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Abstract—Hierarchical, multi-resolution volumetric mapping
approaches are widely used to represent large and complex
environments as they can efficiently capture their occupancy
and connectivity information. Yet widely used path planning
methods such as sampling and trajectory optimization do not
exploit this explicit connectivity information, and search-based
methods such as A* suffer from scalability issues in large-scale
high-resolution maps. In many applications, Euclidean shortest
paths form the underpinning of the navigation system. For such
applications, any-angle planning methods, which find optimal
paths by connecting corners of obstacles with straight-line seg-
ments, provide a simple and efficient solution. In this paper,
we present a method that has the optimality and completeness
properties of any-angle planners while overcoming computational
tractability issues common to search-based methods by exploiting
multi-resolution representations. Extensive experiments on real
and synthetic environments demonstrate the proposed approach’s
solution quality and speed, outperforming even sampling-based
methods. The framework is open-sourced to allow the robotics
and planning community to build on our research.

1. INTRODUCTION

A core competency of robots is the ability to autonomously
navigate between areas of interest, such as storage spaces,
work sites, and inspection points, even if these locations
are far apart. Methods for solving this planning problem
can be categorized into optimization-, sampling- and search-
based approaches. Optimization-based methods produce high-
quality, continuous solutions but generally require an initial
guess to converge to a good solution. This initial guess is often
obtained from a sampling- or search-based planner. Search-
based methods generally operate on a graph with a fixed
topology, such as a grid map’s adjacency graph or a state lattice
constructed from motion primitives. Meanwhile, sampling-
based methods build the graph by randomly sampling and
connecting collision-free robot configurations. Sampling-based
approaches are popular in practice due to their ability to find
solutions while only sparsely covering large, potentially high-
dimensional configuration spaces. However, extracting graphs
through random sampling discards much of the information
embedded in the volumetric map and neglects its underlying
structure. The information contained in discretized maps is
finite, yet sampling-based methods are only asymptotically
complete and cannot detect infeasibility in finite time. This
is particularly problematic in environments with narrow pas-
sages, where solving a planning query can take a long time,
and feasibility is not guaranteed. This raises a hard-to-answer
question in sampling-based methods: How long should one try
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to find a solution before giving up?

For many applications, a volumetric map’s adjacency graph
provides a reasonable discretization of the true, continuous
search space. Combining this graph with standard search al-
gorithms [5] allows resolution-complete solutions to be found
in finite time. While searching for the shortest path, A* [9]
and similar methods compute the optimal cost-to-come and
predecessor for each explored grid vertex. Their time and
space complexity, therefore, scales linearly with the explored
volume and cubically with the grid resolution [27]. This is
particularly problematic in environments with dead-ends that
are deep relative to the grid resolution.

Octree-based maps [11, 26, 22] compactly encode
traversability information using multi-resolution. Evaluating
A* directly on the adjacency graph of an octree’s leaves
preserves the completeness of running it on a grid at the
highest resolution while offering significant memory and
runtime improvements [13]. However, considering only the
octree leaves’ centers yields suboptimal paths in length and
smoothness [2]. As illustrated in Figure 2, post-processing
steps such as path-shortening cannot resolve this issue since
the paths might not even be close to the true shortest path.

Any-angle planning algorithms, such as Theta* [4], improve
path quality by allowing paths to deviate from grid edges,
connecting vertices in line of sight with straight lines. This
approach can yield paths up to ~ 13% shorter than those
produced by A* [19]. In this paper, we extend Theta*’s cost



Fig. 2. Comparison of A* on an octree’s leaves (left, blue), A* on a fixed-
resolution grid (right, blue), and Theta* (right, green). On the octree, A*
produces highly suboptimal paths. While its search space includes a path
(dashed blue) on the correct side of the obstacle (striped box), this path is
ignored due to the detour introduced by passing through the leaves’ centers.
A* on the grid finds shorter, smoother paths, but still performs worse than
Theta*. Our method matches Theta*’s path quality while operating on octrees.

field formulation to efficiently represent large parts of the
search space at coarser resolutions. Additionally, we propose
a coarse-to-fine search algorithm that starts at the coarsest res-
olution and refines solutions only in regions requiring higher
detail, significantly reducing memory usage and computational
cost without sacrificing accuracy.

In summary, the main contribution of this paper is a
search-based planner that combines the accuracy of any-angle
planning with the efficiency of multi-resolution representations
and hierarchical algorithms. Extensive evaluations on synthetic
and real-world maps demonstrate that the proposed method
retains Theta*’s accuracy while running up to two orders of
magnitude faster. Compared to well-established search- and
sampling-based planners, it consistently finds near-optimal
paths and, in cluttered environments, runs even faster than
sampling-based planners. The complete framework is open-
sourced! to allow the planning and robotics communities to
build on these results.

II. RELATED WORK

Path planning methods can generally be -categorized
into optimization-, sampling-, and search-based approaches.
Sampling-based methods are most commonly used for global
planning, especially in large environments. While very fast,
randomized methods such as RRT [16] and RRTConnect [14]
provide no guarantees on the quality of their solutions. Variants
such as RRT* [12] are guaranteed to converge the optimal so-
lution as the number of samples approaches infinity. However,
they do not provide bounds on their intermediate solutions
and stopping them after a finite time leads to different paths
even when the start and goal positions are the same [6]. A
challenge in practice is that the inconsistency of randomized
planners worsens in cluttered environments, and finding solu-
tions through narrow passages can take a very long time.

Search-based planners such as A* [9] operate on a dis-
cretized search space and are deterministic, complete, and
terminate in finite time, explicitly reporting when no solution
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exists. However, using a fixed-resolution 3D occupancy map’s
adjacency graph as the space discretization results in runtimes
that grow linearly with volume and cubically with resolution,
making it impractical for large or high-resolution maps.

