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Abstract—We aim to solve the problem of manipulating
deformable objects, particularly elastic bands, in real-world
scenarios. However, deformable object manipulation (DOM)
requires a policy that works on a large state space due to the
unlimited degree of freedom (DoF) of deformable objects. Further,
their dense but partial observations (e.g., images or point clouds)
may increase the sampling complexity and uncertainty in policy
learning. To figure it out, we propose a novel implicit neural-
representation (INR) learning for elastic DOMs, called INR-DOM.
Our method learns consistent state representations associated
with partially observable elastic objects reconstructing a complete
and implicit surface represented as a signed distance function.
Furthermore, we perform exploratory representation fine-tuning
through reinforcement learning (RL) that enables RL algorithms
to effectively learn exploitable representations while efficiently
obtaining a DOM policy. We perform quantitative and qualitative
analyses building three simulated environments and real-world
manipulation studies with a Franka Emika Panda arm. Videos
are available at http://inr-dom.github.io.

1. INTRODUCTION

Deformable object manipulation (DOM), as shown in Fig. 1,
presents a major challenge in automation and has attracted
increasing attention in robotics over the past decade [9].
Researchers have investigated a variety of DOM tasks, such
as grasping [39], folding [34], wearing [32], threading [24],
winding [25], tangling [36], and bagging [4]. These tasks
introduce challenges in the domains of perception, modeling,
planning, and control [48], due to infinite degrees of freedom
(DoF) and nonlinear interaction dynamics of deformable objects
(DO). Further, dense but partial observations—often resulting
from self-occlusions—also increase sampling complexity and
uncertainty in policy learning.

In DOM, data-driven modeling approaches are increasingly
gaining attention with their extensive representation capabilities
for downstream tasks. For example, Lippi et al. reduce a
high-dimensional space of DOs into a low-dimensional state
graph to facilitate planning [20]. Researchers often model a
DO as a particle-based interaction graph to describe detailed
topological structures [17, 21]. Recent studies aim to capture
comprehensive graph-based models by reconstructing complete
geometries such as point clouds and meshes from partial
observations [13]. However, the discrete nature of particle-
or graph-based models often fails to consistently represent the
flexible and smooth surfaces of DOs.

Meanwhile, signed distance fields (SDFs) are receiving
increasing interest with their ability to represent complex, non-
convex geometries of objects [47]. SDFs not only describe
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Fig. 1: A capture of deformable object manipulation task
that requires disentangling elastic bands between two poles.
The deformable and stretchable nature of bands increases the
complexity of state representation. Further, the 360° twists
create self-occlusions, significantly reducing the consistency
of state embeddings. Our INR-DOM effectively captures the
occlusion-robust implicit representation of the bands and effi-
ciently generates real-world applicable manipulation policies.

the surfaces of objects, but also provide spatial information
at a distance, making them well suited to depict physical
interactions and facilitating manipulation planning [49]. To
capture continuous and fine details, researchers parameterize
SDFs using neural networks (i.e., implicit signed distance
function) [37, 3]. However, most studies that involve SDFs in
DOM focus primarily on enhancing encoding for improved
reconstruction [41], which may significantly distract the ex-
ploration process of reinforcement learning (RL)-based policy
learning.

We propose a novel implicit neural representation (INR)
learning method for elastic DOM, which we call INR-DOM.
Our method focuses on learning consistent and occlusion-
tolerant representations of partially observable DOs and en-
hances task-relevant representations to optimize their manipu-
lation policies efficiently. INR-DOM incorporates a two-stage
learning process with two types of losses: 1) pre-training
utilizes reconstruction and regularization losses to develop an
occlusion-robust yet dense representation encoder, suitable for
stretched or intertwined DOs; 2) fine-tuning employs contrastive
learning and RL losses to refine representations, boosting
exploitability and effectiveness in policy learning. The use of
implicit SDF during pre-training allows for the reconstruction



of complete and implicit surfaces of highly elastic DOs. The
integration of contrastive loss during fine-tuning further enables
the encoder to effectively identify and handle complex, enclosed
states, such as twisted rubber bands. We particularly introduce
a temporal- and instance-wise key assignment method for
time-series contrastive learning to better represent correlations
between similar manipulation sequences.

We conduct quantitative and qualitative studies in both
simulated and real-world manipulation environments. By
constructing a 3D shape-recovery benchmark of nine elastic
rubber bands, we show INR-DOM’s consistent and occlusion-
robust representation capabilities. Applying them to simu-
lated environments, we then demonstrate the superior state-
representation and policy-learning capabilities across three
simulated environments (i.e., sealing, installation, and disen-
tanglement tasks). INR-DOM excels in accurately recovering
complete geometries from partial observations, surpassing state-
of-the-art baseline methods, particularly in handling stretched
or intricately enclosed states of rubber bands. Further, the
fine-tuned representation captures both task-relevant and -
irrelevant details, facilitating efficient policy convergence in
RL and leading to significantly higher task success rates up
to 41% higher than the next-best baseline approach. We also
demonstrate the real-world applicability of INR-DOM with a
Franka Emika Panda robot.

