Robotics: Science and Systems 2025
Los Angeles, CA, USA, June 21-25, 2025

A Biconvex Method for Minimum-Time Motion
Planning Through Sequences of Convex Sets

Tobia Marcucci, Mathew Halm, William Yang, Dongchan Lee, and Andrew D. Marchese
Amazon Robotics
{tobmar,mshalm, yangwilm, ldc, andymar}@amazon.com

Abstract—We consider the problem of designing a smooth
trajectory that traverses a sequence of convex sets in minimum
time, while satisfying given velocity and acceleration constraints.
This problem is naturally formulated as a nonconvex program.
To solve it, we propose a biconvex method that quickly produces
an initial trajectory and iteratively refines it by solving two
convex subproblems in alternation. This method is guaranteed to
converge, returns a feasible trajectory even if stopped early, and
does not require the selection of any line-search or trust-region
parameter. Exhaustive experiments show that our method finds
high-quality trajectories in a fraction of the time of state-of-the-
art solvers for nonconvex optimization. In addition, it achieves
runtimes comparable to industry-standard waypoint-based mo-
tion planners, while consistently designing lower-duration trajec-
tories than existing optimization-based planners.

1. INTRODUCTION

Selecting the most effective motion-planning algorithm for
a robotic system often requires balancing three competing
objectives: reliability, computational efficiency, and trajectory
quality. Consider Sparrow, the robot arm in Fig. 1 that sorts
individual products into bins before they get packaged in
the Amazon warehouses. The algorithms that move Sparrow
must be extremely reliable, as these robots handle millions of
diverse products every day, and each failure requires expensive
interventions. They must be efficient, since every millisecond
spent planning is taken away from other crucial computations,
and limits the robot reactivity to sensor observations. Finally,
they should generate trajectories that push the robot to its
physical limits, so that the work-cell throughput is maximized
and the hardware is fully utilized. Unfortunately, general-
purpose methods for motion planning do not excel in all of
these areas at once.

Sampling-based methods like PRM [18], RRT [19], and
their asymptotically optimal versions [17] can be fast enough
for real-time applications. They are highly parallelizable [38]
and can run on a GPU [2, 31]. They are also reliable in low-
dimensional spaces, where dense sampling is computationally
feasible. However, they become significantly less effective as
the space dimension grows. Additionally, although their kino-
dynamic variants support differential constraints [20, 16, 22],
sampling-based methods remain considerably less practical
for designing smooth continuous trajectories than producing
polygonal paths.

Trajectory-optimization methods based on nonconvex pro-
gramming [1, 33] scale well to high-dimensional spaces
and explicitly factor in the robot kinematics and dynamics.

<k

gy |

Fig. 1. Sparrow robot sorting products into bins in the Amazon warehouses.

Over the years, these techniques have become significantly
faster [39, 13] and, with the advent of specialized GPU
implementations [35], they are now even viable for real-time
motion planning. Despite these advances, the main limitation
of trajectory optimization remains its reliance on local solvers,
which require extensive parameter tuning, handcrafted warm
starts, may suffer from inconsistent runtimes, and can even fail
to find a solution. While various strategies have been proposed
to address these issues [37, 15, 49, 14], trajectory optimization
remains often too brittle for industrial deployment.

Recently, a new family of motion planners that com-
bine sampling-based and trajectory-optimization methods has
stemmed from [8]. First, the collision-free space is decom-
posed into safe convex sets. This decomposition can be com-
puted using region-inflation algorithms [7, 6, 45, 42, 47, 46]
and tailored sampling strategies [44]. For UAVs, also safe
flight corridors are widely used [4, 24, 47]. Then, the contin-
uous trajectory is optimized in conjunction with the discrete
sequence of sets to be traversed. The work in [27] has shown
that, for a limited class of costs and constraints, this discrete-
continuous problem is solvable through a single convex pro-
gram, using the framework called Graphs of Convex Sets
(GCS) [29, 26]. The extensions of GCS in [30, 5] have enabled
the solution of larger problems in a fraction of the time. The
motion planner in [28] tackles a similar problem, but first
selects a discrete sequence of safe sets using a heuristic, and
later optimizes a continuous trajectory within these fixed sets.
This split sacrifices optimality but preserves completeness, and

enables support for a broader range of costs and constraints.

This paper focuses on a problem similar to the one in
the second phase of [28]: we seek a trajectory that traverses
a sequence of convex sets in minimum time, and satisfies
convex velocity and acceleration constraints. This is a purely
continuous problem, but is nonconvex due to the joint opti-
mization of the trajectory shape and timing. Our contribution
is a biconvex method, which we call Sequence of Convex
Sets (SCS), that solves this problem effectively. SCS starts
by quickly producing a feasible trajectory. Then, it alternates
between two convex subproblems. The first is obtained from
the original nonconvex problem by fixing the points where the
trajectory transitions from one safe set to the next. The second
is derived similarly, by fixing the transition velocities.

As most multi-convex methods [34], SCS is heuristic: it
typically finds high-quality trajectories quickly, but might not
converge to the problem optimum, or within a given distance
of it. On the other hand, SCS is complete (i.e., guaranteed to
find a feasible solution). Its main algorithmic advantage is that
the two convex subproblems are conservative approximations
of the original nonconvex problem. This allows us to take
whole steps in the direction their optima without using a line
search or a trust region, as done in [28] and other trajectory-
optimization methods [33, 14]. This makes the convergence of
SCS fast and monotone, and eliminates any parameter tuning.
Furthermore, it makes our algorithm anytime (it returns a
feasible trajectory even if stopped early).

We show that SCS consistently finds high-quality trajec-
tories in a fraction of the time of the state-of-the-art solvers
SNOPT [11] and IPOPT [41]. We also demonstrate SCS on the
task of transferring packages between bins using two Sparrow
robots. In this task, SCS designs lower-cost trajectories than
the trust-region method from [28], and achieves runtimes
comparable to waypoint-based methods that are commonly
used in industry.

A. Outline

This paper is organized as follows. In §II, we state our
motion-planning problem and, in §III, we give a high-level
overview of SCS. The details on the two convex subproblems
and the initialization step are illustrated in §IV, §V, and §VL
Up to this point, we work only with infinite-dimensional
trajectories. In §VII, we show how our method can be effi-
ciently implemented on a computer by using piecewise Bézier
curves as a finite-dimensional trajectory parameterization. The
strengths and limitations of SCS are discussed in §VIII and
§IX. In §X, we demonstrate the effectiveness of SCS through
a variety of numerical experiments.

B. Notation and convexity background

In this paper, the variable ¢ is always understood to be a
positive integer. Thus, when saying for all ¢ < I we mean
for all ¢ € {1,...,I}. Conversely, the variable & is always
nonnegative, and & < K is shorthand for k£ € {0,..., K}

We use calligraphic letters to represent sets, and bold letters
for vectors, vector-valued functions, and matrices. We use the

Fig. 2. Example of the motion-planning problem. The safe convex sets to be
traversed are Q1,. .., Q4. The trajectory q : [0, 7] — R? is shown in blue.
The initial and terminal points are ¢init and @rerm. The times to, ..., ¢4
determine the trajectory piece assigned to each safe set.

notation AS = {Mx : & € S} to denote the product of a
scalar A € R and a set S C R™. We will use multiple times
the fact that if a set S is convex then also the set {(x, \) :
A >0 x e AS} is convex [3, §2.3.3]. The latter set is easily
computed in practice: for instance, if S is a polytope of the
form {x : Ax < b}, then the condition & € AS is equivalent
to Ax < Ab. A similar formula can be used for any set S
described in standard conic form [29, Ex. 4.3].