Several research efforts have explored hierarchical ap-
proaches to improve the scalability of search-based plan-
ning. Kambhampati and Davis [13] applied A* to the oc-
tree’s leaves, compactly representing traversable space and
achieving significant efficiency improvements, albeit at the
cost of longer, jagged paths. Funk et al. [8] extended this
approach to orientation-aware planning in large environments
with narrow openings. CFA* [17] proposed a coarse-to-fine
strategy, performing a coarse search over large blocks followed
by refinement at the grid cell level. HPA* [1] generalized
this concept to multi-level hierarchies of pre-processed clus-
ters. Beyond these methods, iterative [10] and information-
theoretic [15] approaches have also been proposed. Re-
cently, Du et al. [6] demonstrated how multiple simultaneous
weighted-A* searches at different resolution levels can share
information to combine their strengths. However, a significant
drawback of all these methods is that their path lengths are, at
best, equivalent to those of A* on the highest-resolution grid.

Any-angle planners improve upon A* by allowing devia-
tions from the grid’s edges, finding up to ~ 13% shorter
paths [19] by better approximating true shortest paths in
continuous space, which are rautr — straight except at inflec-
tion points wrapping around obstacles. Theta* [4], a widely
adopted any-angle planner, achieves high accuracy in diverse
environments [25] by connecting each vertex to its best visible
predecessor. While these deviations improve accuracy, Theta*
propagates information only along grid edges, enabling simple
and efficient implementation. However, in 3D, it incurs signif-
icant runtime overhead due to the numerous visibility checks
required to ensure vertex-predecessor edges are collision-free.
LazyTheta* [19] addresses this limitation with lazy visibility
checking, reducing the overhead by an order of magnitude
with minimal impact on path quality.

Multi-resolution methods for any-angle planning have also
been explored. Chen et al. [2] introduced framed quadtrees,
which pad leaf nodes with high-resolution vertices to permit
a broader range of angles through each leaf. While effective
in 2D, this approach scales poorly for 3D Euclidean shortest
paths, multiplying A*’s computational complexity by an ad-
ditional term that grows quartically with padding resolution.
Closest to our work, Faria et al. [7] applied LazyTheta*
to octree leaves. However, their method produces arbitrarily
suboptimal paths as it considers only leaf centers. In contrast,
we explicitly consider the high-resolution vertices within each
leaf and dynamically refine the octree to bound the approx-
imation error. Additionally, a custom initialization procedure
ensures all potentially optimal inflection points are evaluated.
Extensive comparisons and ablations demonstrate that these
improvements yield significantly shorter, smoother paths.



III. PROBLEM STATEMENT

This paper presents a method for finding collision-free
Euclidean shortest paths between a start and goal point in
2D or 3D workspaces, given an occupancy map representing
obstacles. To simplify collision checking, we approximate the
robot as a bounding sphere and inflate all obstacles by its
radius, treating the robot as a point. Like Theta*, the presented
algorithm does not account for motion constraints.

IV. METHOD

In this section, we describe the components of our planner.
First, we show how multi-resolution enables compact encoding
of intermediate solutions in any-angle planning. Building on
this, we present our efficient any-angle path planner, which
consists of: 1) an approach that ensures all plausible waypoints
are efficiently considered, and ii) a coarse-to-fine method to
explore the search space spanned by the previously generated
waypoints. Formal statements on our method’s completeness,
optimality and time-complexity are provided in Appendix C.

A. Any-angle planning

Any-angle planners produce shorter and smoother paths
than A* by allowing paths to deviate from grid edges (Figure 2
right), better approximating true shortest paths in continuous
space. A necessary condition for Euclidean shortest paths is
that they are raut, i.e. consisting of straight line segments
connected at inflection points where the path wraps tightly
around obstacles.

We base our planner on Theta* [4], which closely follows
A*’s algorithm. Both planners check whether a path through
an expanded node can improve the cost-to-come (g cost) of
its neighbors. However, Theta* introduces a key improvement:
for each neighbor, it performs a visibility check to determine if
it can be directly connected to the node’s predecessor. As
illustrated in Figure 3, this eliminates intermediate waypoints,
further reducing ¢ costs and avoiding detours.

B. Multi-resolution cost field representation

Search-based planners such as A* and Theta* compute the
minimum ¢ cost and best predecessor for each (grid)
vertex expanded during the search. Since these two properties
are often stored together, we refer to their combination as the
cost field.

By construction, neighboring grid vertices rarely share the
same g cost. In Theta*, however, large regions are often
dominated by the same predecessor (Fig. 3). The g cost
of any vertex s is defined as the g cost of its predecessor plus
the distance between them. Consequently, the cost field can
be compressed losslessly by storing predecessor(V) and
g(predecessor(V)) for each region V. The g cost of any
vertex s within a region V can then be retrieved using

g(s) = g(s") +c(s”,s) | s €V, s" = predecessor(V)
D
where ¢(sP, s) is the Euclidean distance from s? to s.
To exploit this, we propose to partition the cost field into
multi-resolution cubes corresponding to an octree’s leaves.

o

Fig. 3. Illustration of the cost-to-come (g cost) and predecessor fields of
Theta* in a 2D environment with a single obstacle (striped box). The g cost
field (left) changes from cell to cell, while the predecessor field (right) is
largely constant. All cells to the left of the obstacle ( ) are directly visible
from the start vertex (black circle) and thus use it as their predecessor. Cells
near the top right ( ) connect through the cell at the obstacle’s top-left
corner, while the rest ( ) connect through the cell at its top-right corner.

Fig. 4. Illustration of the importance of initializing inflection points. Without
initialization (left), the retrieved shortest path may take large detours around
obstacles. Initializing the cost field at a higher resolution near obstacles (right)
resolves this issue, resulting in shorter, smoother paths. As the number of
added subvolumes (blue) is small, the performance overhead remains minimal.

This regular structure enables efficient storage, fast random
access, simplified neighborhood operations, and natural align-
ment between the search space and octree-based traversability
maps.

