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Fig. 1:

cuTAMP Overview. cuTAMP frames TAMP as a backtracking bilevel search over plan skeletons (Sec. IV). Each

skeleton 7 induces a continuous Constraint Satisfaction Problem that defines the structure of a particle (parameters) and cost
functions (constraints and plan costs). These particles are optimized in parallel by evaluating their costs with differentiable
cost functions (Eq. 4), allowing gradient-based optimizers to iteratively update them towards satisfying solutions (Sec. V-B).

Abstract—Planning long-horizon robot manipulation requires
making discrete decisions about which objects to interact with
and continuous decisions about how to interact with them. A
robot planner must select grasps, placements, and motions that
are feasible and safe. This class of problems falls under Task and
Motion Planning (TAMP) and poses significant computational
challenges in terms of algorithm runtime and solution quality,
particularly when the solution space is highly constrained. To ad-
dress these challenges, we propose a new bilevel TAMP algorithm
that leverages GPU parallelism to efficiently explore thousands
of candidate continuous solutions simultaneously. Our approach
uses GPU parallelism to sample an initial batch of solution seeds
for a plan skeleton and to apply differentiable optimization on
this batch to satisfy plan constraints and minimize solution cost
with respect to soft objectives. We demonstrate that our algorithm
can effectively solve highly constrained problems with non-convex
constraints in just seconds, substantially outperforming serial
TAMP approaches, and validate our approach on multiple real-
world robots. Project website and code: cutamp.github.io

1. INTRODUCTION

Task and Motion Planning (TAMP) enables robots to plan
long-horizon manipulation through integrated reasoning about
sequences of discrete action types, such as pick, place, or
press, and continuous action parameter values, such as grasps,
placements, and trajectories [1]. TAMP planners have demon-
strated remarkable generality in complex tasks including ob-
ject rearrangement [2], multi-arm assembly [3], and cooking
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a meal [4]. However, TAMP problems become increasingly
challenging to solve efficiently as the horizon and action space
increase, and the size of the set of solutions decreases due to
tightly interacting constraints, e.g., kinematics and collisions.

A popular family of TAMP algorithms solve problems by
first searching over discrete action sequences, also known as
plan skeletons, and then searching for continuous action pa-
rameter values that satisfy the collective action constraints that
govern legal parameter values. Each candidate plan skeleton
induces a continuous Constraint Satisfaction Problem (CSP),
which TAMP algorithms typically solve using a mixture of
compositional sampling and joint optimization techniques,
with each having their own trade-offs [1].

Sampling-based approaches to TAMP disconnect the pa-
rameters by generating samples for each independently using
hand-engineered [5, 6, 7], projection-based [8], or learned
generators [9, 10], and then combining them through com-
position and rejection. Because the parameters only interact
through rejection sampling when evaluating constraints, many
samples are often needed to satisfy problems where the
constraints interact, such as tight packing problems (Figure 1).
Optimization-based TAMP approaches, on the other hand,
represent constraints as analytic functions in a mathematical
program and solve for the continuous parameters by applying
first- or second-order gradient descent [1, 11]. However, these
constrained mathematical programs are highly non-convex
with many local optima, making it challenging to find even
a feasible solution from random parameter initializations.
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Fig. 3: Object Packing with a URS. The objective is to
place all objects onto the white region while minimizing
the distance between them. The final state achieves a tight
packing with successful reduction of the goal cost.

We present cuTAMP, the first GPU-parallelized TAMP
planner. cuTAMP enables massively parallel exploration of
TAMP solutions by combining ideas from sampling-based
and optimization-based TAMP with GPU acceleration, going
beyond prior serial algorithms. We treat TAMP constraint
satisfaction as simultaneous differentiable optimization over
a batch of particles, representing thousands of candidate
solutions. This allows us to maintain the interdependence
between continuous parameters by jointly optimizing them.
To initialize the particles, we leverage parallelized samplers
that solve constraint subgraphs, composing their generations
to populate particles near the solution manifold while ensuring
good coverage of parameter space. We demonstrate that when
massively parallelized, cutTAMP can effectively solve highly
constrained TAMP problems. Our approach inherits the local-
ity of gradient descent and explores multiple basins through
compositional sampling, increasing the likelihood of finding
the global optima. Although we focus on GPU acceleration,
our method applies to other forms of parallel computation.