II. PROBLEM STATEMENT

We seek a trajectory that traverses a sequence of convex sets
in minimum time, subject to boundary conditions and convex
velocity and acceleration constraints. Fig. 2 shows a simple
instance of this problem, and illustrates our notation.

The sequence of safe convex sets is denoted as

Ql;"'anana

where I is the number of sets and n is the space dimension.
Each set is assumed to be closed and intersect with the next:

Q, N Qi1 # 0,

The trajectory is represented by the function q : [0, 7] — R™,
with time duration 7" > 0. The initial g(0) and terminal point
q(T) are fixed to ginit € Q1 and Grerm € Q7. respectively.

The safe sets must be traversed in the given order, and no set
can be skipped. We denote with ¢, < ... < {; , the transition
times at which the trajectory moves from one set to the next.
For simplicity of notation, we also let o = 0 and ¢; = T. We
then require that the trajectory g(t) lie in the set Q, for all
tC [tifl,ti] and 7 < [.

The trajectory velocity and the acceleration are denoted
as q(t) and ¢(t), respectively. The first is assumed to be
continuous, while the second is allowed to have discontinuities
(i.e., q is continuously differentiable). The initial ¢(0) and
terminal ¢(7") velocities are fixed to zero. The trajectory
derivatives must satisfy the constraints

qity eV, (1) € A

at all times ¢ € [0, 7. The sets V and A are closed and convex,
and contain the origin in their interior:

1< T—1.

0 € int(V), O € int(A).

Among the trajectories that verify the constraints above, we
seek one of minimum time duration 7. This leads us to the
following optimization problem:

minimize T (1a)
subject to q(0) = ginit, (1b)
q(T) = grerm, (1¢)

q(0) = q(T) =0, (1d)

q(t) € Qi, teftiat], i<I, (le)

q(t)y eV, t e (0,1, (1f)

G(t) c A, t e (0,1, (1g)

t <ty i <T—1, (1h)

tp =0, tr ="1T. (1i)

The variables are the trajectory q, the duration T, and the times
to,...,tr. The first makes the problem infinite dimensional.

The problem data are the endpoints @init and Qerm, the
safe sets Qy,...,Qs, and the constraint sets }V and A. The
differentiability constraint on the function g is implicit here.

A. Feasibility

With the next proposition, we establish the feasibility of
problem (1). As in [28, §1I-C], we do so by constructing a
polygonal (i.e., piecewise linear) trajectory that satisfies all
the problem constraints. A similar construction will be used
to initialize our method.

Proposition 1. If the problem data satisfy the assumptions
listed above, then problem (1) is feasible.

Proof: We construct a trajectory g that starts at g(to) =
Qinit, terminates at q(t;) = Qierm, and interpolates any
transition points q(t;) € Q;NQ;41 fori < I—1.Fori < I, the
trajectory piece within the set Q; connects g(t;—1) and q(;)
through a straight line. Thus, the overall trajectory stays within
the union of the safe sets and traverses them in the desired
order. We let the times #g,...,%; be well spaced, so that the
velocity ¢ and the acceleration ¢ can be small enough to lie in
the constraint sets VV and A at all times (recall that these sets
contain the origin in their interior). Finally, we require that
the velocity be zero at each time tg, ..., ;. This makes the
velocity continuous, even though the trajectory is polygonal.
The resulting trajectory is feasible for problem (1).]

B. Positive traversal times

According to constraint (1h), the traversal time T; = t; —
t;_, of a safe set Q; can be zero. This can be optimal if, e.g.,
a safe set is lower dimensional or our trajectory touches it
only at an extreme point. However, our biconvex method will
assume that the traversal times T are strictly positive, for all
i < I. The following is a simple sufficient condition on the
problem data that ensures this. It forces our trajectory to cover
a nonzero distance within each safe set.

Assumption 1. The boundary points and the safe sets are such
that Ginit ¢ Q2, Gterm §§ Qlfl, and

QiNQit1NQiro =0, i< T -2,

We will let this assumption hold throughout the paper,
so that zero traversal times will always be infeasible in our
optimization problems. Alternatively, our algorithm can be
easily modified to incorporate a small lower bound on the
traversal times. For most practical problems, this modification
has a negligible effect on the optimal trajectories.

II1. BICONVEX METHOD

We give a high-level overview of our biconvex method here,
deferring the details to later sections.

The observation at the core of SCS is that problem (1)
reduces to a convex program if we fix either the rransition
points or the transition velocities:

q(tl),...,q(tlfl), q'(tl),...,q(tlfl).

(More precisely, this is true modulo a small conservative ap-
proximation of the acceleration constraint (1g), which relies on
an estimate of the traversal times.) In these convex programs,
the transition points or velocities are fixed, but the rest of the
trajectory is optimized.

This observation motivates the method illustrated in Fig. 3
for solving problem (1):

o Initialization (Ist panel). We compute a polygonal tra-
jectory that connects the initial gjn;¢ and terminal point
Qterm, and has short time duration. This is designed
through a small number of convex programs.

o Fixed transition points (2nd panel). We fix the transition
points q(t1), ..., g(t;—1) of the polygonal trajectory, and
use its traversal times 74, ..., T to approximate the ac-
celeration constraints. This leads to a convex subproblem
that improves the polygonal trajectory.

o Fixed transition velocities (3rd panel). We fix the transi-
tion velocities ¢(t1),...,q(t7—1) of the improved trajec-
tory, and use its traversal times 77, ..., T7 to approximate
the acceleration constraints. This leads to another convex
subproblem that further improves our solution.

o Iterations (4th panel). We keep refining our trajectory by
solving the two convex subproblems in alternation.

o Termination (5th panel). We terminate when the relative
objective decrease of an iteration is smaller than a fixed
tolerance € € (0, 1]. The objective decrease is measured
between any two consecutive subproblems of the same
kind (fixed transition points or velocities).

The following sections detail our algorithm. We first illus-
trate the subproblem with fixed transition velocities, then the
one with fixed transition points, and lastly the initialization
step. This order simplifies the exposition, although it is the
opposite order of how these steps appear in our algorithm.

IV. SUBPROBLEM WITH FIXED TRANSITION VELOCITIES

This section illustrates the convex subproblem with fixed
transition velocities q(#1),...,q(t;—1). First, we formulate
problem (1) as a more tractable nonconvex program. Then,
we convexify this program by fixing the transition velocities
and approximating the acceleration constraint (1g).

Initialization

Fixed transition points

Fixed transition velocities

Fixed transition points

Termination

Fig. 3. Steps of SCS during the solution of the problem in Fig. 2. In the
initialization (1st panel), we quickly compute a feasible polygonal trajectory.
Then, we alternate between a convex subproblem with fixed transition points
and one with fixed transition velocities (2nd to 4th panels). We terminate when
the cost decrease of an iteration is small enough (Sth panel). The trajectory
computed at each iteration (solid blue) is overlaid on the trajectory from the
previous iteration (dashed red).

A. Change of variables

We parameterize the trajectory within each safe set Q; using
a function g; : [0, 1] — R™ and a scalar T; > 0. These decide
the trajectory shape and traversal time, respectively. We also
define the function h;(t) = (t—t;_1)/T; that maps the interval

of time [t; 1,t;] assigned to the set Q; to the unit interval
[0,1]. This allows us to reconstruct our trajectory as

q(t) = qi(hi(t)),

for all ¢t € [t;_1,t] and ¢ < I. By differentiating the last
equality, we obtain the following expressions for the trajectory
velocity and acceleration:

_ G@i(ha(t))

q(t) T

which hold for all ¢ € [t;_1,¢;] and i < 1.