C. Cost field initialization

Just as typical search-based planners where a vertex’s
predecessor is itself a vertex, we define the predecessors of
subvolumes as subvolumes. While a single subvolume could
encompass the start, goal, and several inflection points, we
initialize the cost field such that each subvolume contains
at most one such waypoint to reduce bookkeeping and the
runtime complexity of neighborhood operations.

Initializing subvolumes at the minimum resolution required
to avoid occupied leaves in the map’s octree suffices to
guarantee resolution completeness [13]. However, as shown
in Figure 4 (left), this approach often results in paths taking
significant detours around obstacles. From the definition of
taut paths, optimal inflection points can only appear next to
obstacles. Thus, considering all vertices of a high-resolution
grid that are traversable and adjacent to an obstacle ensures
that no inflection points that would be considered by Theta* on
the same grid are missed. This initialization can be performed



Algorithm 1: Heuristic-guided search over subvolumes

1 open <+ ()

2 closed < 0

3 g(s™) <0

4 predecessor (VM) «— g5

5 open.insert(V® ComputeFScore (V™))

¢ while open # ) do

7 V < open.pop()

s | if 2% ¢ V then

9 | return PathFound

10 end

n closed < closed U {V}

12 g(vcemer) A g(predecessor(V)) +
c(predecessor(V), Veenter)

13 UpdateSubvolume(V, Vo)

14 end
15 return NoPathFound

globally or incrementally as the search progresses through
the traversability map. In our tests, we adopt the incremental
approach, allowing the initialization cost to scale with the
explored volume rather than the map’s total size.

D. Multi-resolution search

Search-based planning in 3D spaces is computationally
challenging as the number of vertices grows rapidly with
increasing resolution. To address this, our approach explores
the search space at the coarsest possible resolution and dynam-
ically refines it only where needed to maintain accuracy. After
initializing the cost field as described in Section IV-C, our any-
angle planner computes each subvolume’s predecessor(V)
and g(predecessor(V)) by running a modified version of
A* over the octree’s leaves. Similar to A*, the algorithm uses
a min-priority queue (open) to expand elements sorted by
their estimated goal-reaching cost (f score). However, unlike
A*, the elements in our algorithm are subvolumes that can
contain many vertices, which are processed together.

Algorithm 1 shows our planner’s main loop. For each
expanded subvolume V), the algorithm first checks whether
it contains the goal vertex 52 (Li. 8). If so, the search
terminates. Otherwise, V is added to the c1osed set, and the g
cost for its center is computed (Li. 12) and stored for potential
use as a predecessor. Finally, the UpdateSubvolume
function processes all adjacent subvolumes, which may in-
clude 26 or more multi-resolution neighbors.

E. Dynamic refinement

Throughout the majority of the environment, the cost field
resolution chosen by the initialization procedure suffices. How-
ever, subvolumes are occasionally reachable from multiple
predecessors, each better suited for different vertices within
the subvolume. For instance, in Figure 5, vertices toward the
top right are optimally reached by passing above the obstacle,
whereas passing below the obstacle provides shorter paths to
the vertices on the bottom right. In such cases, instead of

Fig. 5. Tllustration of our dynamic refinement procedure. When a new path
(dashed arrow) is discovered to a subvolume V' (left) that has already been
reached (solid arrow), we evaluate its effect on the cost to reach each vertex
in V. The algorithm handles three cases: i) the new path reduces the cost for
all vertices, replacing the previous path; ii) the new path does not improve any
costs and is ignored; iii) some costs improve while others worsen. In this last
case (right), V' is recursively subdivided until each child subvolume is fully
resolved under case i or ii. Subvolumes are colored by their predecessor.

Algorithm 2: Recursive octree node updates

1 Function UpdateSubvolume(V, V') is

2 if IsLeaf(V’) then
3 Status < UpdateCost(V, V')
4 if Status = StrictlyBetter then
5 if V' € open then
6 | open.remove(V')
7 end
8 open.insert(V’, ComputeFSscore(V'))
9 return
10 else if Status = NotBetter then
1n | return
12 else // Status = Ambiguous
13 | open.remove(V')
14 end
15 end
16 | foreach V'@ c V' do
17 if V'ehild ¢ c10sed then
18 5P < predecessor(V')
19 if V"l ¢ open then
20 predecessor(V eid) ( 57’
2 open.insert(V' ™ computeFscore(V ™))
22 end
23 if Areadjacent (V, )/ <hild)
and V' - then
24 | UpdateSubvolume(V, ) child)
25 end
26 end
27 end
28 end

29 Function AreAdjacent (V% V) is
b : b
30 sep < cmax(Ve, . Vo) — emin(V3 ., Vo)

31 return sep.z < 1 and sep.y < 1 and sep.z < 1
32 end

assigning a single suboptimal predecessor to the entire
subvolume, we dynamically refine the cost field.

Leveraging the hierarchical structure of octrees, this refine-
ment can efficiently be integrated into our multi-resolution
planner through a recursive UpdateSubvolume method
(Alg. 2). Starting at the octree’s root V' = Vi, the



method handles two cases. If V' is a leaf, the function
calls UpdateCost to evaluate whether a path through the
expanded subvolume V or its predecessor(V) improves
the g cost of V'. Since V' can contain multiple vertices,
the comparison has three possible outcomes: i) using V or
predecessor(V) reduces the cost for all vertices in V',
updating its predecessor and reprioritizing it in the open
queue; ii) no costs improve and both predecessors are ignored;
or iii) some costs improve while others worsen, flagging V'
for refinement.

In the second case, for non-leaf subvolumes or those flagged
for refinement, the function iterates over V'’s children, skip-
ping closed nodes. Newly created children inherit their
parent’s predecessor and are added to the open queue,
ensuring the full region V' covered is eventually processed.
The function then recursively visits each child adjacent to
V, until all descendant subvolumes fall under cases 1 or
2. AreAdjacent tests whether subvolumes V¢ and V°
touch or overlap, which holds if the minimum offset between
their Axis-Aligned Bounding Boxes (AABBs) is at most 1
along every axis on the highest-resolution grid. This offset
is computed from the coefficient-wise max (cmax) and min
(cmin) of their AABB corners V,,;, and V,, ...