We evaluate cuTAMP on a diverse range of TAMP prob-
lems of varying difficulty and highlight the benefits of GPU
parallelism. By scaling the number of particles, we achieve
significant improvements in the number of satisfying solutions,
algorithm runtime, and solution quality. For highly constrained
problems that baselines fail to solve, cutTAMP finds solutions
in just seconds. We deploy our algorithm on a real URS and
Kinova arm and showcase its fast planning capabilities for
long-horizon manipulation problems (Figures 3 and 4). Code
and videos are available on our website: cutamp.github.io.

II. RELATED WORK

Parallelized Motion Planning. Early algorithms for par-
allelized motion planning used multiprocessing [12] during
primarily embarrassingly parallelizable operations, for exam-
ple, when computing an explicit representation of the robot’s
configuration space [13]. More recent algorithms leverage
vectorization [14] or GPU-acceleration [15, 16] to implement
primitive motion planning operations, such as forward kine-
matics and collision checking. Our work is most closely related
to cuRobo [17], which leverages GPU-acceleration in two
phases: first, during a sampling-based Probabilistic Roadmap
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Fig. 4: Block Stacking with a Kinova Arm. The objective is
to stack the red block on the blue block. However, the mustard
bottle and canister obstruct all placements. cutTAMP reasons to
move these objects out of the way before placing the red block.

(PRM) [18] phase that generates candidate paths, and second,
during a trajectory optimization phase seeded from these paths
that minimizes trajectory duration subject to dynamical limits.
In contrast, cuTAMP addresses the broader problem of TAMP
(i.e., manipulation planning), which requires reasoning about
grasps, contacts, and placements in addition to motions.

Sampling-Based TAMP. Sampling-based TAMP algo-
rithms handle the continuous decision-making within TAMP
through discretization and composition. They generate values
that satisfy specific constraints, such as grasp and placement
stability constraints, and intersect them with additional con-
straints, such as kinematic and collision constraints, through
rejection and conditional sampling [1]. Prior approaches do
this by sampling a fixed problem discretization [19, 20], com-
bining generators using a custom interface layer [6], searching
through the multi-modal continuous space [21, 8], specifying
geometric suggesters [5], and composing samplers using a
stream specification [7, 2, 22, 23]. Additionally, it is possible
to cast satisfaction as an inference problem and leverage
techniques like Markov chain Monte Carlo (MCMC) [24] and
Stein Variational Inference [25]. We leverage sampling to pop-
ulate candidate particles that are near the solution manifold,
but not necessarily feasible, for gradient-based optimization.

Optimization-Based TAMP. In contrast to sampling-
based algorithms, which leverage constraint compositional-
ity, optimization-based TAMP algorithms directly solve for
continuous parameters that jointly satisfy all plan constraints.
Although sampling-based methods can generally optimize
plan cost in an anytime mode using rejection sampling,
optimization-based TAMP leverages mathematical program-
ming, often via first- and higher-order optimization. Sev-
eral approaches use off-the-shelf Mixed Integer Programming
(MIP) solvers for constraint satisfaction; however, these ap-
proaches are limited to simplified TAMP problems where
the continuous dynamics are linear [26, 27] or convex [28,
29, 30, 31]. Other approaches directly address the non-
convex constrained optimization problem using Sequential
Quadratic Programming (SQP) [32], Augmented Lagrangian
methods [33, 34, 35, 26, 36, 37], and Alternating Direction
Method of Multipliers (ADMM) [38]. These methods are
computationally expensive per attempt and are not guaranteed



MoveFree(qi,q2 : conf, T7:traj)

con: [Motion(qi,7,¢2), CFreeTraj(r)]
pre: [AtConf(g¢i), HandEmpty()]

eff: [AtConf(gz), —AtConf(q1i)]

cost: [TrajLength(r)]