B. Nonconvex formulation

We express problem (1) in terms of the new variables. The
objective function (la) simply becomes

ST @

The boundary conditions in (1b) to (1d) become

Q1(0) = {init, ql(l) = Qterm; Q1(0) - ql(l) - 0; (3)

where in the last constraint we canceled the traversal times 77
and 77 since the right-hand side is zero. The next conditions
ensure that the trajectory and its derivative are continuous:

qi(1) = qi+1(0), 1< T—1, (4a)
gi(1) _ %H(O), i<I—1. (4b)
T; Tiq
The constraints in (le), (1f), and (1g) become
qi(s) € Qi, sel01], i<, (5a)
ql(s) € T;V, RS [Oa 1]5 1 S Ia (Sb)
di(s) € TP A, sef01],i<I, (50

where we multiplied both sides of the velocity and the
acceleration constraints by 7; and T7?, respectively. Finally,
constraint (1h) results in

1; >0, 1<, (6)

where zero traversal times are excluded because of Assump-
tion 1.
Overall, problem (1) is reformulated as

minimize (2)

. (7
subject to (3) to (6),

with variables g; and T} for 7 < I. The objective and most
of the constraints of this problem are linear. The position
constraint (5a) is convex. As mentioned in §I-B, also the
velocity constraint (5b) is convex. On the other hand, the
velocity continuity (4b) and the acceleration constraint (5c)
are nonconvex. Therefore, the overall problem is nonconvex.

C. Convex restriction

The next step is to construct a convex restriction (informally,
a convex inner approximation [9, §2.1]) of the nonconvex
constraints of problem (7). To do so, we assume that the
transition velocities have fixed value,
(j(ti):vi, ZSI*L
and that we are given nominal values 7; > 0 for the traversal
times 7T;, for all ¢ < 1.
With the transition velocities fixed, the velocity-continuity
constraints (4b) become linear:
g;i(1) = v, 1}, Gi11(0) = v;Tj41, i<I-1. (8
To approximate the acceleration constraint (5c), we underesti-

mate the convex function 77 with its linearization around the
nominal value 7;:

12 > T,21; - T)). ©)

We then replace (5c) with

Gi(s) € T,(2T; — T)) A,

2T, > T,

1 < 1.

(10a)
(10b)

These constraints are convex (see again the discussion in §I-B).
Moreover, they imply (5c) because of the inequality (9) and
the assumption that the constraint set 4 contains the origin.

Collecting all the pieces, we have the following convex
restriction of problem (7):

minimize (2)
subject to (3) to (5) except (4b) and (5c),
(8) and (10).

(1

Constraint (6) is omitted here since it is implied by (10b).
Given a feasible trajectory with transition velocities
v1,...,v7—1 and traversal times Tl, . ,Tl, this problem
yields another feasible trajectory with lower or equal cost.

V. SUBPROBLEM WITH FIXED TRANSITION POINTS

We now illustrate the convex subproblem with fixed tran-
sition points q(t1),...,q(tr—1). In the previous section, we
parameterized the trajectory at the “position level” using the
functions q; for 7 < I. The velocity and acceleration were
G;/T; and §;/T?, respectively. This choice made all the posi-
tion constraints convex, and gave us some nonconvex velocity
and acceleration constraints. Here, we parameterize the trajec-
tory at the “velocity level” using the functions 7; = q;/T;.
We recover the position as T;r; and the acceleration as v;/T;.
Furthermore, we work with the reciprocals S; = 1/T; of the
traversal times. This yields a problem equivalent to (7) where
all the velocity constraints are convex, and the nonconvexities

are only at the position and acceleration levels:

minimize (12a)
i=1 """

subject to 71(0) = S1Ginit, (12b)
r1(1) = Srqserm, (12¢)
71(0) = 71(1) = 0, (12d)
7§)f§%2, i<I-1, (12¢)
7i(1) = 7+1(0), i< —1, (121)
ri(s) € 5;Q;, sel0,1], i<I, (12g)
r(s) €V, se€[0,1], i <I, (12h)
7#:(s) € (1/S:)A, se[0,1], i <I, (120)
S; >0, 1< 1. (125)

Observe that the objective of this problem is still convex, even
though we work with the traversal-time reciprocals. The only
nonconvex constraints are the position continuity (12e) and the
acceleration constraint (12i), which have the same structure as
the constraints (4b) and (5c), respectively.

We proceed as in the previous section to construct a convex
restriction of problem (12). This time we assume that the
transition points are fixed:

q(t;) = p, 1< T —1.

This makes the position continuity (12e) linear:

’I"Z(l) = pzSz; ’I"i+1(0) = piSfL'Jrl, 7 S I — 1 (13)
To approximate the acceleration constraint (12i), we assume
again that we are given nominal values 7; > 0 of the traversal
times. We underestimate the convex function 1/S; with its

linearization around the nominal point:

1 - -
— >T(2-TS,).
5, = Il)

This gives us the following convex restriction of the acceler-
ation constraint:

Fi(s) e T2 —T;8)A, sel0,1], i<,
2>1T,9;, i<I.

(142)
(14b)

Overall, the subproblem with fixed transition points is

minimize (12a)
subject to (12b) to (12j) except (12e) and (121),
(13) and (14).

(15)

This convex subproblem allows us to improve a given feasible
trajectory with transition points p1,...,pr—1 and traversal
times 71%,...,77.

VI. INITIALIZATION WITH POLYGONAL TRAJECTORY

In the initialization of SCS we quickly identify a low-
cost feasible trajectory for problem (1). As in the proof of
Proposition 1, a natural candidate for this role is a polygonal
trajectory that comes to a full stop at each “kink.”

The shape of our polygonal trajectory is computed through
the following convex program:

-1
minimize Z lpit1 — pill2 (16a)
i=0
subject t0 Po = Ginit, (16b)
Pr = GQterm, (16C)
pi € QiNQit1, t<I-1 (16d)
Here the decision variables are the points py, ..., p; that the

trajectory interpolates through straight lines (black dots in
the first panel of Fig. 3). The objective minimizes the total
Euclidean length of the trajectory.

Next, we select the vertices of the polygonal trajectory, i.e.,
the points p; that do not lie on the line connecting p;_1 to
Ppit1- (This condition can be efficiently checked using the
triangle inequality.) For ease of notation, we also include p,
and py in the list of vertices. As an example, in the top panel
of Fig. 3, the only point that is not a vertex is p; (the second).

The initialization is completed by connecting each pair
of consecutive vertices through a minimum-time trajectory
segment, with zero velocity at the endpoints. While these
vertex-to-vertex problems could be solved in closed form when
working with infinite-dimensional trajectories, in practice, we
use a finite-dimensional trajectory parameterization, and it is
convenient to formulate them as convex programs. To this
end, let us assume that we are connecting two vertices that
are consecutive points p;_; and p;. (If not, we can proceed
as follows and, afterwards, split the designed trajectory into
pieces.) The vertex-to-vertex problem can be formulated as a
convex program similar to the nonconvex problem (12):

minimize 7; (17a)
subject to 7;(0) = S;pi_1, (17b)
r;(1) = Sipi, (17¢)
7:(0) = 7;(1) =0, (17d)
7(s) €V, s € [0,1], (17e)
7.(s) € T, A, s €0,1], (17f)
T, > 1/S;, Si>0. (17g)

The variables are the traversal time 7;, its reciprocal .S;, and
the function »; : [0,1] — R™ (which represents q;/7T;). The
last constraint relaxes the nonconvex equality 7; = 1/S; to a
convex inequality. However, this relaxation is lossless: in fact,
given any feasible solution T, S;, and 7;, the solution 7; = 7}
S; = 1/T;, and r; = #;/(1;S;) is also feasible, has equal cost,
and satisfies 7; = 1/.5;. In practice, we solve problem (17) as a
one-dimensional problem, leveraging the fact that its optimal
trajectories are straight lines. This accelerates our algorithm
when working in high-dimensional spaces.