In summary, key contributions of this paper are threefold:

e« We introduce an implicit neural-representation learning
method that provides consistent and occlusion-robust repre-
sentations from visual observation of deformable objects.

o« We develop an effective representation-refining approach
using a contrastive loss to capture task-relevant state infor-
mation for RL.

« We demonstrate that INR-DOM significantly improves
convergence stability in policy learning and success rate
for DOM tasks, in both simulations and real-world settings.

II. RELATED WORKS

We investigate representation models and their learning or
update methodologies for DOM tasks.
Representation models: The expressiveness of representations
stems from the capacity of the underlying models. Most
model-based approaches represent deformations using discrete
structures composed of a finite number of elements, such as
points or lines. Earlier approaches, including the finite element
method (FEM), approximate complex, irregular geometries
by partitioning objects into smaller elements that collectively
represent the overall shape [18, 29]. However, their reliance
on the mesh structures limits their ability to handle large
deformations, particularly in elastic materials (e.g., bands).
Alternatively, researchers often adopt particle-based, data-driven
representations: point clouds [5] and voxels [6]. However, these
approaches often struggle to capture continuum behaviors such
as stretching or compression. Recently, studies build interaction
graphs to leverage structural connectivity through graph-based
representations [17, 19, 21]. Nonetheless, the inherently discrete

nature of these models gives challenges representing continuous
surfaces.

Alternatively, researchers often adopt model-free approaches

that directly map raw observations to feature vectors—using
2D convolutional encoders for RGB images [43, 34] or Point-
Net [30] for 3D point clouds [16]. However, these methods lack
the dense geometric representations required for downstream
tasks such as precise tying or untwisting. To address this
limitation, implicit neural representations have demonstrated
superior capabilities in capturing dense correspondence and
dynamics in deformable objects. Shen et al. reconstruct high-
fidelity voxel geometries from simulated RGB-D images [35],
while Wi et al. model the continuous representation of deformed
geometries based on external forces and their locations [41].
Our approach not only provides dense descriptors but also
distinguishes complex and overlapping shapes in real-world
scenarios.
Representation Learning: Early approaches often rely on au-
toencoders with reconstruction losses to obtain low-dimensional
features. While this enable training with large unlabeled
datasets, the resulting representations are task agnostic and
may distract explorations, leading to sample inefficiency in
RL [46]. To address this issue, researchers introduce end-to-
end learning approaches that jointly train the encoder and the
action network [40]. In addition, contrastive learning [| 1] have
emerged as another metric-learning technique for representation
learning by promoting similarity constraints on the same
or nearby data while maximizing separation from unrelated
one [35]. Leveraging this contrastive learning, Srinivas et
al. improve the sample efficiency in model-free RL [14]
by integrating the contrastive loss as an auxiliary objective.
However, the standard separation of values in time series often
makes it difficult to preserve similarities between temporally
correlated time-series instances in self-supervised learning [15].
In this work, we fine-tune the encoder using a contrastive loss
and enhance the sample selection strategy by exploiting tem-
poral structure in experienced trajectories, aiming to improve
exploration efficiency and promote more generalizable latent
representations.

III. METHODOLOGY
A. Overview

The objective of INR-DOM is to jointly learn consistent
state embeddings (s € &) from partial observations (o &
O) and an RL policy 7 for DOM. We formulate the policy
learning problem as an MDP tuple < S, A, T, R > with state
space S, action space A, stochastic transition function 7", and
reward function R. The goal of the MDP is to find an optimal
policy 7* : § — A that maximizes the cumulative discounted
reward. Fig. 2 shows the overall architecture for the state-
representation learning (SRL) integrated with policy learning.
The input observation o is a combination of proprioception
and exteroception information, including a point cloud p € P
representing DOs, where P denotes the space of observable
3D point clouds. We derive a coherent, low-dimensional state
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Fig. 2: An overview of INR-DOM framework that aims to train the occlusion-robust state representation encoder &,
parameterized by ¢, of deformable objects (DOs) as well as the manipulation policy 7. The training framework consists of two
stages: 1) The first stage pre-trains a PointNet-based partial-to-complete variational autoencoder ($4, ¥) that embeds a partial
point cloud p of a target DO into a latent embedding z and recovers the parameters 8 of an implicit signed distance field (SDF)
network 2g. This stage predicts full geometries leveraging two loss functions Lspr, Lskel, along with three regularization loss
functions: Lxr., Lweight> and Lens. 2) The second stage then improves the task-relevant representation power of the encoder ®4
by jointly optimizing reinforcement learning (blue) with the loss Lry, and the contrastive learning (red) with the loss LinoncE-

s by embedding the porint cloud p into a latent vector z € Z
through a neural SRL function.