The UpdateCost function (Alg. 3) implements the com-
parison between V'’s current predecessor, sp/, and two
candidate predecessors: an inflection point at the center of
V, s¢, and predecessor(V), sP. If sP results in a lower
g cost for all vertices s € V' compared to sP and s¢, the
function returns NotBetter, indicating no changes are required.
Conversely, if s” or s provides strictly better costs for all
s € V', the predecessor is updated and StrictlyBetter is
returned. If neither condition is fully satisfied, the function
returns Ambiguous, signaling the need for further refinement.

In practice, tolerating small path length suboptimalities may
be acceptable, particularly if it leads to efficiency improve-
ments. To quantify this, we define the worst-case suboptimality
of s*' relative to an alternative predecessor s over V' as

g(s") +e(s7,5) — g(s") — e’ )
c(s?', s)

E(sp/, si,V/) = max

@

where c(s%,s%) is the straight-line distance from s® to s°.
Since the error is normalized by edge length, the total accu-
mulated error along the path grows at most proportionally with
the path’s length.

To bound this error, we introduce €, which represents the
worst-case relative path length suboptimality. The function
IsBetterOrSimilar (Li. 22) applies this threshold to
decide whether a new predecessor should be accepted. For
€ = 0, the function returns True only if s® is a strictly better
predecessor than s® for every vertex in V. The planner then
refines each subvolume until its children are strictly dominated
by a single predecessor. In general, UpdateSubvolume
recurses until the following condition holds for st € {s?, s¢}:

E(predecessor(V’),si,V’) <e 3)

Algorithm 3: Computing cost updates and heuristics
1 Function UpdateCost(V,V) is

2 5 < Veenter
3 sP < predecessor(V)
4 5P < predecessor(V')
5 if LineO£Sight(s?, V') then
// Ray traced connection
6 if IsBetterOrSimilar(s?,s?,)’) then
7 | return NotBeiter
8 else if IsBetterOrSimilar(s?,s?, V)
then
9 predecessor(V') « sP
10 return StrictlyBetter
11 end
12 else
// Direct neighbor connection
13 if IsBetterOrSimilar(s?,s¢, V') then
14 | return NotBeiter
15 else if IsBetterorsimilar(st, s, V')
then
16 predecessor (V') « s¢
17 return StrictlyBetter
18 end
19 end
20 return Ambiguous
21 end
22 Function IsBetterOrSimilar(s?, s® V') is
23 if Vs € V'@ g(s%) 4+ c(s%,5) <
g(s®) + c(sb, 5) + € (5%, s) then
24 | return True
25 else
26 | return False
27 end
28 end
29 Function ComputeFScore(V) is
30 sP < predecessor(V)
31 | return mingey [g(sP) + c(sP, s) + h(s)]
32 end

Finally, ComputeFScore demonstrates how our multi-
resolution planner computes consistent f scores for sorting
the open queue, by identifying the minimum f score across
all vertices in V. Although IsBetterOrSimilar and
ComputeFScore consider subvolumes with many vertices,
the computational burden is significantly reduced in practice
because c(s?, s) and h(s) are straight-line distances, requiring
only a few critical vertices to be checked.

V. EXPERIMENTS

In the experiments, we start with an evaluation of our multi-
resolution planner’s initialization and dynamic refinement pro-
cedures. Then, we compare our method to other path-planning
approaches based on success rate, path length, and runtime.



Effect of initializing inflection points at different resolutions
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Fig. 6. Initialization procedure’s impact on path length and runtime relative to
Theta* (blue line). Reading the plot from left to right, we see how increasing
the inflection point initialization resolution brings our path lengths (top) closer
to Theta* while remaining significantly faster (bottom).

The result plots share an overall structure, showing the mea-
sured quantity on the Y-axis, while the property being varied is
along the X-axis. The result distributions are presented as box
plots with individual results shown as dots, colored according
to the true path length. Where results are relative to a baseline,
a blue line indicates baseline performance.

A. Impact of initialization and refinement

The evaluation of our initialization and refinement proce-
dures impact on performance are conducted on five synthetic
maps, each measuring 100 mx 100 mx 100 m mapped at 10 cm
resolution. They are generated by adding 0, 1000, 2000, 3000,
and 4000 randomly shaped obstacles to an initially empty
volume, representing varying levels of clutter. For each map,
100 random collision-free start-goal pairs (500 total) were
sampled.

1) Inflection point initialization: To evaluate the signifi-
cance of the initialization procedure (Section IV-C), we com-
pare the path lengths and execution times of our planner with
and without initialization to Thetax running at the highest
resolution. As our method allows defining the initialization
resolution, we present results for initialization resolutions
ranging from 1.6 m to 10 cm. For this analysis, the dynamic
refinement strategy (Section IV-E) is disabled to isolate the
effect of initialization.

The results in Figure 6 (top) show that increasing the
inflection point initialization resolution moves the path lengths
of our planner closer to those of Theta~*. On average, path
lengths converge to values close to Theta=, especially for
longer paths (deep purple). Outliers primarily correspond to
short paths (light orange), where small differences are ampli-
fied when normalized by the short path length and runtime
values of Thetax.

At coarser resolutions (>80cm), initializing inflection
points yields no notable improvement over No init be-
cause the cost field’s octree conforms to the obstacles in the
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Fig. 7. Ablation showing how the dynamic refinement strategy affects the
path length and speedup (log scale) of our method relative to Theta* (blue
line). Reading the plot from left to right, we see that as the threshold is
tightened, the path lengths decrease while runtime moderately increases.

occupancy map. This results in most occupied cells being
surrounded by medium to high-resolution subvolumes, render-
ing low-resolution initializations redundant. Additionally, the
occupancy map and cost field are stored using an optimized
octree data structure [18], limiting the coarsest resolution to
6.4 m, implicitly preventing extremely bad solutions. At higher
resolutions, our method occasionally discovers slightly shorter
paths than Theta=, as Thetax is not guaranteed to be
optimal.