Pick(o:obj, g: grasp, p:placement, ¢: conf)

con: [Kin(g,o0,9,p), Grasp(o,g), CFreeHold{o,g,q)]
pre: [HandEmpty(), AtConf(q), AtPlacement (0,p)]
eff: [Holding(o,g), —HandEmpty(), —AtPlacement(o,p)]

MoveHold(o: obj, g: grasp, ¢1,¢2 : conf, T:traj)

con: [Motion(qi,7,¢2), CFreeTrajHold(o,g,7)]
pre: [AtConf(gi), Holding(o,g)]

eff: [AtConf(gz), —AtConf(q1i)]

cost: [TrajLength(r)]

Place(o :obj, g:grasp, p:placement, s: surface, ¢g: conf)
con: [Kin(g,0,9,p), StablePlace(o,p,s), CFreePlace(o,p)]
pre: [Holding(o,g), AtConf(q)]
eff: [HandEmpty(),AtPlacement(o,p),On(o,s), "Holding(o, g)]

Listing 1: Parametrized actions for pick and place tasks.
We list the most important constraints for simplicity of pre-
sentation. CFree is an abbreviation for Collision Free.

to converge to a feasible solution. By optimizing thousands of
candidates solutions in parallel, our approach is more likely
to produce at least one feasible solution.

III. PROBLEM FORMULATION

Our approach is generally applicable to long-horizon
decision-making problems with both discrete and continu-
ous parameters, such as assembly line design, smart power
grid management, and programming video game non-playable
characters. We focus on solving TAMP problems.

Let a TAMP problem be a tuple IT = (A4, sg, S.), where
A is a set of parametrized actions, sg is the initial state,
and S, is the set of goal states. We represent states and
actions using a PDDL-style (Planning Domain Definition
Language) [39] action language, where states are comprised of
Boolean variables corresponding to logical propositions. For
example, the AtPlacement(o,p) predicate holds if object
o is currently at placement pose p. Each parametrized action
a € A accepts parameters x, = (x1,...,2,), which may
include both discrete and continuous values, and consists of:

o Constraints (con) on its parameters, which must all be

satisfied in order for the action to be valid in some state.
We assume that the constraints are equality or inequality
constraints on a differentiable real-valued function, de-
noted as .J. for each constraint ¢ € con(a) in action a.

o Preconditions (pre), which must all be true for the action

to be executed in a given state.

o Effects (eff), which describe propositions that become

true or false after executing the action.

o Costs (cost) on the parameters, which we aim to reduce.

For example, consider the Pick action in Listing 1 for
grasping object o, with the grasp g, when at pose p, and
corresponding robot configuration . Its preconditions are
1) HandeEmpty() — the robot’s hand must be empty, 2)
AtConf(g) — the robot must be at configuration ¢, and 3)
AtPlacement(o,p) — object o must be at placement pose

AL
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Fig. 5: Minimizing Distance between Objects. The state after
executing the best particle. (a) cuTAMP achieves significantly
lower cost compared to (b) parallelized sampling.

p. As a result of executing the Pick action, AtGrasp(o,g)
— the robot holds object o with grasp g — is now true, but
HandEmpty() and AtPlacement(o,p) are now false. To
execute the action, we require that the kinematic constraint
Kin(g,0,g,p) is satisfied (ie., FK(q) = p - g where FK is
forward kinematics), g is a valid grasp for object o as required
by Grasp(o,g), and the grasp is Collision-Free (CFree) at
configuration ¢ required by CFreeHold(o, g, ¢). We provide
additional MoveFree, MoveHold, and Place actions in
Listing 1. The complete description of the constraints and
actions considered may be found in Appendix Al.

The objective of the TAMP system is to find a plan skeleton
7 = (a1,...,a,), a sequence of actions, with valid parameter
assignments {x, | « € w} such that when applied from
the initial state sy, it produces a goal state s € S, while
minimizing the overall cost.

Running Example. Consider the following skeleton for
placing object red on surface table, where constant con-
tinuous parameters are bolded:

= [MoveFree(qo,ql,n), Pick(red,g,po,ql),
MoveHold(red, g, q1,q2,72), Place(red,g,p1,table, ¢2)].