We design the neural SRL function, ¢ : P — Z, as an
encoder that embeds not only consistent but also task-relevant
information of DOs from partial observations. To embed state
representations for DOM policy learning, we introduce a two-
stage training framework; Stage I) reconstruction-based pre-
training (see details in Sec. III-B) and Stage II) contrastive-
based fine-tuning (see details in Sec. III-C). Note that this
work considers training in a physics simulation and transfers
the learned SRL function to the real world. The following
subsections detail the architecture and training procedures.

B. Reconstruction-based pre-training

The goal of the pre-training stage is to learn an occlusion-
tolerant yet dense representation z from a partial point cloud p
of elastic DOs. A key challenge lies in learning distinguishable
representations of stretched or intertwined DOs. To address
this, we detail the proposed SRL network architecture and its
training process with the associated loss functions.

Network architecture. We design a reconstruction-based
partial-to-complete variational autoencoder (VAE), capable of
generating the parameters 8 € © of an implicit SDF network.
Our proposed network consists of a PointNet-based encoder ¢

parameterized by ¢, a hypernetwork decoder ¥, and an implicit
neural SDF network () parameterized by 8,

D

where Z, ©, and & are the spaces of state embeddings, implicit
network parameters, and Cartesian points (€ R?), respectively.

The encoder ® is a modified PointNet that takes a point
cloud p of a target DO, observed from a depth image, and
returns a low-dimensional latent vector z € Z. During training,
we sample z using the reparameterization trick, while during
testing, we use the predicted mean of a Gaussian distribution.
The modification is the removal of T-Net in the original
PointNet to distinguish the translation and rotation of point
clouds. The vector serves as a global representation of the
complete geometry, containing its continuous surface and
kinematic structure information, despite the incomplete and
occluded nature of the input point cloud. In this work, we use
Z C RN and N, = 64.

Unlike conventional VAE, the decoder W is a hypernetwork
that takes the latent vector z and generates weights 8 for
the implicit SDF network ). The network is a multi-layer
perceptron (MLP) with three hidden layers, where each layer
has 256 units with ReLU activations.

The implicit SDF network {2 is a variant of SIREN
Hyponetwork [37], parameterized by the decoded weights 8,
which takes a Cartesian query coordinate x and a current latent

O, P Z, U:Z50, Q:X ZR,



vector z. The network then returns a corresponding signed
distance d from the nearest object surface, where the positive
sign indicates outside of the surface and the negative sign
indicates inside. The nature of the implicit network allows
for retrieving continuous and differentiable distances from
a complete surface. In contrast to the original SIREN, we
input the point-cloud embedding z, which helps the decoder
W effectively learn the residual part similar to DeepSDF [28].
Our network consists of a three-layer MLP with 32 units per
layer and sinusoidal activations.

Losses. We introduce an INR learning loss to train the proposed
network through simulated DOM data and transfer the learned
model to the real world. Our proposed loss £ is a linearly
weighted combination of shape and structure reconstruction
losses as well as regularization losses,

L= ESDF + Alﬁskel + >\2£KL + >\3ﬁweight + >\4£cn5;
—_——

reconstruction

@

regularization

where \; are non-negative constants (¢ € [1,4]).
First of all, the reconstruction-based losses aim to complete
a given partial point cloud while precisely representing its con-
tinuous and dense geometry. We introduce two loss functions:
1) Lspr: An SDF loss to precisely fit the generated SDF with
a ground-truth complete point-cloud P. Let @ ¢ R? and
Q denote all sampled query points and their subset on the
object surface, respectively. Based on the Eq. (6) of [37],
we define the loss function as:

Lo = [ 119x80(x.2)] 1] dx
x€EQ
+/ Qe (x,2)| + (1 — ViQo(x,2) - n(x)) dx
x€Q

+/ Cexp (—a-|Qe(x,2)|) dx, 3)

xCO\Q
where n(x) is the surface normal vector at the query point
X, « 18 a constant, and z is the current latent vector. The
first term in Eq. (3) constrains inconsistent SDF gradients
since the gradients are mostly one, except on critical points
such as medial-axis points. The second term penalizes when
the on-surface points have non-zero distances and also their
SDF gradient direction is not aligned with the ground-
truth normal vector. Lastly, the third term regularizes off-
surface points not to have large values. Note that we obtain
n(x) by simulation at each time step. We also sample not
only random points for Q but also near-surface points to
accurately estimate the distance around the surface.