Looking at runtime results (Figure 6 bottom) we see that
increasing the initialization resolution generally increases run-
time, as higher resolutions require the search to expand more
subvolumes and consider more inflection points as predeces-
sors. Note that the clusters of points at the top of the bottom
plot correspond to queries in the 0-obstacle environment.
Since these involve no obstacles requiring initialization, their
speedup is independent of the initialization resolution.

2) Refinement strategy: To evaluate the effect of the dy-
namic refinement procedure (Section IV-E), we run our plan-
ner with different approximation error thresholds e (Eq. (3))
and compare the results to Theta=. The initialization pro-
cedure (Section IV-C) is disabled to isolate the effect of
refinement. We test ¢ values ranging from 107! to 1073,
along with two special cases: lossless refinement (e = 0) and
no refinement, which we refer to as Match map. Because
the planner can only traverse fully unoccupied cells, the
resolution of the cost field must always match or exceed the
occupancy map’s leaf resolution. When refinement and initial-
ization are disabled, the cost field’s subvolumes exactly match
the occupancy map’s leaves, resulting in the Match map
configuration.

The results in Figure 7 show that as the threshold ¢
is tightened, the path lengths gradually approach those of
Theta*. Similar to the initialization ablations, the error
relative to Theta= is already low for Match map because



TABLE I
SUMMARY OF ABLATIONS. PATH LENGTHS RELATIVE TO THETA*.

Initialization
Path length p + o None 10 cm
Refinement None 0.23% + 0.43% 0.07% + 0.13%
e=10"2 016% £ 032% 0.04% £ 0.12%

very coarse free space leaves rarely occur in occupancy
maps. This highlights that our multi-resolution, any-angle
cost field formulation is inherently accurate, even at the
moderate resolutions that dominate most free space. As € is
reduced, the relative path lengths generally remain within their
e suboptimality thresholds. However, some outliers persist,
and the paths do not fully converge to Thetax, even for
€ = 0, due to the absence of initialization in this ablation,
which limits the discovery of critical inflection points. In terms
of runtime, reducing e gradually increases computation, as
smaller thresholds require more refinement steps.

In conclusion, as shown in Table I, initialization and refine-
ment each reduce the mean and variance of path lengths, with
their combination providing the greatest improvement.

B. Comparisons with other planners

The comparisons are performed on maps of four real envi-
ronments (Mine, Cloister, Math, and Park sequences of
the Newer College Dataset [28]) mapped with wavemap [22]
at 10 cm resolution. These sequences represent constrained in-
door (Mine), mixed indoor-outdoor (Cloister), large urban
(Math), and large vegetated environments (Park). Obstacles
were inflated by 35 cm to account for the robot’s radius. For
each map, 100 random collision-free start-goal pairs (400 total)
were sampled. To assess how each planner handles unsolvable
cases, infeasible queries were not filtered out.

We compare the success rates, path lengths, and execution
times of our proposed multi-resolution planner to a represen-
tative set of search and sampling-based planners. In terms of
search-based planners, we implemented fixed-resolution ver-
sions of A« [9], Thetax [4],and LazyTheta= [19]. For A,
we used the octile distance heuristic, which is consistent on 26-
connected grids, as we found it to run up to 70% faster than us-
ing the Euclidean distance heuristic. Additionally, we include
the reference implementation of OctreelazyThetax [7]
as a multi-resolution baseline. For sampling-based planning,
we used the RRTConnect [14] and RRT* [12] implementa-
tions from the Open Motion Planning Library [24]. While
RRTConnect terminates immediately once a path is found,
RRT* does not. Therefore, we include three RRT* variants
with increasing time budgets, namely RRT* 0.1s, RRT« ls
and RRT« 10s. Note that RRTConnect is also limited to a
maximum time budget of 10s, to keep it from running forever
when a planning query is infeasible.

We evaluate three variants of our multi-resolution planner:
Ours, OursLazy, and OursFast. Ours implements the baseline
algorithm as described in the method section. To improve run-
time further, OursLazy and OursFast incorporate lazy visibility
checking, which reduces computational overhead by deferring
visibility evaluations until necessary. These variants modify

TABLE II
PLANNING SUCCESS RATES PER MAP FOR 100 RANDOMLY SAMPLED
QUERIES EACH, INCLUDING INFEASIBLE CASES.

Success rate (%) Mine  Cloister Math  Park
A* 88 100 98 99
Theta* 88 100 98 99
LazyTheta* 88 100 98 99
OctreeLazyTheta* 88 100 98 99
RRTConnect 88 97 98 97
RRT* 0.1s 80 37 96 56
RRT* 1s 85 52 97 90
RRT* 10s 88 87 98 96
Ours 88 100 98 99
Ours Lazy 88 100 98 99
Ours Fast 88 100 98 99

the baseline algorithm as detailed in Appendix B, applying
the principles of LazyTheta* [19]. The specific settings we
use for our three planner variants are:

o Ours: e= 1072, 7" = 10cm

o OursLazy: € = 1072, 7" = 10 cm, lazy visibility checks

o OursFast: € = 1072, 7" = 40 cm, lazy visibility checks

To ensure fair comparisons, all planners, including ours,
use optimized data structures and subroutines. The fixed-
resolution search-based planners store their cost fields using
a hashed voxel block data structure [20], while our multi-
resolution planner employs a hashed octree data structure [18].
These planners and all RRT variants use wavemap’s hi-
erarchical occupancy map and multi-resolution ray tracer
for fast traversability and visibility checking. As motivated
in Section III, we inflate all obstacles by the robot’s ra-
dius, allowing it to be treated as a point. We configure
OctreelLazyTheta~, which uses Octomap [11] and a cus-
tom visibility checker, to match this setup. All experiments are
run single-threaded on the same benchmarking server with an
Intel 19-9900K CPU and 64 GB of RAM.