Parameters in a plan skeleton may be shared across actions.
In order to Pick object red at configuration ¢, the robot
must first use MoveFree to move from its initial configura-
tion qo to g1. A key challenge in TAMP is that continuous
constraints may restrict the set of viable plan skeletons. For
example, a blue object may initially obstruct the red object,
causing CFreeHold in Pick to be false. This skeleton would
admit no solutions as long as blue is at its initial placement.

Goal Costs. In some tasks, the objective is to reach a
state that additionally minimizes a cost function, such as the
goal distance between objects (Figure 5). We support this
by treating costs on the goal state as a dummy action with
costs that are appended as the final action in candidate plan
skeletons. In our example, this action for three objects is:

ob3i, p1,p2,ps : placement)
AtPlacement (o2, p2),

MinimizeOb3Dist (o1, 02,03 :
pre: [AtPlacement(o1,p1),
AtPlacement(os,ps)]

cost: [Dist(pi,p2), Dist(p2,ps),

DiSt(p17p3)]



IV. cUTAMP OVERVIEW

cuTAMP is a sequence-then-satisfy approach to TAMP [1]:
it first searches over plan skeletons and then searches over
continuous action parameter values for each of the actions
within that skeleton. Specifically, cuTAMP first generates
a candidate skeleton and then uses massively parallelized
differentiable optimization to solve the induced constraint
satisfaction problem (CSP) (Section V). Since any particu-
lar skeleton might induce a CSP with no feasible solution,
cuTAMP backtracks to attempt different skeletons until it
finds a feasible one. To ensure efficient optimization, cuTAMP
invokes sampling methods to initialize a batch of particles,
representing candidate continuous solutions to the CSP (Sec-
tion VI). Finally, to minimize backtracking, ctTAMP derives
a plan feasibility heuristic to guide the discrete search over
skeletons (Section VII). In Section A2, we prove that cuTAMP
is probabilistically complete.

The cuTAMP algorithm is listed in Algorithm 1. In Stage
1, it searches for N, initial plan skeletons using task planning,
which we perform using a forward best-first search that
introduces new parameters for continuous variables whenever
it expands a node in the search tree. For each skeleton 7,
it performs particle initialization to get a batch of particles
P; (Sec. VI), and computes the PLANHEURISTIC (Sec. VII).
These candidate skeletons and particles are appended to a
priority queue (), which is ordered by the heuristic values.
In Stage 2, it iteratively selects plan skeletons and their par-
ticles from () and optimizes the particles using differentiable
optimization (Sec. V-B) until a stopping criterion is met (e.g.,
time limit or number of steps). After optimizing the particles,
it evaluates whether the overall stopping conditions have been
met, such as finding at least one satisfying solution or reaching
a user-defined cost value. If the conditions are met, it returns
all satisfying solutions. Otherwise, it recomputes the plan
heuristic on the optimized particles and samples additional
skeletons and particles to add to the priority queue.

In the sections that follow, we discuss each component of
cuTAMP in detail. At the core of our approach is our use of
parallelized differentiable optimization for solving CSPs. We
thus present this first in Section V. Like most optimization-
based approaches, ours is sensitive to initialization. cuTAMP
addresses this challenge with particle initialization strategies,
which we present next in Section VI. Finally, we describe our
approach for guiding the discrete search over plan skeletons,
which leverages the particle initializations, in Section VIL

V. PARALLELIZED CONSTRAINT SATISFACTION

A candidate plan skeleton 7 = (a1,...,a,) induces a
continuous Constraint Satisfaction Problem (CSP), where the
goal is to assign values to the continuous parameters such that
all the constraints across a € m, are satisfied. We denote the
set of constraints across 7 as con(m) =, con(a), and the
cost functions as cost(m) = |, cost(a).

A CSP can be visualized as a constraint network, where
nodes represent variables and constraints, and edges connect
variables via the constraints. Figure 6 depicts the constraint

Algorithm 1 cuTAMP Algorithm

Require: TAMP problem II, N, particle batch size, N; number of new plan
skeletons
Qe ]

2: fori=1,...,Ns do

> Initialize priority queue
> Stage 1: Initialize plans and particles.

