
maps created from ground views are aligned with segment
maps created from aerial views. Snapshots of the setup from
both views are shown in Fig. 5. We test object map alignment
on 20 ground-aerial pairs of traverses through the environment,
and report alignment success rate in Table IV. We show
that ROMAN maintains an advantage over other baselines,
demonstrating its global localization capability in a small-scale
aerial-ground cross-view localization demonstration.

F. Ablation Study

Finally, we perform an extensive set of ablation studies
examining the contribution of different affinity metric im-
provements, fusion methods, and other algorithmic elements.



Fig. 5: Environmental setup used in the ground-aerial cross-view
localization experiment as seen from both ground view (left) and
aerial view (right).

TABLE IV: Ground-Aerial Cross-View Localization Results

Method Recall Method Recall
RANSAC-100K 0.25 RANSAC-1M 0.45
CLIPPER 0.3 CLIPPER/Prune 0.35
TEASER++/Prune 0.55 ROMAN 0.60

Fusion methods. Here, we compare different methods for
fusing object similarity scores s, with pairwise scores s,
in Table V. We investigate fusing scores with geometric
mean (ROMAN), product [4, 47], arithmetic mean, and set-
ting the diagonal elements of the affinity matrix M,, -
GM(s0(ap)ss(aq)) [12, 52]. Table V shows that fusing scores
using the geometric mean results in a much higher alignment
success rate compared to other fusion methods. Intuitively,
fusing scores using the arithmetic mean has fewer zeroed-
out elements of the affinity matrix which results in the
optimization problem becoming less well-constrained. Fusing
via the product of scores improves the alignment success, but
tends to over-penalize, since in this case, including s, can only
lower the overall similarity score. Changing only the diagonal
elements also improves over standard CLIPPER [12], but is
limited in impact as described in Section I'V-C.

Affinity component contributions. In Table V, we ad-
ditionally examine the effect of using ROMAN for map
alignment while excluding the following individual affinity
metric components: the gravity-guided pairwise score s,, the
shape similarity score Sghape, and the semantic similarity score
Ssemantic- While each component helps ROMAN achieve higher
alignment success, the gravity prior makes the most significant
difference and the semantic similarity score makes the least.
However, in terms of place recognition, semantics makes the
largest difference.

Robustness to segmentation errors. As a small experi-
ment, we change the input image size from 256 (the default
value for which ROMAN is tuned) to obtain degraded seg-
mentation (128) and over-segmentation (512). On average,
FastSAM [23] returns 4.0 segments at image size 128, 11.3 at
256, and 18.7 at 512. As shown in Table V, in the case of over-
segmentation, we report only 12% performance decrease in
terms of mean pose estimation success rate. With severe under-
segmentation, ROMAN achieves 0.184 mean success, which
is slightly lower than the best segment-based baselines shown
in Table II, however some of the effects of under-segmentation
could be mitigated by including segments in a larger radius 7.

Robustness to dynamic objects. The ROMAN pipeline de-

TABLE V: Ablations Results

Place Pose Estimation Success Rate
Ablations Recognition (< 5°, 1 m error)

(AUC)  0-60° 60-120° 120-180° Mean
ROMAN 0.552 0.521 0.152 0.189  0.287
= Gravity 0.522 0474  0.109 0.081 0.221
—i Semantics 0.497 0.500 0.146 0.167 0.271
é Shape 0.530 0.532 0.152 0.108  0.264
£ Arithmetic Mean 0.517 0.199  0.000 0.054  0.085
‘2 Product 0.505 0.388  0.087 0.027 0.167
R Diagonal 0.336 0.388  0.109 0.027 0.175
- (0.2,0.3) 0.504 0433 0.229 0.028  0.230
g (0.6,0.9) 0.543 0.522  0.104 0.139 0255
~ (0.8,1.2) 0.535 0.548  0.125 0.194  0.289
gﬂ @ 128 x 128 0.378 0.296  0.149 0.108  0.184
5 7 512 x 512 0.525 0.535 0.085 0.135 0252

liberately filters out pedestrians, and the robust data association
effectively rejects other dynamic objects. To demonstrate the
effect of dynamic objects, we disable the pedestrian filter and
report that ROMAN achieves a mean alignment success rate of
0.251, which is still better than other segment-based baselines
in Table II.

Hyperparameter sensitivity. Table II shows the effect of
varying ROMAN submap sizes, controlled by N (maximum
submap size) and r (submap radius). We vary N from the
default value 40 to 80 with r increasing from 15m to 30m
correspondingly. The results show that these two submap size
parameters can be effectively altered to achieve a trade-off
between alignment success rate and runtime. An ablation over
the segment noise parameters ¢ and € are recorded in Table V.
We note that the lowest mean recall over all pairs is still higher
than the mean recall of any other segment-based method
in Table II.

Scalability. Our mapping pipeline runs at 9.6 Hz when
computing CLIP [24] embeddings and at 17.9Hz without
running CLIP on the outdoor Kimera-Multi Dataset [25] As
shown in Table V, alignment success rate only drops 12%
without CLIP embeddings which could be used for running
ROMAN on a more compute-constrained platform. Removing
CLIP embeddings also reduces map size by 100 times.

VII. LIMITATIONS

One of the fundamental challenges with using open-set
segmentation like FastSAM [23] for object mapping is deter-
mining what constitutes a discrete object. ROMAN’s filtering
and merging steps significantly improve the quality of resulting
object maps; however, inconsistent segmentations may some-
times still result in duplicate representations of objects (e.g.,
a car and each of its doors may be represented as distinct 3D
segments).

Additionally, ROMAN seeks to reject non-object-like seg-
ments (e.g. ground, walls, etc.) because they do not fit well
into the centroid-focused object data association. This does
not exploit the information present in non-object segments,
e.g. roads, walls, and buildings. Our object registration could
additionally be improved by employing a coarse-to-fine tech-



nique for using more precise information than object centroids
for submap registration.

Finally, while ROMAN runs fast enough for the scale of
experiments shown in this paper (i.e. up to eight 1000 m long
robot trajectories), trajectories longer than this would require
significant computation to register the growing number of
submaps as robots continue mapping. A faster place recog-
nition stage could improve scalability.

VIII. CONCLUSION

This work presented ROMAN, a method for performing
global localization in challenging outdoor environments by
robust registration of 3D open-set segment maps. Associations
between maps were informed by geometry of 3D segment lo-
cations, object shape and semantic attributes, and the direction
of the gravity vector in object maps, which enabled global
localization even in instances of robots viewing scenes from
opposite directions.
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