Y2
71
Y4

Y
73

Fig. 4. A two-dimensional Bézier curve with control points o, . .
area shaded in yellow is the convex hull of the control points.

.,v4. The

VII. NUMERICAL IMPLEMENTATION

The numerical implementation of our method requires a
finite-dimensional trajectory parameterization. In some special
cases, it is possible to use a parameterization that captures
the infinite-dimensional optimum of problem (1). However, in
general, optimal trajectories can be quite complex, and some
approximation error is unavoidable.

Bézier curves have been widely used in motion planning,
and enjoy several properties that make them particularly well
suited for our problems. In this section, we first collect some
basic definitions and properties of Bézier curves, follow-
ing [28, §V-A]. Then we show how the infinite-dimensional
problems in the previous sections can be translated into
efficient finite-dimensional programs.

A. Bézier curves

Bézier curves are constructed using Bernstein polynomials.
The Bernstein polynomials of degree K are defined over the
interval [0,1] C R as follows:

Br(s) = (2()5’*(15)1(’*, kE<K. (18)
(Recall that in this paper %&£ is nonnegative and & < K is
shorthand for k& € {0,...,K}.) The Bernstein polynomials
are nonnegative and, by the binomial theorem, sum up to
one. Therefore, the scalars fSy(s),. .., k(s) represent the
coefficients of a convex combination for all s € [0,1]. We
use these coefficients to combine a given set of control points
~o,---,Yrx € R", and obtain a Bézier curve:

K
Y(s) =D Brls)m. (19)
k=0
The function = : [0,1] — R"™ is a (vector-valued) polynomial
of degree K. Fig. 4 shows a Bézier curve of degree K = 4
in n = 2 dimensions.
The following are a few selected properties of Bézier curves.
We refer to [10] for a more comprehensive list.

Property 1 (Derivative). The derivative 7§ of the Bézier curve
~ is a Bézier curve of degree K — 1. Its control points are
computed via the linear difference equation

Yo = K(Yer1 —), E<K -1

Property 2 (Endpoint). The Bézier curve - starts at its first
control point and ends at its last control point:

~(0) = 7o, ~(1) = vxk.

Property 3 (Convex hull). The Bézier curve = is contained
in the convex hull of its control points at all times:
s €[0,1].

7(5) € COHV({VO) R a’yK})a

This convex hull is shaded in yellow in Fig. 4.

B. Finite-dimensional trajectory parameterization

When solving the programs (11), (15) and (17) numerically,
we restrict our trajectory segments (q; or r;) to Bézier
curves of degree K, and enforce all the necessary constraints
leveraging the properties above. Property 1 tells us that the
trajectory velocity and acceleration are also piecewise Bézier
curves, of degree K — 1 and K — 2, respectively. Using Prop-
erty 2, we can then easily enforce any boundary or continuity
condition by constraining the first and last control points of our
Bézier curves. The containment of a trajectory segment (or its
derivatives) in a convex set can be enforced using Property 3:
if all the control points of a Bézier curve lie in a convex
set, then so does the whole curve. In the initialization step,
we might also have to split a trajectory segment, obtained by
solving problem (17), into multiple pieces. This is easily done
by using De Casteljau’s algorithm [10, §2.4].

For completeness, in §A, we report the finite-dimensional
versions of the convex programs (11), (15), and (17). We
also report the finite-dimensional version of the nonconvex
program (7), which will serve as a baseline in the experiments
below.

VIII. STRENGTHS

This section illustrates the main strengths of SCS.

A. Convergence and completeness

Under our assumptions on the problem data, SCS is guaran-
teed to converge monotonically. In fact, the initialization step
must succeed, since problems (16) and (17) are feasible and
admit an optimal solution. Then, the convex subproblems (11)
and (15) are guaranteed to produce trajectories that are not
worse than the ones they are initialized with. This makes our
algorithm complete (guaranteed to find a solution) and anytine
(returns a feasible solution even if stopped early).

These results extend to the finite-dimensional implemen-
tation of SCS from §VII, provided that our Bézier curves
have degree K > 3. This minimum degree is sufficient for
our trajectory segments to represent straight lines with zero
endpoint velocity, and ensures the success of the initialization
step. After that, the biconvex alternation can only improve our
finite-dimensional trajectory. Notably, our piecewise Bézier
trajectories satisfy the constraints of problem (1) at all contin-
uous times, rather than at a finite set of times, as is common
for sampling-based and trajectory-optimization methods.

B. Optimality

SCS is heuristic: it is not guaranteed to find an optimal
solution (global or local), or to converge within a fixed distance
from one. However, it typically finds high-quality trajectories
in a fraction of the time of state-of-the-art solvers (see the
experiments in §X-B). The trajectory parameterization using
Bézier curves can also affect the optimality of our trajectories.
In this direction, we remark that a Bézier curve is as expres-
sive as any polynomial of equal degree [10, §1.3]. Another
source of suboptimality are the conservative convex constraints
obtained using Property 3. However, these constraints get
arbitrarily accurate as the degree K increases. Potentially,
we could also use exact containment conditions like sums of
squares [32, 8], but this would make our programs much more
expensive to solve.

C. Computational efficiency

The runtime of an iteration of SCS is polynomial in all
the relevant problem data, and linear in the number I of
safe sets and the degree K of the Bézier curves. In fact,
the subproblems (11) and (15) have banded structure, and are
solvable in a time that is linear in I and K (see, e.g., [43]).
Problems (16) and (17) are also banded, and solvable in a time
that is linear in I and K, respectively. In addition, the latter
problem is solved at most I times.

The overall time complexity of SCS is harder to quantify.
However, in practice, we observed that the number of iterations
necessary for convergence is often insensitive to / and K (see
the experiments in §X-B). This leads to overall runtimes that
are often linear in / and K.

D. Limited parameter tuning

SCS does not require the tuning of any step-size or trust-
region parameter. The only numerical values set by the user
are the degree K of the Bézier curves and the convergence
tolerance e. The first should be at least three to ensure
convergence, and can be increased to improve the solution
quality. For the second, we have found that ¢ = 0.01 is
sufficiently small for most problems.

E. Advantages over existing methods

As discussed in §I, SCS addresses a problem similar to the
one in [28, §V]. Compared to that approach, SCS applies to
a narrower set of motion-planning problems, but converges
much faster (see experiments in §X-C). This is because its
subproblems are convex restrictions of the original nonconvex
program, and at every iteration we can take a full step towards
their optima.

The GCS motion planner from [27] requires a convex
trajectory parameterization within each safe set. However, as
also seen in this paper, this is very challenging when we
optimize both the trajectory shape and timing, and imposes
strict limitations on the types of costs and constraints that GCS
can handle. For instance, the method in [27] can only enforce
coarse approximations of the acceleration constraints (1g).
The recent work [48] proposes a semidefinite relaxation for

these time-scaling problems, broadening the list of costs and
constraints that GCS can accommodate but sacrificing the
algorithm completeness. Overall, GCS and SCS can be viewed
as complementary methods, and can be combined in hybrid
approaches where GCS provides an approximate solution to
the high-level discrete-continuous problem and SCS refines
the trajectory within a fixed sequence of safe sets.