1) Success rates: Starting with the success rates shown in
Table 1II, all search-based planners perform equally well. As
the start and goal pose pairs can contain infeasible planning
queries, even complete planners may fail in some environ-
ments. For example, in Mine where none of the planners
succeed in more than 88 out of 100 queries due to limited
connectivity between areas.

Among the sampling-based planners, RRTConnect
achieves the highest success rate, performing almost as well
as the search-based planners. Its bidirectional tree growth
and lack of rewiring provide an efficiency advantage over
RRT=* 10s, which comes in a close second (both planners
operate within a maximum time budget of 10s). RRT« ls
trails slightly behind RRT* 10s in simpler environments
but struggles in maps that are large (Park) or have narrow
passages (Cloister), as these scenarios require extensive
sampling to ensure adequate coverage or density. Finally,
RRT=* 0.1s performs reasonably well only in the Math
environment, which consists of wide open spaces with good
visibility.

We verified that for every query where at least one planner
succeeded, all search-based planners also succeeded. This
empirical finding suggests that our multi-resolution planners



Path length comparison
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Fig. 8. Path lengths for selected search- and sampling-based planners and

three variants of our multi-resolution planner. The upper plot shows absolute
lengths, and the lower plot shows lengths relative to Thetax (blue line).
QOutliers for sampling-based planners are partially omitted in the lower plot.
In particular, only the bottom few quantiles of RRTConnect are visible.

TABLE III
AVERAGE PATH LENGTHS PER MAP FOR QUERIES WHERE ALL PLANNERS
SUCCEEDED.
Mean path length (m) Mine Cloister  Math Park
A* 15.96 2049 4510 106.05
Theta* 14.87 19.06  42.20 99.12
LazyTheta* 14.88 19.06 4222 99.14
OctreeLazyTheta* 16.34 2042 4467 103.63
RRTConnect 30.49 39.49 7383 15589
RRT* 0.1s 17.50 19.59 4405 106.52
RRT* 1s 15.81 19.35  43.04 10141
RRT* 10s 15.16 19.19 42,61 100.04
Ours 14.89 19.06 4221 99.15
Ours Lazy 14.91 19.07 42.26 99.21
Ours Fast 14.95 19.08  42.28 99.25

maintain the completeness guarantee of their fixed-resolution
counterparts. Additionally, there were no cases where a
sampling-based planner found a solution that the search-based
planners could not. This supports the idea that the adjacency
graph of an occupancy map provides a reliable approximation
of the solution space.

2) Path length: Moving on to the path quality evaluations,
we compare the average path lengths for all planners. To
ensure fairness, only queries where all planners succeeded are
included, avoiding bias toward planners that fail more often
on longer paths. As shown in Table III, Theta= consistently
finds the shortest paths on all maps. LazyThetax follows
closely, with paths only 0.03% longer on average, and Qurs
achieves similar results. OQursLazy and OursFast also perform
well, with OursFast producing slightly longer paths but never
exceeding Thetax by more than 0.5%. In contrast, the RRT*
variants gradually increase in path length as their time budgets
decrease. A+ and OctreeLazyThetax also yield noticeably
longer paths, as A= is constrained to a 26-connected grid and
OctreelLazyTheta~ restricts paths to octree leaf centers.
Finally, RRTConnect produces the longest paths, which, on
average, are almost twice as long as those of Thetax.

Execution time comparison
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Fig. 9. Execution times for selected search- and sampling-based planners and
three variants of our multi-resolution planner. The upper plot shows absolute
times (log scale), and the lower plot shows speedups relative to Thetax (blue
line).

The absolute and relative path length distributions in Fig-
ure § provide additional insights. The evaluated path lengths
ranged from 0 to 500m, with shorter paths being more
frequent due to the smaller connected areas in maps like
Mine and Cloister. Most planners find reasonable paths,
but RRTConnect stands out with significantly longer paths
and high variance. RRT* 0. 1s appears to find slightly shorter
paths on average, a bias explained by its failure to solve queries
with distant start and goal pairs.

For relative path lengths, Theta~x consistently finds the
shortest paths and is closely followed by LazyThetax.
While RRT* occasionally surpasses Theta=, it is less con-
sistent overall. For instance, RRT = 10s features outliers with
paths up to 1.8 times longer than Thetax. RRTConnect
exhibits extreme variance, with paths up to 16.8 times longer
than Theta=. This highlights the importance of RRT*’s tree
rewiring for improving path quality. As predicted by Nash et
al. [19], A~ paths are far from optimal, with most paths being
at least 2% longer and some reaching the theoretical worst-
case of 13%. Similarly, OctreeLazyThetax can introduce
significant detours, sometimes exceeding 25%. Finally, Ours
closely matches Thetax on average, demonstrating high
consistency and very few outliers. OursLazy introduces slight
variability due to lazy visibility checking, producing paths
that are marginally less direct. Also reducing the inflection
point initialization resolution in OursFast results in slightly
larger detours around obstacles. Nonetheless, paths produced
by OursFast remain suitable for many practical applications.

3) Runtime: The last metric we evaluate is execution time,
starting with the average runtime of each planner in each
environment, as shown in Table IV. All runs are included in the
averages to capture both successful and unsuccessful queries,
while the planning times of the RRT* variants are not listed as
they are constant. Thetax is the slowest planner by a large
margin. Enabling lazy visibility checking (LazyThetax)
improves its runtime by 6 to 9 times, but it remains signif-



TABLE IV
AVERAGE EXECUTION TIMES PER MAP FOR 100 RANDOMLY SAMPLED
QUERIES (RRT* VARIANTS OMITTED DUE TO FIXED RUNTIMES).