3: m;  SEARCHPLANSKELETON(TI)

4 P; < INITIALIZEPARTICLES (75, Np) > Parallelized Sampling
5: h; < PLANHEURISTIC(7;, P;)

6: PUSH(Q, (hi, 71, Pi))

7: while Q # [ ] do > Stage 2: Loop over skeletons and optimize.
8: (h,7, P) + PoP(Q)

9: P’ < OPTIMIZEPARTICLES(, P) > Parallelized Optimization
10:  if ISGOALSATISFIED(m, P’) then

11: return 7, GETSATISFYINGPARTICLES(m, P’)

12: fori=1,...,Ns do > Sample additional plan skeletons.
13: Tnew < SEARCHPLANSKELETON(TI)

14: Prew < INITIALIZEPARTICLES (Trnew, N3 )

15: hnew < PLANHEURISTIC(7rnew, Prew)

16: PUSH(Q7 (hneW7 Tnew » Pnew))

17: h' + PLANHEURISTIC(T, P’)

18: PUsH(Q, (b, 7, P"))
19: return FAILURE

> Add back to queue

network for the running example (Sec. III) for placing object
red on surface table, where the free variables are ¢, 71,
g, G2, T2, and pq, while the set of constraints con(r) are:

{ Motion(qgo,71,¢1), CFreeTraij(m), Kin(qi,red,g,po),
Grasp(red,g), CFreeHold(red,g,q1), Motion(gi,T2,¢q2),
CFreeTrajHold(red, g, ), Kin(g2,red, g,p1),
StablePlace(red,pi,table)}, CFreePlace(red,pi) }.

A. Constraint Satisfaction via Optimization

We solve the CSP induced by skeleton 7 by reducing it to an
unconstrained optimization problem involving the real-valued
functions comprising each constraint and the cost functions
across 7. Let a parameter particle x = (x1,%2,...,ZnN,)
be an assignment to the /N, continuous variables in 7. For
each constraint ¢ € con(r), we denote its differentiable real-
valued function as J. and tolerance as ¢.. A constraint ¢
is satisfied if J.(Xparam(c)) < €c, Where Xpuram(c) denotes
the subset of parameters in x that are relevant to c. In our
running example, the kinematics constraint Kin(gqi, red, g,
po) performs forward kinematics on the robot configuration
¢1 and returns the pose error relative to the target pose pg - g
for object red. A particle x is satisfying if it satisfies all the
constraints in 7, and hence forms a valid solution to the CSP.
Finding such a satisfying particle corresponds to solving the
following mathematical program:

Z C/ (Xparam(c/))

¢’/ Ecost(r)

min
(D

subject o Jo(Xparam(c)) < €c Ve € con(r).

Each plan skeleton induces a mathematical program, where
the variables and costs are determined by the parameters,
constraints, and costs of its actions. We solve the program
by relaxing the hard constraints into soft costs, enabling the
use of unconstrained optimization. The objective function is a
weighted sum of the costs from the hard constraints and the
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Fig. 6: Example Constraint Network. Vari-
ables (round nodes) are connected to each other
via constraints (rectangular nodes). We omit
CFreeTraj constraints for simplicity.

plan costs, which may be viewed as soft constraints:

m)in j(X) = Z Ae Jc(xparam(c))

cEcon(m)

hard constraint costs

+ Z Aer C/(Xparam(c/))a

¢’/ Ecost(m)

@

soft action costs

where ). is the weight (constant penalty) for the corresponding
constraint or cost ¢, which allows us to balance their influence
during the optimization process. We can check whether a
particle x satisfies the CSP by evaluating:

/\ JC(Xparam(c)) S €e.

cEcon(m)

3

B. Parallelized Differentiable Optimization

A key contribution of our work is to exploit parallelism
to apply differentiable optimization and explore thousands of
parameter particles simultaneously. We first denote a batch of
N, parameter particles as P = (x1,...,Xu,). The objective
in our unconstrained optimization problem is now to minimize
the mean cost over all particles in P:

. 1
min Toach(P) = N Z J(x). @

Gradient-Based Optimization. We solve the unconstrained
optimization problem in Equation 4 by iteratively updating
the particles P using a gradient-based optimizer. At each
optimization step, we compute the cost function across the
batch of particles. Since the cost function is differentiable,
we can compute the gradients of the cost with respect to
the particles. These gradients are then used by Adam [40],
a stochastic first-order optimizer, to update the parameters
within each particle. Our results in Section VIII demonstrate
that this approach performs remarkably well even with simple
unconstrained optimization using Adam; however, our ap-
proach is compatible with more complex optimizers including
augmented Lagrangians [41, 42, 43], coordinate descent [44],
and second-order optimizers [45]. We repeat gradient-descent
updates until a stopping criterion has been met, such as a
maximum optimization time or finding a satisfying particle
within the batch. We check whether a particle is satisfying by

Fig. 7: Example Sampling Networks. Samplers solve subgraphs of the
constraint network (Fig. 6). Solid arrows indicate the input and output
parameters for each sampler. Dotted arrows represent dependencies between
the samplers, defining the order in which they can be composed.

comparing whether the costs corresponding to the plan skele-
ton’s constraints falls within the defined tolerances (Eq. 3).
Parallelizing on GPUs. To efficiently optimize a batch of
particles, we avoid the inefficient summation in Eq. 4 by first
stacking the assignments of each continuous variable x; across
the batch of N, particles into a matrix X,;. For example,
if 1, € RT represents a 7-DOF robot configuration, then
X,; € RNeX7 1In order to compute the cost in Eq. 2 across
batches of particles simultaneously, we implement vectorized
versions of the cost functions using PyTorch [46]. These
cost functions are differentiable via automatic differentiation,
allowing us to compute gradients in parallel. We also lever-
age differentiable collision checkers and kinematics models
within cuRobo [17], which include custom CUDA kernels
for both the forward pass and gradient computations. We use
the kinematics model to compute pose errors for kinematic
constraints. Collision checking approximates the geometry of
the robot and movable objects as spheres, enabling massively
GPU-accelerated collision checking against static obstacles
represented as oriented bounding boxes, meshes, or signed
distance fields. We use these collision checkers, which provide
informative and smooth gradients, in our cost functions for
checking the collision-free and self-collision constraints. See
Appendix Listing 2 for example cost functions in Python.

V1. PARTICLE INITIALIZATION

A key desideratum for solving the highly non-convex opti-
mization problem presented above in Section V-B is avoiding
local minima. Towards this, ctTAMP implements a novel
strategy based on compositional sampling to initialize the
particles P before optimization is run. One common strat-
egy in optimization-based TAMP is to restart with random
initializations when stuck in local minima [24]. However, as
we show in Section VIII, targeted initialization via conditional
sampling skips the early stages of optimization that must move
near the solution manifold. This allows us to jump straight to
improving the particles according to the constraints jointly.

Let a parallelized sampler be a function that takes one or
more constraints, possibly involving different constraint types,
as input and generates a batch of N, assignments to the
free parameters involved in those constraints. A conditional
parallelized sampler accepts assignments for some of the free
parameters as additional input. A sampler’s objective is to find



assignments that satisfy its constraints; however, this is only
possible when the constraints admit satisfying assignments.

Our initialization strategy is to compose the generations of
multiple samplers, where each sampler solves a subgraph of
the constraint network. This provides an initialization for the
entire batch of particles P, corresponding to N, candidate
solutions to the CSP. This composition forms a sampling
network (also known as a computation graph), an orientation
of the edges in a constraint network that transforms it into a
directed acyclic graph (DAG) [7].

Concrete Example. Consider again the plan skeleton from
our running example in Section III, for which the constraint
network is depicted in Figure 6. We outline our use of samplers
to initialize particles for the first two actions in the skeleton:
1) MoveFree(qo, g1, 71) and 2) Pick(red, g, po, ¢1), where
the free variables are ¢;, 71, ¢ and ¢1. Similar to the approach
in [7], we provide the following samplers:

1) A 6-DOF grasp sampler that takes the Grasp(red, g)
constraint as input and generates grasps G in the object
frame (Figure 7a).