Optimization problems similar to the one considered in this
paper are also faced by UAV motion planners based on safe
flight corridors [4, 24, 47]. However, these planners typically
bypass the problem nonconvexity by fixing the corridor traver-
sal times using heuristics, while here we optimize these times
explicitly.

The main advantage of SCS over general-purpose methods
for trajectory optimization is its reliability and completeness.
Furthermore, SCS can generate high-quality trajectories for
complex planning problems within a few milliseconds (see
§X-C). In contrast, trajectory-optimization methods require
a GPU to achieve comparable runtimes [35]. Finally, most
common trajectory-optimization methods do not take full
advantage of the structure of minimum-time problems.

The minimum-distance problem (16), solved to initial-
ize SCS, is similar to the problem addressed by common
sampling-based methods. This step is straightforward for us
since we assume that the free space is represented as a
sequence of convex sets. Contrarily, sampling-based methods
rely solely on a collision checker, which makes finding a
minimum-distance curve significantly more challenging. The
work [46] explores a combined approach, where a sampling-
based method is used to find a polygonal curve that is later
inflated into a sequence of safe sets for SCS to plan through.

Finally, various convex relaxations and reformulations of
time-optimal control and trajectory-tracking problems have
been proposed over the years (see, e.g., [40, 23, 21, 25]). How-
ever, none of these methods applies directly to the problem of
designing trajectories through sequences of convex sets.

IX. LIMITATIONS

Our method has a few worth-noting limitations. First of
all, SCS is restricted to minimum-time problems. However, a
similar approach can be applied to problems with fixed final
time and cost function that penalizes the magnitude of the
trajectory velocity and acceleration.

SCS requires that the robot free space is described as a
sequence of convex sets. This description can be challeng-
ing to compute for high-dimensional problems and cluttered
environments. However, as mentioned in §I, many practical
methods for decomposing complex spaces into convex sets
are now available, and also GPU-based algorithms have been
recently developed [46].

The trajectories generated by SCS may have acceleration
jumps, which can make them difficult to track on real hard-
ware. A simple workaround is to add a smoothing step.
Alternatively, we can ensure that the trajectory acceleration (as
well as any higher-order derivative) is continuous by setting
it to zero at the transition times. This is easily seen to be

a linear constraint. A similar limitation is that SCS can only
handle constraints on the velocity and acceleration but not, for
example, on the trajectory jerk.

We have seen that SCS cannot handle problems where an
optimal traversal time 7; is zero (in which case the corre-
sponding variable S; in the subproblem with fixed transition
points (15) is infinity). Although Assumption 1 is sufficient to
rule out this scenario, some practically relevant problems do
not meet this assumption. In these cases, we can enforce an
artificial lower bound on the time spent in each safe set.

X. NUMERICAL EXPERIMENTS

We demonstrate SCS on three numerical experiments. First,
we conclude the simple running example in Fig. 2 and 3
by reporting its solution statistics. Second, we analyze the
performance of SCS as a function of multiple problem data,
and we compare it with state-of-the-art solvers for nonconvex
optimization. Finally, we demonstrate SCS on a minimum-
time package-transfer problem with two Sparrow robots, and
we benchmark it against other motion-planning methods.

The Python implementation of SCS used in the experiments
below is available at

github.com/TobiaMarcucci/scsplanning.

It is based on Drake [36], and uses the open-source solver
Clarabel [12] for the convex programs. All the experiments
are run on a laptop with Apple M2 Pro processor and 16 GB of
RAM. The solvers SNOPT [11] and IPOPT [41] are also called
through Drake’s Python interface (and are warm started with
the same polygonal trajectory as SCS).

A. Running example

We provide here the details of the running example illus-
trated in Fig. 2. The initial and terminal points are giniyy =
(0,0) and @term = (10, 1.5), respectively. The geometry of
the safe sets can be deduced from the figure. The constraint
sets)V and A are circles centered at the origin of radius 10
and 1, respectively. The trajectory in Fig. 2 has time duration
T = 7.45, and is designed by SCS with degree K = 5 and
termination tolerance £ = 0.01.

The curves in Fig. 3 represent the actual iterations of SCS.
The initial polygonal trajectory has time duration 7" = 12.49
(1st panel). This value decreases to 8.82 in the first subproblem
with fixed transition points (2nd panel), then to 8.06 and 7.51
in the subsequent subproblems (3rd and 4th panels). SCS
converges after solving only five subproblems.

As a baseline for SCS, we solve the finite-dimensional
version of the nonconvex program (7) with SNOPT and
IPOPT. This problem is stated in §A, see (20), and uses the
same trajectory parameterization as SCS. Both solvers yield
the trajectory duration 7" = 7.40, which is only 0.7% shorter
than ours. Our simple Python implementation of SCS takes
10 ms to converge, while SNOPT takes 21 ms and IPOPT
needs 261 ms. Note, however, that these solvers use smaller
termination tolerances than SCS. Increasing the optimality
tolerances of the nonconvex solvers does not reduce their

Fig. 5. Benchmark problem with I = 5 safe sets in » = 2 dimensions, with
m, = 4 facets each. The optimal trajectory is shown in blue.

runtimes significantly. Conversely, if we decrease the SCS
tolerance to, e.g., ¢ = 107, the objective gap between SCS
and the nonconvex solvers decreases to 0.1%, but the runtime
of SCS increases to 50 ms. This is typical for multi-convex
methods: they find high-quality solutions quickly, but can be
slow if we seek very accurate solutions [34].

B. Runtime analysis and comparison with nonconvex solvers

We analyze the runtimes of SCS, SNOPT, and IPOPT as
functions of several problem parameters: the number I of
safe sets, the number m of facets of each safe set, the space
dimension n, and the trajectory degree K. We show that,
across a wide range of problem instances, SCS finds low-cost
trajectories more quickly and reliably than the two state-of-
the-art solvers.

We construct an instance of problem (1) where each safe set
Q; represents one link of an n-dimensional staircase. The safe
sets are polytopes that approximate ellipsoids with increasing
accuracy as their number m of facets grows. Fig. 5 shows
an instance of this problem with the corresponding optimal
trajectory. In this instance, we have I = 5 safe sets in n = 2
dimensions, and each set has m = 4 facets (rectangular safe
sets). More details on the construction of these problems are
reported in §B.

We consider a first batch of instances where we let the
number I of safe sets grow from 3 to 3000, while we fix the
space dimension to n = 3, the number of facets to m = 6, and
the trajectory degree to K = 3. The top panel of Fig. 6 shows
the runtimes of SCS, SNOPT, and IPOPT. The two nonconvex
solvers return trajectories with equal cost, when SNOPT does
not fail or reach our time limit of 1 h (missing markers in the
figure). SCS designs trajectories that have slightly higher cost
(1.2% in the worst case). SCS is faster in almost all instances:
SNOPT and IPOPT have comparable runtimes only on the
smallest and largest problems, respectively. The runtimes of
SCS increase a little more than linearly: as the number of safe
sets grows by a factor of 1000, its runtimes increase by 3060.
The number of subproblems necessary for SCS to converge
with tolerance £ = 0.01 ranges between 5 and 8.

The second panel in Fig. 6 shows the effects of increasing
the number m of facets of the safe sets from 3 to 3000, while

—eo— 5CS SNOPT —&— JPOPT

Solution time (s)
—
=
[=]

100 3.100 102 3.10° 10° 3.10°

Safe sets I

10°%
107 5
101_

1075

Solution time (s)

3.100 102 3.10° 10° 3-103

Facets of safe sets m

3.100 10!