Mean execution time (s) Mine Cloister Math Park
A* 0.20 1.15 1.89 8.19
Theta* 2.70 30.29 61.18 281.38
LazyTheta* 0.42 366 689 3151
OctreeLazyTheta* 2.88 10.79 13.12  64.94
RRTConnect 1.24 1.63  0.21 0.39
Ours 0.51 269 386 2022
Ours Lazy 0.20 082 1.12 5.72
Ours Fast 0.10 036 0.51 2.76

icantly slower than A«. Interestingly, OctreeLazyThetax
is not faster than LazyThetax, indicating that octree-based
representations alone do not outperform optimized fixed-
resolution methods. However, substantial speedups can be
achieved through careful multi-resolution design. On average,
Ours is 8 times faster than Thetax in confined environments
and 15 times faster in large open spaces. OursLazy achieves
similar gains, being 2 to 6 times faster than LazyThetax.
OursFast and RRTConnect are the fastest overall. OursFast
is up to 12 times faster than RRTConnect in confined
environments like Mine, while RRTConnect is up to 7 times
faster in large open spaces like Park.

Figure 9 shows runtime distributions, absolute with logarith-
mic scale (top) and relative to Thetax (bottom). For search-
based planners, execution time is strongly correlated with
path length. In contrast, RRTConnect shows no meaningful
correlation, and the RRT* variants maintain constant runtimes.
Notably, the speedup of all planners over Thetax increases
with path length, reflecting Theta=’s poor scalability.

Looking at our proposed planners, Ours and OursLazy are
rarely slower than Theta~ and achieve speedups of up to 60
and 100 times, respectively. OursFast consistently outperforms
all other search-based planners, with speedups ranging from
5 to 800 times. We can also see that our method’s runtimes
are more predictable than those of sampling-based methods, in
part due to being able to detect infeasible queries. This result
underscores the effectiveness of leveraging multi-resolution to
balance efficiency and path quality.

VI. LIMITATIONS

The main limitation of our method is its restriction to
Euclidean cost formulations. This is because, like Theta*,
our multi-resolution extension relies on the triangle inequality
to find any-angle paths efficiently [19]. We also focused
on Euclidean workspaces, to reliably and efficiently provide
global paths as inputs to trajectory optimizers or local planners
in navigation tasks [21, 29, 3].

VII. CONCLUSION

In this paper, we presented wavestar, a search-based global
planning method for Euclidean workspaces that utilizes an
octree-like structure to improve planning speed in occupancy
maps. We extend the ideas from any-angle planners to hierar-
chical representations to exploit spatial sparsity by generaliz-
ing the concept of inflection points from fixed-resolution grids
to a hierarchical representation.

Extensive evaluations and comparisons to search-based
methods show that we achieve paths of competitive qual-
ity but at a substantially reduced computational cost. This
demonstrates that exploiting the inherent sparsity of real
environments does not significantly impact accuracy, while
providing significant computational benefits. Additionally, in
contrast to sampling-based methods, our approach can detect
when a query is infeasible, while also producing high-quality
paths. Overall, these results show that our approach combines
the benefits and guidance of search-based methods with the
speed of sampling-based methods. This makes it suitable as a
first step for many navigation systems, where a coarse initial
path through 3D space is needed.
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APPENDIX

A. A brief introduction to Theta*

Given that our method’s cost field formulation and search
algorithm can be seen as a multi-resolution extension of
Theta*, we briefly summarize the algorithm and relevant
terminology in this section. Theta* [4] is an any-angle path-
finding extension to the A* [9] search algorithm. Just like
A*, it only propagates information along grid edges. The
key distinction between the two search algorithms lies in
how they select each vertex’s predecessor. Since A* only
considers each vertex’s direct neighbors, the paths it returns are
strictly composed of grid edges. Theta* additionally considers
connections to each direct neighbor’s best predecessor if it
is within the vertex’s line of sight. This allows Theta* to
deviate from the grid and find paths up to ~ 13% shorter
than those found by A*, at the cost of increased runtime due
to the additional visibility checks.

The main loop of A* and Theta*, shown in Algorithm 4, is
identical. Both search algorithms store two values per vertex,
namely the vertex’s cost-to-come (g cost) and an index or
pointer to its best predecessor. Furthermore, both algo-
rithms use a priority queue (open) to expand vertices in order
of their minimum f score, where f(s) = g(s)+h(s) with h(s)
a consistent heuristic function. Using a consistent heuristic
guarantees that a node is only expanded from the queue once
its optimal g cost and predecessor have been found [23].
A closed set (closed) can therefore be used to track and
explicitly skip updates of already expanded nodes (Line 13).
It also means that both algorithms can terminate immediately
once the goal vertex 58 is expanded (Line 8). Since the paths
found by A* can only contain edges of the 26-connected grid,
using the octile distance to the goal, h(s) = ||s2% — 5||oer, is
consistent. In contrast, Theta* must use the Euclidean distance,
h(s) = |58 — s||2, because its paths are not constrained to
the grid’s edges.