2) Lgel: A skeleton loss that is the measure of how far the
estimated medial-axis point of a DO is off from the ground-
truth medial axes, where the medial-axis point exhibits
the same distance to multiple boundaries (i.e., surface) on
the object [33]. This is crucial to accurately recover the
geometries of intertwined or occluded regions in a partial
point cloud. Here, we formulate the loss as follows:

Lkel :/ 10g(maX(Aﬂg(x,z),e)*l)dx, 4)
xCQ

where (), are the ground-truth medial-axis points,
AQg(x,2) represents the Laplacian of the query point x
given {2g, and ¢ means a small constant introduced to
prevent division by zero. Around the medial-axis points,
AQg(x,2) — 00, as these points correspond to the local
minima of g.

Next, the regularization losses aim to constrain the diver-
gence of latent vector space and weights. We introduce three
loss functions:

1) Lxi: A Kullback-Leiber divergence loss (i.e., a regulariza-
tion loss) that is a negative divergence — D 1,(®(z|p)||p(z))
from a prior p(z), parameterized by pg(z) = N(0,1),
to the variational approximation ®(z|p) of p(z|p). Our
encoder ® estimates the mean u € R™= and standard
deviation o € R™= of the posterior distribution ®(z|p).
Then, Lx;, = —0.5 - (log(o?) + 1 — p? — 0?).

2) Lueighi: A weight-regularization loss defined as NLBHOHg,
where Ny is the number of weight parameters including
biases, adopted from [37]. This formulation promotes a low-
frequency SDF solution. In this work, we use Ng = 41, 857,
which includes the parameters of the original SIREN along
with our modifications.

3) Lens: A consistency loss, defined as NLZHZ — Z||3, where
z and Zz are the embeddings of the partial point cloud p
and the complete point cloud p, respectively. This loss
regularizes the embedding of the partial point cloud p to
be close to that of the complete point cloud p. Therefore,
INR-DOM enables various views of point clouds to be
mapped onto the same region in the latent space.

C. Policy learning with fine-tuning

The objective of this fine-tuning stage is to learn sample-
efficient representations while optimizing a DOM policy. To
address this, we combine RL and contrastive learning, similar to
[14]. Fig. 2 Stage II shows the overall architecture that updates
the pre-trained encoder @, parameterized by ¢, through RL
while contrasting experienced sequences in the replay buffer 3.
To better represent correlations between similar sequences, we
introduce temporal- and instance-wise representation selections
(i-e., key assignments). In the following, we detail our proposed
RL-based fine-tuning and contrastive learning methods.
Reinforcement learning. We apply a deep RL framework to
DOM as shown in Fig. 2 Stage II. Our framework aims to
manipulate a DO, observed as a point cloud p; at time step £, to
a desired point-cloud status pges using a six degree-of-freedom
(DoF) robotic arm. We assume an RGB-D camera is available
as shown in Fig. 2. Below, we describe our MDP details with
the RL-based loss function L. to update the encoder ®:

o State: We define the state s; as a tuple (s},p;) that
consists of the arm and DO state information, where s}
is a proprioceptive state Vector [Xee, Qee, Xee; Uee, Sgripper] Of
the arm end-effector, Sgripper 1S the arm gripper’s open and
close state (€ {0, 1}).

« Action: We define the action a; as a tuple
(alim, 23" af"PP") c R7, where al® ¢ R? and aj"® ¢ R3



are the linear and angular velocities of the end effector,
respectively. a gnpper € {0, 1} indicates the gripper’s open
and close act10n.

« Reward: We define the reward function R as a linear
combination of sparse and dense rewards. Let CD(:, ) be
a function that returns the Chamfer distance between two
point clouds. Then,

R(Sta at) a - CD(pta pdes); (5)

where ¢ is a distance threshold for success check and « is a
constant.

=+ 100 : ]]-CD(ptypdes)S(S B

In this work, we define the loss Lg; as a combination of actor,
critic, and entropy losses in [10].

Our framework updates the encoder ®, and its associated
policy 7 employing off-policy RL, particularly soft actor-
critic [10]. At each time step t, we embed a state s; into
a latent state (s}, z;) using the encoder @, and then take the
embedding as input for the actor network 7 to determine an
action a,;. Simultaneously, we update the critic and encoder
networks by back-propagating the loss Lg; . During this update,
we store transitions (s}, p, a;,7¢, Sy, ¢, Pe11) into the buffer
B, where r; denotes the output from R(s:, a;) and we use the
buffer for sampling each batch B’ for the off-policy updates.
Contrastive learning. To improve sample efficiency in RL, we
adopt contrastive learning by adding an auxiliary task, inspired
by CURL [14]. The task is to improve the discrimination
capability of the guery encoder ®4 while learning the DOM
policy. The discrimination requires comparing query-key pairs
to ensure that a query input z9 is close to a positive keys
z" and far away from negative keys {z (*)}/_,, where K
is the number of negative keys. However, conventional key
generation often does not capture the similarity of keys in
time series [15]. To address this issue, we introduce a novel
query-key selection strategy for time series and the update of
the query encoder leveraging an information noise-contrastive
estimation (InfoNCE) loss [27].