101_

10° 5

1071_

Solution time {s)

1072

8 1|0 12 14 16 18 20
Space dimension n

o
S
(o)

102
10" 5
100_

o _//Q/”.——'*‘—_‘

3 6 9 12 15 18 21 24 27 30
Trajectory degree K

Solution time (s)

Fig. 6. Comparison of SCS with the solvers SNOPT and TPOPT. The
runtimes of the three methods are analyzed as functions of multiple problem
data. Missing markers correspond to solver failures. The runtimes of SCS
grow almost linearly in each experiment (note that the horizontal axis has
logarithmic scale in the first two panels and linear scale in the last two).

keeping I = 20, n = 2, and K = 5. In this case, SCS and
the nonconvex solvers find identical trajectories (despite the
larger termination tolerance of SCS). SCS solves each problem
much faster than SNOPT and IPOPT, and its runtimes increase
sublinearly with m (as the number of facets grows by 1000, the

Fig. 7. Sparrow robots that move packages between bins in minimum time.

runtime grows by 210). The number of subproblems necessary
for SCS to converge is equal to 5 for every value of m.

In the third panel of Fig. 6, we let the space dimension
n grow from 2 to 20, while we set I = 20, m = 2n, and
K = 3. The nonconvex solvers find again identical trajectories,
and SCS has a maximum cost gap of 3.2%. SCS is again the
fastest, and its runtimes increase a little more than linearly
with n (the space dimension grows by 10 and the runtimes
by 17.6). The number of SCS subproblems ranges between 5
and 16.

In the fourth panel of Fig. 6, we let I =20, m =6, n =3,
and increase the degree K from 3 to 30. All the methods return
similar trajectories: the maximum cost difference between SCS
and the nonconvex solvers is 0.4%. SCS is the fastest and its
runtimes grow linearly with K (the degree increases by 10
and the runtimes by 9.9). IPOPT performs better than SNOPT,
which also fails in one instance. SCS always converges after
5 subproblems.

C. Minimum-time package transfer with two Sparrow robots

We use SCS to plan the motion of two Sparrow robots
that transfer packages between bins in simulation. We also
benchmark SCS against the trust-region method proposed
in [28, §V], as well as a simple waypoint-based motion planner
representative of those commonly used in industry.

The package-transfer task is illustrated in Fig. 7. The two
robots face each other, and between them is a table with two
bins. One bin contains ten packages and the other is empty.
The goal is to move all the packages in the first bin to the
second as quickly as possible. The final package positions in
the second bin must mirror the initial positions in the first
bin. Packages are represented as axis-aligned boxes (these can
be the packages themselves, or bounding boxes of products
with more complex shape). The bins have side 0.6 and height
0.3, and the distance between their centers is 1. The package
sides are drawn uniformly at random between 0.1 and 0.25.
Also the initial package positions are drawn uniformly at
random within the corresponding bin, and sampled packages
are rejected when they collide with existing packages.

Qterm

Ginit
[]

init

—

Fig. 8. Two-dimensional illustration of the three-dimensional safe sets Q;
used for the package-transfer task. The top panel shows the sets for picking
the rightmost package. The bottom panel shows the sets for its placement.
The latter are shrunk to avoid the collision of the transported package.

We solve the task using a state machine. At each iteration,
if a robot has completed its previous pick or place motion, we
plan its next motion neglecting the presence of the other robot.
If this results in a collision, we let the robot idle until the next
iteration. If the state machine stalls (neither arm can execute
its motion without colliding with the other), we retract one arm
and allow the other to move. Each time a robot plans a picking
motion, it targets the package closest to its side of the table.
Trajectories are planned directly in the three-dimensional task
space, and the full robot configuration is retrieved through
inverse kinematics. We let the sets V and A, that constrain
the gripper velocity and acceleration, be spheres of radius 10
centered at the origin. (In practice, these sets can be shaped
to prevent package delamination, and ensure that the robots
can track the designed task-space trajectories.) We use Bézier
curves of degree K = 5 and set the termination tolerance to
e = 0.0L

For each pick and place motion, the three-dimensional
task space is decomposed into five box-shaped safe sets Q;,
illustrated in two dimensions in Fig. 8. The first and fifth sets
allow the gripper to reach the trajectory endpoints, without
colliding with the packages in the bins. The second and fourth
sets cover the space above the packages in the two bins. The
third is a transfer region that connects the spaces above the
bins. As shown in the bottom panel of Fig. 8, these sets
are shrunk during a place motion to avoid collisions of the
transported package (packages are always picked above their
centers).

We consider 50 randomly generated package-transfer prob-
lems. As the low-level motion planner for the state machine
just described, we compare SCS against the following alter-
natives:

e The trust-region method from [28, §V], modified as
described in §C to deal with minimum-time problems.

e« A simple waypoint-based motion planner, which lifts
a package vertically, moves it horizontally above the

TABLE I
PACKAGE-TRANSFER BENCHMARK

Task-completion time (s) | Motion-planning time (ms)
[Planner min | mean [max min | mean | max
SCS 8.86 9.96 11.34 4 15 49
Trust region | 1043 | 12.73 14.87 15 46 163
Waypoint 13.17 | 14.97 16.74 2 3 12

desired destination, and places it down. Where each
trajectory segment is executed in minimum time.

The three methods use the same constraints and trajectory pa-
rameterization. The first two share also the same initialization
strategy and termination tolerance. Tab. I shows the statistics
for the task-completion time and the runtime of each motion
planner. SCS generates the best trajectories: in fact, the average
completion time for the overall package-transfer task is about
10 s for SCS, 13 s for the trust-region method, and 15 s for
the waypoint-based planner. In other words, SCS allows us to
transfer 28% and 50% more packages per unit of time than the
trust-region and the waypoint-based planners, respectively. The
runtimes of SCS are approximately five times longer than those
of the waypoint-based planner, but they remain very low for
practical use. The trust region method is roughly three times
slower than SCS. The videos of five of these package-transfer
tasks are provided as Supplementary Material.

We conclude by emphasizing that the trust-region and
the waypoint-based planners are natural baselines for the
task considered in this section. The first provides the same
completeness guarantees as SCS, designs smooth trajectories,
and has relatively low runtimes. The second is widespread
in warehouse automation thanks to its good performance and
high reliability. In our experience, off-the-shelf nonconvex
trajectory optimization faces significant challenges with this
package-transfer task: it struggles with the many collision ge-
ometries in Fig. 7, relies on handcrafted warm starts, can take
seconds to converge (unless we use accelerated hardware [35]),
and can also fail to converge. Sampling-based planners can
be more reliable, but generate polygonal curves that require
additional smoothing. They excel in tasks where finding a
collision-free trajectory is the main challenge, and trajectory
cost is secondary. However, our package-transfer task presents
the opposite challenge.

REFERENCES

[1] John T Betts. Practical methods for optimal control and
estimation using nonlinear programming. SIAM, 2010.
Joshua Bialkowski, Sertac Karaman, and Emilio Frazzoli.
Massively parallelizing the RRT and the RRT*. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3513-3518. IEEE, 2011.

Stephen Boyd and Lieven Vandenberghe. Convex opti-
mization. Cambridge University Press, 2004.

Jing Chen, Tianbo Liu, and Shaojie Shen. Online gener-
ation of collision-free trajectories for quadrotor flight in
unknown cluttered environments. In IEEE International

(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Conference on Robotics and Automation, pages 1476—
1483. 1IEEE, 2016.