As highlighted earlier, the key difference between A* and
Theta* is how they find each vertex’s best predecessor. When
expanding vertex s, the function UpdateCost is called for
each neighboring vertex s’ to check if using s could lead to
a shorter path. In that check A* only considers connecting
s’ directly to s (Algorithm 5, note that c(s?,s®) refers to
the edge cost between two vertices s® and s”). As shown in
Algorithm 6, Theta* considers connections from s’ to both s
and predecessor(s). By virtue of the triangle inequality,
a connection to predecessor(s) — when available — is
guaranteed to yield a candidate g cost that is equal to or lower



Algorithm 4: Heuristic-guided search over vertices

Algorithm 6: Definitions for Theta*

open +
closed < 0
g(sm) « 0
predecessor(s™M) «— g
open.insert(s™m, g(s) 4 h(s5))
while open # ) do
s < open.pop()
if s = s8°¢ then
| return PathFound
end
closed < closed U {s}
foreach s’ € neighbors(s) do
if s ¢ closed then
if s ¢ open then
o) ¢ o0
predecessor(s’) «+ NULL
end
UpdatevVertex(s,s)
end
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end
return NoPathFound
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23 Function Updatevertex(s,s’) is

2 Status < UpdateCost(s,s’)

25 if Status = Changed then

26 if s’ € open then

27 open.remove(s’)

28 end

29 open.insert(s’, g(s") + h(s"))
30 end

31 end

Algorithm 5: Definitions for A*
1 Function UpdateCost(s,s’) is
2 if g(s) + ¢(s,s") < g(s') then
3 predecessor(s’) < s

s || gl gls)+es, )

5 return Changed
6

7

8

end
return Unchanged
end

than a direct connection to s. Therefore, Theta* only considers
connecting to direct neighbor s when its predecessor(s)
is not visible from s'.

B. Lazy visibility checking extension

As demonstrated by LazyTheta*[19], lazy visibility check-
ing can improve the runtime of Theta* [4] by over an order of
magnitude without significantly increasing path length. This
technique can also be applied to our multi-resolution any-
angle planner to achieve similar benefits. To implement this
extension, we modify the UpdateCost function (Alg. 3) by

1 Function UpdateCost(s,s’) is

2 sP < predecessor(s)
3 if LineO£Sight(s?,s) then
// Ray traced connection
4 if g(sP) + c(sP,s") < g(s') then
5 predecessor(s) < sP
‘ 9(s") < g(sP) + c(5, )
7 return Changed
8 end
9 else
// Direct neighbor connection
10 if g(s) +c(s,8") < g(s’) then
1 predecessor(s’) < s
12 g(s") < g(s) +c(s, s")
13 return Changed
14 end
15 end
16 return Unchanged
17 end

assuming that LineOfSight(sP,V’) is always true during
the initial cost update (Line 5). When the search later expands
V' (Alg. 1 Li. 7), this assumption is verified. If the visibility
check fails, the predecessor of V' is updated to the best
direct neighbor, introducing only a minor detour as the best
neighbor’s center is typically very close to the optimal path.
The remainder of the algorithm remains unchanged.

C. Formal statements

To the authors’ best knowledge, no proofs or formal guar-
antees on completeness, optimality, or time complexity have
appeared in prior literature for either Theta* [4] or Lazy-
Theta* [19]. In the statements that follow, we therefore discuss
observations applying to both Theta* and our multi-resolution
extension.

1) Completeness: Theta* operates on a supergraph of the
grid’s 26-connected adjacency graph considered by A*, as its
additional line-of-sight check can only add edges. Since each
vertex receives at most one additional edge, the supergraph’s
branching factor remains finite. Furthermore, all edge weights
are non-zero. Therefore, Theta* preserves A*’s resolution
completeness guarantee.

Our method losslessly converts the traversability grid into
octree leaves and defines any two leaves as adjacent if they are
both traversable and touch in any form, i.e., have an overlap-
ping face, edge, or corner. For any two connected vertices on
the fixed-resolution grid, the respective octree leaves that cover
them will also be connected. Our representation, therefore,
maintains the connectivity of the original space, preserving the
resolution completeness of running A* on the original high-
resolution grid.

2) Optimality: We build on the previous section’s insight
that Theta* operates on a supergraph of A*’s graph. New edges
are only introduced if they reduce the evaluated vertex’s cost-



to-come. Moreover, the chosen Euclidean distance heuristic
remains admissible and consistent. Theta* is therefore guar-
anteed to find paths that are at least as good as those of A*
and, as proven in [19], it can find solutions that are up to
~ 13% shorter.

Naively applying A* or Theta* to the center points of an
octree’s leaves results in paths that can be arbitrarily sub-
optimal with respect to their fixed-resolution counterparts, as
illustrated in Figure 2. Our method addresses this problem by
leveraging an octree while still considering the high-resolution
vertices covered by each leaf. Our algorithm’s initialization
procedure (Section IV-C) guarantees that all potentially opti-
mal predecessors, at the chosen initialization resolution, are
considered. During the multi-resolution search, our dynamic
refinement procedure (Section IV-E) increases the resolution
of each subvolume until the cost to reach each high-resolution
vertex it covers is suboptimal by a factor of at most 2e. This
factor of two follows from the fact that Equation (3) is applied
pairwise between all successive candidates. Since the goal is
itself a vertex, the total path length will be within 2¢ of Theta*
and, by extension, A*.

Note that setting € = 0 and matching the initialization reso-
lution to the fixed-resolution grid yields paths whose length is
almost identical to those of Theta*, but that sometimes differ in
terms of chosen predecessors. We believe this follows from the
fact that Theta* is not guaranteed to find the optimal any-angle
Euclidean shortest path. The predecessors chosen by Theta*
and our algorithm are sensitive to the order in which the
vertices or subvolumes are expanded, and this order will differ
slightly due to small numerical and discretization differences
in our multi-resolution formulation.

3) Time Complexity: Our method leverages a data struc-
ture that combines hash maps with fixed-maximum-depth oc-
trees [18], achieving the same O(1) access and insertion com-
plexity as regular grids. Consequently, the time complexity of
expanding a subvolume in our method matches Theta™’s vertex
expansion complexity. Theta* performs up to 26 predecessor-
visibility checks per expanded vertex, each potentially having
a complexity that grows linearly in the checked distance.
However, very long-distance visibility checks can be avoided
without significantly affecting path length, since the detour
introduced by splitting a long edge into two and aligning
their middle vertex to the grid is negligible. Our implementa-
tions of Theta* and our multi-resolution extension therefore
reject checks beyond a fixed maximum distance, ensuring
their worst-case runtime complexity matches that of A* on a
regular grid. Experimentally, we demonstrate that our method’s
runtime is substantially lower in practice (Table III).