Consider a batch B’ that contains sequences (i.e., episodes)
of experience [€(), ..., £I5'D]. Note that, for notational sim-
plicity, we assume the batch 5’ is a set of point-cloud
sequences [5<1) .. 5<|B |)] We represent the i-th sequence
as Eg) = [pg ), ) ,pgf)] € ROXNp)XT \where N, and
T denote the number of points and the sequence length,
res%)ectlvely We then represent the sequence embedding as

0y (E5)) = 2", ..., 2] € RNXT,

For the contrastive-loss computation, we generate query-key
pairs. For the query selection, we randomly sample a point
cloud pg " to obtain z9 — <I>¢(p§ )) as a query input from a
randomly selected episode Eé . For the positive-key selection,
we first sample the top-M similar episodes from the buffer B
with respect to the episode Eff). In this work, for computational
efficiency, we determine the similarity based on the minimal
start-and-goal embedding distance, ds (Eff), Eg )) = zgl) .Z§J Iy

@) z<TJ), where ‘-” represents a dot product. We then select a
p01nt cloud py in an episode w1th the minimum dynamlc time-
warping (DTW) distance from 5 to obtain zT = @y, (py),

........

Fig. 3: Examples of randomly twisted and stretched rubber
bands in simulation. The red points represent partial point
clouds.

where @, is the key encoder [12], initialized with ¢. Note
that ¢’ is a time step matched to the time step ¢ of EI@ by
DTW. For the negative key selections, we randomly sample the
K number of point clouds from B’ \{EI@} and embed them
as {z="}E | using g .

Given the query-key pairs, we compute the InfoNCE loss
Linfonce to optimize the encoders ®, and Dy,

exp(zd -zt /1)
exp(zd -zt /7) + Zle exp(zd -z~ (%) /1)

where 7 is a temperature parameter (€ RT). As MoCO [12],
we update ¢y = Miey + (1 — m)¢ using the exponential
moving average (EMA) method, where m is the momentum
coefficient (€ [0, 1)). The encoder is then able to capture subtle
distinctions between object configurations, which is critical for
manipulation tasks involving deformable objects. In this work,
we set 7 = (.1.

In summary, the fine-tuning stage of INR-DOM, inspired by
the CURL framework, involves refining the latent space using
contrastive learning to capture task-relevant features while main-
taining generalization. This enhanced representation, coupled
with RL, enables the model to learn effective manipulation
policies more efficiently.

log

(6)

IV. EXPERIMENTAL SETUP

Our experimental evaluation aims to answer two key ques-
tions: 1) Does the proposed representation provide consistent
and occlusion-robust state information for DOM? 2) Further,
does the proposed method improve the effectiveness of DOM
in the real world? We perform quantitative evaluations through
simulation and qualitative studies with a real robot.

A. Quantitative Evaluation through Simulation

We statistically evaluate the capabilities of occlusion recov-
ery and task completion in INR-DOM.
Occlusion recovery: We assess the occlusion-tolerant re-
construction capability of INR-DOM through IsaacSim, a
physics simulator from NVIDIA [26]. We build a random
manipulation dataset for nine types of circular rubber bands.
Each band has a pair of inside diameter (ID) dpp and cross-
sectional diameter (CSD) dcsp, where {(dp, dcsp) | dip €
{6 cm, 10cm, 14 cem}, desp € {1em, 2cm, 3cm}}. As shown
in Fig. 3, by randomly twisting and stretching them, we



Fig. 4: Examples of three deformable-object manipulation
environments: sealing, installation, and disentanglement.

collect a total of 90, 000 pairs of partial and complete point
clouds, (p,p), 10,000 pairs each. Note that we restrict the
randomization to a maximum of one twist in each direction,
and a maximum stretch of twice the original length.

Given the nine classes of dataset, we perform a leave-one-
out cross-validation that measures how representation models
reconstruct the full geometry of rubber bands from a partial
view of point clouds. During the pre-training stage of INR-
DOM, we randomly sample 1,024 points from each of the
areas, on, near and off surfaces of the target object to compute
Lspr and Lge. To define the medial-axis points, we sample
and track the 128 nodes spaced equally along the band and
closest to the center of the cross section.

For comparison, we employ three baseline methods:

« PCN [45]: Point completion network; a shape-completion
network with folding-based decoding that generates a dense
and complete point cloud given a partial point cloud as input.

o PointTr [44]: A transformer-based encoder-decoder for point-
cloud completion.

e Point2Vec [1]: A student-teacher framework of latent em-
bedding and completion network.

After reconstructing the full geometry, we compute the earth
mover’s distance (EMD) and Chamfer distance (CD) between
the reconstructed and complete point clouds. To handle SDF,
we convert it into a mesh-based point cloud using the Marching
Cubes algorithm [22].