Shao Yuan Chew Chia, Rebecca H Jiang, Bernhard Paus
Graesdal, Leslie Pack Kaelbling, and Russ Tedrake.
GCS*: Forward heuristic search on implicit graphs of
convex sets. arXiv preprint arXiv:2407.08848, 2024.
Hongkai Dai, Alexandre Amice, Peter Werner, Annan
Zhang, and Russ Tedrake. Certified polyhedral de-
compositions of collision-free configuration space. The
International Journal of Robotics Research, 43(9):1322—
1341, 2024.

Robin Deits and Russ Tedrake. Computing large con-
vex regions of obstacle-free space through semidefinite
programming. In Algorithmic Foundations of Robotics
XI: Selected Contributions of the Eleventh International
Workshop on the Algorithmic Foundations of Robotics,
pages 109-124. Springer, 2015.

Robin Deits and Russ Tedrake. Efficient mixed-integer
planning for UAVs in cluttered environments. In IEEE
International Conference on Robotics and Automation,
pages 42-49. 1IEEE, 2015.

Steven Diamond, Reza Takapoui, and Stephen Boyd.
A general system for heuristic minimization of convex
functions over non-convex sets. Optimization Methods
and Software, 33(1):165-193, 2018.

Rida Farouki and V Rajan. Algorithms for polynomials
in Bernstein form. Computer Aided Geometric Design,
5(1):1-26, 1988.

Philip E Gill, Walter Murray, and Michael A Saunders.
SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Review, 47(1):99-131, 2005.

Paul J Goulart and Yuwen Chen. Clarabel: An interior-
point solver for conic programs with quadratic objectives.
arXiv preprint arXiv:2405.12762, 2024.

Taylor A Howell, Brian E Jackson, and Zachary Manch-
ester. ALTRO: A fast solver for constrained trajectory
optimization. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 7674-7679.
IEEE, 2019.

Jeffrey Ichnowski, Michael Danielczuk, Jingyi Xu,
Vishal Satish, and Ken Goldberg. Gomp: Grasp-
optimized motion planning for bin picking. In IEEE
International Conference on Robotics and Automation,
pages 5270-5277. IEEE, 2020.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos
Theodorou, Peter Pastor, and Stefan Schaal. STOMP:
Stochastic trajectory optimization for motion planning.
In [EEE International Conference on Robotics and
Automation, pages 4569—4574. 1IEEE, 2011.

Sertac Karaman and Emilio Frazzoli. Optimal kino-
dynamic motion planning using incremental sampling-
based methods. In 49th IEEE Conference on Decision
and Control, pages 7681-7687. IEEE, 2010.

Sertac Karaman and Emilio Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The International
Journal of Robotics Research, 30(7):846-894, 2011.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

Lydia Kavraki, Petr Svestka, J-C Latombe, and Mark
Overmars. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE Transac-
tions on Robotics and Automation, 12(4):566-580, 1996.
Steven LaValle. Rapidly-exploring random trees: A new
tool for path planning. 7R 98-11, Computer Science
Department, Iowa State University, 1998.

Steven M LaValle and James J Kuffner Jr. Randomized
kinodynamic planning. The International Journal of
Robotics Research, 20(5):378—400, 2001.

Mirko Leomanni, Gabriele Costante, and Francesco Fer-
rante. Time-optimal control of a multidimensional in-
tegrator chain with applications. IEEE Control Systems
Letters, 6:2371-2376, 2022.

Yanbo Li, Zakary Littlefield, and Kostas E Bekris.
Asymptotically optimal sampling-based kinodynamic
planning. The International Journal of Robotics Re-
search, 35(5):528-564, 2016.

Thomas Lipp and Stephen Boyd. Minimum-time speed
optimisation over a fixed path. International Journal of
Control, 87(6):1297-1311, 2014.

Sikang Liu, Michael Watterson, Kartik Mohta, Ke Sun,
Subhrajit Bhattacharya, Camillo J Taylor, and Vijay
Kumar. Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-D complex
environments. IEEE Robotics and Automation Letters, 2
(3):1688-1695, 2017.

Danylo Malyuta, Taylor P Reynolds, Michael Szmuk,
Thomas Lew, Riccardo Bonalli, Marco Pavone, and
Behcet Acikmese. Convex optimization for trajectory
generation: A tutorial on generating dynamically feasible
trajectories reliably and efficiently. JEEE Control Systems
Magazine, 42(5):40-113, 2022.

Tobia Marcucci. Graphs of Convex Sets with Applications
to Optimal Control and Motion Planning. PhD thesis,
Massachusetts Institute of Technology, 2024.

Tobia Marcucci, Mark Petersen, David von Wrangel, and
Russ Tedrake. Motion planning around obstacles with
convex optimization. Science robotics, 8(84):eadf7843,
2023.

Tobia Marcucci, Parth Nobel, Russ Tedrake, and Stephen
Boyd. Fast path planning through large collections of safe
boxes. IEEE Transactions on Robotics, 40:3795-3811,
2024.

Tobia Marcucci, Jack Umenberger, Pablo Parrilo, and
Russ Tedrake. Shortest paths in graphs of convex sets.
SIAM Journal on Optimization, 34(1):507-532, 2024.
Savva Morozov, Tobia Marcucci, Alexandre Amice,
Bernhard Paus Graesdal, Rohan Bosworth, Pablo A
Parrilo, and Russ Tedrake. Multi-query shortest-path
problem in graphs of convex sets. arXiv preprint
arXiv:2409.19543, 2024.

Jia Pan and Dinesh Manocha. GPU-based parallel colli-
sion detection for fast motion planning. The International
Journal of Robotics Research, 31(2):187-200, 2012.
Pablo A Parrilo. Semidefinite programming relaxations

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

for semialgebraic problems. Mathematical programming,
96:293-320, 2003.

John Schulman, Yan Duan, Jonathan Ho, Alex Lee,
Ibrahim Awwal, Henry Bradlow, Jia Pan, Sachin Patil,
Ken Goldberg, and Pieter Abbeel. Motion planning
with sequential convex optimization and convex colli-
sion checking. The International Journal of Robotics
Research, 33(9):1251-1270, 2014.

Xinyue Shen, Steven Diamond, Madeleine Udell, Yuan-
tao Gu, and Stephen Boyd. Disciplined multi-convex
programming. In 29th Chinese Control and Decision
Conference, pages 895-900. IEEE, 2017.

Balakumar Sundaralingam, Siva Kumar Sastry Hari,
Adam Fishman, Caelan Garrett, Karl Van Wyk, Valts
Blukis, Alexander Millane, Helen Oleynikova, Ankur
Handa, Fabio Ramos, et al. Curobo: Parallelized
collision-free robot motion generation. In IEEE Inter-
national Conference on Robotics and Automation, pages
8112-8119. IEEE, 2023.

Russ Tedrake and the Drake Development Team. Drake:
Model-based design and verification for robotics, 2019.
Russ Tedrake, Ian Manchester, Mark Tobenkin, and John
Roberts. LQR-trees: Feedback motion planning via
sums-of-squares verification. The International Journal
of Robotics Research, 29(8):1038-1052, 2010.

Wil Thomason, Zachary Kingston, and Lydia E Kavraki.
Motions in microseconds via vectorized sampling-based
planning. In IEEE International Conference on Robotics
and Automation, pages 8749-8756. IEEE, 2024.

Marc Toussaint. Newton methods for k-order
markov constrained motion problems. arXiv preprint
arXiv:1407.0414, 2014.

Diederik Verscheure, Bram Demeulenaere, Jan Swevers,
Joris De Schutter, and Moritz Diehl. Time-optimal path
tracking for robots: A convex optimization approach.
IEEE Transactions on Automatic Control, 54(10):2318—
2327, 2009.

Andreas Wichter and Lorenz T Biegler. On the imple-
mentation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106:25-57, 2006.

Qianhao Wang, Zhepei Wang, Mingyang Wang, Jialin
Ji, Zhichao Han, Tianyue Wu, Rui Jin, Yuman Gao,
Chao Xu, and Fei Gao. Fast iterative region inflation
for computing large 2-D/3-D convex regions of obstacle-
free space. arXiv preprint arXiv:2403.02977, 2024.
Yang Wang and Stephen Boyd. Fast model predictive
control using online optimization. IEEE Transactions on
Control Systems Technology, 18(2):267-278, 2009.
Peter Werner, Alexandre Amice, Tobia Marcucci, Daniela
Rus, and Russ Tedrake. Approximating robot configu-
ration spaces with few convex sets using clique covers
of visibility graphs. In IEEE International Conference
on Robotics and Automation, pages 10359-10365. IEEE,
2024.

Peter Werner, Thomas Cohn, Rebecca H Jiang, Tim

Seyde, Max Simchowitz, Russ Tedrake, and Daniela
Rus. Faster algorithms for growing collision-free convex
polytopes in robot configuration space. arXiv preprint
arXiv:2410.12649, 2024.

Peter Werner, Richard Cheng, Tom Stewart, Russ
Tedrake, and Daniela Rus. Superfast configuration-space
convex set computation on GPUs for online motion
planning. arXiv preprint arXiv:2504.10783, 2025.
Yuwei Wu, Igor Spasojevic, Pratik Chaudhari, and Vijay
Kumar. Optimal convex cover as collision-free space
approximation for trajectory generation. arXiv preprint
arXiv:2406.09631, 2024.

Lujie Yang, Tobia Marcucci, Pablo A Parrilo, and Russ
Tedrake. A new semidefinite relaxation for linear and
piecewise-affine optimal control with time scaling. arXiv
preprint arXiv:2504.13170, 2025.

Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Piv-
toraiko, Matthew Klingensmith, Christopher M Dellin,
J Andrew Bagnell, and Siddhartha S Srinivasa. CHOMP:
Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 32(9-
10):1164-1193, 2013.

[46]

[47]

[48]

[49]

APPENDIX A
FINITE-DIMENSIONAL PROGRAMS

We illustrate the finite-dimensional versions of the programs
presented in this paper. Here, candidate trajectories are param-
eterized using Bézier curves as shown in §VII.

We start from the nonconvex program (7). The constraints of
its finite-dimensional counterpart are as follows (the objective
is unchanged):

41,0 = Qinit; (20a)
q7/,K = Qterm; (20b)
di10=4r1k-1=0, (20¢)
Qi € Qi k<K, i<l, (20d)
Gix € TV, E<K-—1,i<1, (20e)
Gix € TP A, E<K-—2 i<I, (20f
T; >0, <1, (20g)
qi. Kk = qi+1,0, 1< T—1, (20h)
di,x1/Ti = Qiv1,0/Tiv1, 1< T —1, (201)
Gik = K(qi ki1 — Qi) E<K-—1,i<1, (20)
Gie = (K —1)(Gikr1 — Gin)y, k<K -2, i< (20k)

For all i < I, the variables here are the traversal times 7; and
the control points @, j, for £ < K, ¢; ; for £ < K — 1, and
gix for k< K —2.

The finite-dimensional version of the subproblem with
fixed transition velocities (11) differs from the nonconvex
program (20) in just two ways. First, the acceleration con-
straint (20f) and the traversal-time lower bound (20g) are
replaced with the convex conditions

21; > T;, i<

3

Second, the continuity constraint (20i) is split into two linear
constraints:

Gi,xk—1 =1y, qir1,0 = v, i<I—1

The finite-dimensional version of the subproblem with fixed
transition points (15) has similar constraints:
71,0 = S1Ginit,
Tk = Slqterm;

T10=7rk-1 =0,

rir € 59, k<K, i<,
ik €V, k<K-1,i<I,
Fip € T;(2 — T,50) A, k<K-2 i<I,
0<8; <2/T;, i<I,

ik = PiSi, Tir1,0 = PiSiv1, <11,

T k-1 = 511,05 1< T -1,

ik = K(ri g1 — rig), E<K-—-1, i<,
Fip = (K — D(figis — i), k<K -2 i<I.

For ¢ < I, here the decision variables are the traversal times
T; and the control points 7, ;, for k£ < K, 7, for k < K —1,
and 7, for E < K — 2.

The initialization phase requires solving problem (17) re-
peatedly. Using the Bézier parameterization, the constraints of
this problem become

rio = SiPi-1,

Ti, Kk = SiPi,

0= Tixk—1 =0,

ik €V, E<K -1,
7k € TiA, k<K -2,
T; >1/8:, S; >0,

Pig = K(Pigi1 — rig), E<K -1,
Fige = (K = D41 — Pig), k<K -2,

with variables Tj, S;, r;, for k < K, 73 for k < K — 1,
and 7, for k < K — 2.

APPENDIX B
PARAMETRIC PROBLEM FOR RUNTIME ANALYSIS

We detail the construction of the problem in §X-B, which
is parametric in the number I of safe sets, the number m of
facets of each safe set, and the space dimension 7.

We let xyp = 0 € R”™. Then, for all i« < I, we define the
points

T; = Ti—1 T ey,

where e; is the jth element of the standard basis, and j is the
reminder of i/n. In other words, the point x; is obtained by
shifting x;_; along the jth dimension by one. The sequence
of points xg,...,x;s is then an n-dimensional staircase with
7 links.

For i < I, we let £ C R™ be an ellipsoid centered around
the line segment that connects «;_; and ;. The main axis

of &; is aligned with the vector ®; — @; | and has length
4/3, while all the other axes have length 1/3. Each safe set
Q, is a conservative polytopic approximation with m facets
of the corresponding ellipsoid &;. In n = 2 dimensions, this
construction over-approximates the unit circle with a regular
polytope, which is then mapped to the polytope Q, through
the same affine transformation that maps the unit circle to
the ellipse &£;. We let the initial point be qinit = o and the
terminal point be @ierm, = ®7. The constraint sets V and A are
spheres centered at the origin of radius 10 and 1, respectively.

APPENDIX C
TRUST-REGION METHOD FOR MINIMUM-TIME PROBLEMS

We briefly describe how the trust-region method from [28,
§V] can be adapted for minimum-time problems.

We start from problem (7), whose only nonconvex con-
straints are the velocity continuity (4b) and the accelera-
tion constraint (5c). As in the problem with fixed transition
points (15), we introduce the variables

ri = ¢/ T, 1< 1. 2D

Recall that the derivatives 7; of these functions correspond to
G;/T;. Using these additional variables, the velocity continu-
ity (4b) becomes a linear constraint

(1) = 7;11(0), 1< T —1,

while the acceleration constraint (5¢) becomes a convex con-
straint of the kind discussed in §I-B:

7i(s) € T A, sclo,1], i <1

This yields a program whose nonconvexity is due exclusively
to the equality constraint (21).

Following [28, § V-C], we solve the nonconvex program
by alternating between two convex programs: a “tangent” and
“projection” program. In the tangent program, we linearize
constraint (21) around the current solution, and try to improve
the trajectory shape and timing jointly. The linearization error
is controlled by a trust-region constraint whose size and shape
are defined as in [28, § V-C]. Because of the linearization error,
the solution of the tangent program might not be feasible for
the original nonconvex program. Therefore, in the projection
step, we fix the new trajectory timing and solve the resulting
convex program, hoping to obtain a feasible solution with cost
lower than the current one. The numerical solution of these
infinite-dimensional convex subproblems follows the steps in
§VIL