Manipulation tasks: We evaluate the effectiveness of fine-
tuned representations in DOM by building three tasks: sealing,
installation, and disentanglement (see Fig. 4). For each task,
we use a simulated parallel-jaw gripper with an RGB-D camera
to manipulate a rubber band or an O-ring to achieve a desired
state. We describe the task setup below.

e Sealing: A gripper seals a groove by inserting a rubber band
after grasping a randomly placed band. To enhance sampling
efficiency, we reduce the action space to (ai®, a§""*") € R4
setting a3"® to zero.

e Installation: A gripper installs an O-ring onto the circular
groove of a cylinder after grasping a randomly placed
O-ring. The action space is (al™#* ai"®¥ af'™) ¢ R4
where ali™#* and a}"®"¥ represent a two-dimensional velocity
perpendicular to the direction of the parallel jaw’s open/close
axis and an angular velocity along the same axis, respectively.

o Disentanglement: A gripper untangles an entangled rubber

band between two upright poles by grasping and reposi-

tioning it onto the poles. We initialize a band between two
poles with up to two random entanglements in either of the
two directions. The action space is (al", ai"®* af™""") ¢ RS,
where a;"®"* represents an angular velocity constrained along

the vertical axis.

For all tasks, we reduce the space of the partial point clouds
to P C R3*1024 through the iterative farthest point sampling
of the input point cloud.

For training, we fine-tune INR-DOM with all types of rubber
bands from the occlusion recovery study and update its policy
network using an off-policy RL method, that is, SAC [10].
The policy network is a multilayer perceptron with three
hidden layers consisting of 256, 128, and 64 nodes, respectively,
each using ReL.U activation. For testing, we assess the task
completion performance of INR-DOM in 100 environments,
including 30 randomly generated and configured rubber bands.
The ID and CSD of the bands range from [6cm, 14 cm] and
[1 cm, 3 cm], respectively.

For comparison, we employ six baseline methods:

e PCN+SAC, PoinTr+SAC, and Point2Vec+SAC: RL-based
DOM methods trained using the latent representations
introduced in the occlusion-recovery study.

o CFM [43]: A model predictive control framework that
leverages latent representations and dynamics models learned
with contrastive estimation for DOM.

« DeformerNet [38]: A visual servoing method that minimizes
the difference between the current and target point clouds
of the deformable object.

« ACID [35]: A model-based planning method that calculates
action costs based on the difference between the learned
implicit representations.

We evaluate our method with these baselines over 100 trials,
each with a maximum of 200 time steps.

B. Qualitative Evaluation

We demonstrate the fine-tuning and testing of our method
in three real-world DOM environments using a Franka Emika
Panda arm, as shown in Fig. 1. These environments are similar
to those used in the quantitative evaluation. Each setup includes
a rubber band with specific dimensions: 1) dip = 10 cm and
desp = 0.6 em for sealing, 2) dip = 6cm and degp = lem
for installation, and 3) dp = 20em and desp = 1em for
disentanglement. To observe the band, we mount an Orbbec
Femto Bolt RGB-D camera on the table capturing the point
cloud p; of the band by segmenting and tracking it with a pre-
trained segmentation anything model 2 (SAM?2) [31]. For more
effective localization and grasping of the band, we employ
two RealSense D405 RGB cameras mounted on the wrist,
extending the latent state s; with a concatenated vector of
RGB features processed by ResNetl0 [8]. In this work, we
acquire the segmented points p; after outlier removal at 10 Hz
along with two RGB observations captured at 15 Hz.

Unlike simulation, we design an image-based reward classi-
fier that assigns a high reward when the current RGB image
closely matches the final scene from expert demonstrations;
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Fig. 5: Comparison of point-cloud reconstruction performance
for both seen and unseen types of partially observable rubber
bands. The blue and red bars represent the reconstruction
errors measured by chamfer distance (CD) and earth mover’s
distance (EMD), respectively. Note that INR-DOM k¢! refers
to a variant of INR-DOM that was not pre-trained using the
L loss.

TABLE I: Comparison of task success rates [%] across three
simulated environments, based on the evaluation of 100 trials
per environment. The superscripts, -p and -cl, indicate versions
of the target method that were not trained with pre-training
and contrastive learning, respectively.

Model Sealing  Installation  Disentanglement
PCN[45] + SAC[10] 13 38 6
PoinTr[44] + SAC[10] 23 38 14
Point2Vec[1] + SAC[10] 14 40 22
Point2Vec™P[1] + SAC[10] 2 1 1
CFM[43] + SAC[10] 41 47 23
DeformerNet[38] 41 53 19
ACID[35] 44 58 26
INR-DOM P 20 29 16
INR-DOM ¢ 58 61 54
INR-DOM 85 89 75

otherwise, it assigns a zero reward. To train this classifier, we
collect 20 demonstrations by teleoperating the real robot using
a 3-dimensional space mouse. We use these demonstrations to
populate the replay buffer during the fine-tuning stage. Further,
we adopt a sample-efficient robotic reinforcement learning
(SERL) framework [23], which incorporates RL with prior
data (RLPD) [2]. For RLPD, we construct training batches
with half of the samples drawn from the demonstrations and the
other half from the online replay buffer. We use 20 successful
episodes as demonstrations for the prior data. Note that we
set the update-to-data (UTD) ratio to 4. This allows leveraging
human demonstrations to accelerate the learning process and
minimize the sim-to-real gap in representation.

The robot operates with a Cartesian impedance controller
running at 1 kHz while the policy network runs at 10 Hz. We
perform all training on a Threadripper Pro 5975WX and an
NVIDIA RTX A6000 GPU.

Fig. 6: Comparison of occlusion-robust reconstruction per-
formance between INR-DOM and Point2Vec. (Top) Point-
cloud inputs of partially observable elastic bands. (Middle)
Point clouds reconstructed by Point2Vec. The larger circles
highlight magnified views of regions where reconstruction
failed, indicated by smaller circles. (Bottom) SDF-based
Meshes from INR-DOM.

V. EVALUATION RESULTS

A. Evaluation through Simulation Studies

We statistically evaluate the occlusion-robust reconstruction
capabilities of pre-trained INR-DOM on both seen and unseen
partially observable bands. INR-DOM shows the lowest re-
construction errors using CD, even with previously unseen
objects, as illustrated in Fig. 5. Remarkably, INR-DOM
outperforms baselines on unseen objects more effectively than
baselines do on seen objects. Further, INR-DOM achieves
superior performance without structural prior Ly, exceeding
all baselines. In addition, we assess performance using EMD,
which better accounts for global distribution differences crucial
for compressed or stretched DOs. The results with EMD align
with those of CD, confirming that INR-DOM provides robust
representations for tasks involving partially observable DOs.

To show the reconstruction quality, we present examples
from INR-DOM and Point2Vec in Fig. 6. INR-DOM accu-
rately reconstructs complete geometry from any observation
angle, whereas Point2Vec struggles with occluded, particularly
intertwined, parts. This highlights the effectiveness of our pre-
training method for DOs.

Next, we assess the consistent representation capabilities of
INR-DOM in the disentanglement task. Fig. 7 presents t-SNE
visualizations of latent state vectors from the fine-tuned INR-
DOM encoder ®,, showing consistent mapping of similar
configurations to adjacent regions and clear distinction of
intertwined state directions. For example, in Fig. 7 (a), all
disentanglement trajectories converge to the center region as
the task completes, with +180° and —180° twists placed on
opposite sides. This structured latent space allows the RL agent
to recognize subtle yet crucial variations, such as twist counts,
thereby improving success rates.
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Fig. 7: t-SNE visualization of latent state vectors z from the
fine-tuned encoder ®,. We also visualize rubber band meshes
corresponding to selected points to show how the latent state
effectively captures the entanglements of the band. The signed
numbers adjacent to the meshes represent twist angles and
directions.

We evaluate the task-relevant representation capabilities of
INR-DOM through three simulated DOM tasks. Table I shows
INR-DOM outperforms all other methods, achieving the highest
task-success rates, an average rate 40.3% higher than ACID, the
next best approach. INR-DOM exhibits superior performance in
the challenging disentanglement task, characterized by stretched
and randomly intertwined states. Notably, INR-DOM ¢, fine-
tuned only via RL, ranks second, demonstrating the efficacy
of contrastive learning in distinguishing state spaces for DOM.
In contrast, INR-DOM P, which lacked pre-training, does not
show performance gains, highlighting that the reconstruction-
based pre-training is crucial for effective initialization of
state-representation learning. In contrast, other recent DOM
frameworks underperform, primarily due to their inability to
capture local structures and their non-rigid transformations in
DOs.

Lastly, we analyze the lower performance of point-cloud
completion approaches, such as PCN, PointTr, and Point2 Vec.
Their embeddings capture overall structure but struggle with
continuous and fine deformations due to discrete sampling.
In contrast, our SDF loss with gradient regularization and
alignment not only allows adaptive resolution but also ensures
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Fig. 8: Comparison of accumulated reward curves during
training between INR-DOM and baseline models.

high accuracy in surface completion. Although the latest
approach, Point2Vec, successfully encodes local patches with
contextual information, our target objects lack explicit con-
textual patches and instead require accurate positional and
structural details. Due to its patch normalization, Point2Vec
loses such information, resulting in collapsed or overlapped
geometries.

B. Learning Curve Analysis

Fig. 8 shows the comparison of the accumulated reward
curves during training for the disentanglement task between
INR-DOM with variants and baseline methods. INR-DOM
shows superior learning efficiency, achieving the highest
accumulated rewards compared to all baselines. INR-DOM ¢
particularly ranks second in terms of the accumulated rewards
at the end, though it lags significantly behind INR-DOM.
This underscores that contrastive learning enhances effective
exploration in RL by fostering exploratory representations.
In contrast, INR-DOM? achieves only a 15% success rate
after 2.5 million training steps, indicating that exploratory
representations are challenging to enhance over steps without
a well-structured state space.

C. Evaluations in Real-World Settings

Finally, we demonstrate the real-world applicability of INR-
DOM across three DOM tasks. Fig. 9 (Top) displays the
Panda arm with a 3D-printed tip sealing a groove by dragging
and inserting a randomly placed red rubber band, effectively
targeting the protruding parts for pressing actions. Fig. 9
(Middle) shows the robot installing an O-ring onto a cylinder’s
groove, opening the ring, and leveraging one-sided contact
for insertion. Fig. 9 (Bottom) illustrates the Panda arm with
a long parallel-jaw gripper, tip-grasping and disentangling a
randomly intertwined rubber band between two poles. INR-
DOM successtully distinguishes the twisted direction as well as
effectively manipulates the arm, achieving a 90% task-success
rate in each task over ten trials with various initial conditions.
This robust performance, coupled with successful learning from
the fine-tuning of 20 episodes, confirms the applicability of
INR-DOM to various real-world DOM tasks.



Fig. 9: Demonstrations of INR-DOM’s manipulation capability in the three tasks. (Top) In sealing task, INR-DOM learns
to drag and insert a rubber band into a groove. (Middle) In installation task, INR-DOM learns to install an O-ring onto a
cylinder’s groove. (Bottom) disentanglement task, INR-DOM learns to disentangle the band between two poles by precisely

identifying the twisted status.

In addition, we compare INR-DOM with SERL, a repre-
sentative image-based manipulation method on the real-world
disentanglement task. To increase task difficulty, we extend
the pole distance to stretch the bands, resulting in tighter
intersections. SERL uses an RGB camera, whereas our method
relies on a depth camera. As shown in Table II, INR-DOM
successfully distinguishes between £180° twist directions,
while SERL fails due to visual ambiguities at the intersecting
bands (see Fig. 10).

TABLE II: Comparison of task success rates [%] between an
SERL image-based method and our method in the disentan-
glement task over 20 trials.

Model
SERL

Rate [%] | Model
55% | INR-DOM

Rate [%]
80%

Fig. 10: Visual ambiguity in RGB vs. point cloud observations
for —m and 7 twist configurations.

V1. CONCLUSION

We introduced an implicit neural representation learning
method for elastic deformable object manipulation (INR-
DOM). INR-DOM models consistent and occlusion-robust

state representations associated with partially observable elastic
objects by learning to reconstruct a complete and implicit
surface represented as a signed distance function. To obtain
task-relevant state representations and manipulation policy,
INR-DOM fine-tunes its internal encoder to have exploratory
representations through RL-based contrastive learning. The
statistical evaluation shows that our method outperforms state-
of-the-art baselines in terms of reconstruction error and task
success rate on novel objects and manipulation settings. We
successfully demonstrate the proposed INR-DOM transfer into
real-world DOM tasks.

VII. LIMITATIONS

« Deformable linear object: Our studies focus on evaluating
deformable linear objects, such as rubber bands, though the
usage is not limited to specific shapes. Although skeleton
loss L;xe; may reduce its applicability, 3D skeletonization
is generalizable to any volumetric object. Extending this
method to a variety of deformable object types remains a
goal for future research.

« Segmented observation: The performance of INR-DOM de-
pends on the accuracy of the point-cloud segmentation model.
This dependency makes INR-DOM vulnerable to errors in
the segmentation process, which affects the robustness and
reliability of the task outcomes. Future improvements should
involve processing the entire depth image and automatically
focusing attention on the target deformable object.

« Single task: The fine-tuning process relies on a specific
manipulation task which may limit the model’s applicability
to other scenarios. Moreover, INR-DOM’s design focuses
exclusively on a single deformable object manipulation and



does not account for scenarios with multiple interacting
objects, common in complex environments. However, the
architecture does not inherently restrict itself to single-
task learning. The adoption of multi-task reinforcement
learning [7] or few-shot policy generalization [42] extends
beyond the scope of this work. Expanding to multitask RL
approaches is our next objective.

e Dynamic interaction: This work does not extensively
investigate the dynamics of interaction between the robot
and deformable, particularly stretchable objects. The manipu-
lation tasks focus primarily on the final outcomes of actions,
rather than on modeling the interactive dynamics essential
for tasks that require continuous adjustments based on real-
time feedback. This limitation may restrict the applicability
of INR-DOM to more interactive and dynamic tasks, where
understanding and adapting to ongoing changes during
manipulation are crucial.
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