2) A conditional sampler for robot configurations that takes
the grasp samples G and constraints Kin(gi, red, g,
po) and CFreeHold(red, g, q1) as input (Figure 7b).
The sampler uses the parallelized inverse kinematics
solver from cuRobo [17] to solve for 7-DOF joint
positions Q; € R™*7 conditioned on the target end-
effector poses derived from the grasps G.

3) A conditional trajectory sampler for 7; that takes the
configurations QQ; and the Motion(gp, T, g1) and
CFreeTraj(r) constraints as input (Figure 7c¢). The
sampler could then linearly interpolate between the
initial configuration gg and QQ; or sample from a learned
diffusion model [47].

By composing these samples, we obtain an initialization for
the entire batch of particles P which corresponds to N
candidate solutions to the CSP.

Reusing Samples across Skeletons. Constraint subgraphs
are often shared across plan skeletons. To avoid duplicated
sampling, we cache the outputs of each sampler, allowing us to
reuse samples whenever we encounter a shared subgraph. This
significantly decreases sampling time by avoiding repeated
calls to samplers with the same parameters. In our running
example, any plan skeleton involving picking the red object
at its initial placement pg, Pick(red, g;, Po, ¢;), shares the
subgraph in Figures 7a and 7b, corresponding to the grasp and
robot configuration samplers.

VII. APPROXIMATING PLAN SKELETON FEASIBILITY

Now that we have discussed both particle initialization and
optimization given a fixed plan skeleton, we turn to the final
component of cuTAMP: searching over plan skeletons. A
key challenge in sequence-then-satisfy approaches to TAMP
is to avoid the refinement of plan skeletons with CSPs that
are unsolvable, as this results in wasted computational effort.
However, proving whether a CSP with non-linear and non-
convex constraints is unsolvable is generally intractable. In

sampling-based TAMP, the typical strategy is to sample up to
a maximum budget and backtrack upon failure to explore the
next skeleton. Our strategy in cuTAMP leverages the thousands
of candidate solutions generated during particle initialization
to estimate plan skeleton feasibility. We use this feasibility
measure, along with other factors such as plan skeleton length,
to determine the order in which we refine plan skeletons
(PLANHEURISTIC in Algorithm 1).

Recall that our parallelized samplers in Section VI attempt
to solve constraint subgraphs (Figure 7). Proving that a
subgraph is feasible requires the sampler to find just one
counterexample out of the batch of IV, particles. Thus, if any
constraints in a plan skeleton have zero satisfying particles,
we can say it is likely to be infeasible as we scale V.

We use this insight to derive a heuristic for the feasibility
of a plan skeleton 7 with constraints con(7) and particles P:

-1 Y ape),

H —
(m,P) |con(7)] c€con(r)

&)

if Tsatisfying — Oa

Tsaistying  Otherwise.

where h(P,c) = {Apenahy

Nsatistying = |Je(Pparam(c)) < €c| is the number of particles
that satisfy constraint c (see Sec. V-A), Apenaiy denotes a large
negative penalty applied when no particle in the batch satisfies
constraint c. Intuitively, H (7, P) measures the average feasi-
bility of constraints across the plan skeleton by counting the
number of particles satisfying each constraint, and assigning a
large penalty to constraints with no satisfying particles. This
heuristic can be quickly evaluated on the GPU.

Pruning Plan Skeletons with Failed Subgraphs. Particle
initialization is relatively inexpensive when compared to dif-
ferentiable optimization, but it still requires non-trivial com-
putation per skeleton. TAMP problems involving many objects
may admit hundreds or even thousands of plan skeletons, the
majority of which may be infeasible. We seek to detect plan
skeletons that have the same pattern of failure as previously
unsuccessfully sampled plan skeletons.

To achieve this, we first define a constraint to be likely
unsatisfiable if it has zero satisfying particles after sampling.
We collect such constraints and prune new skeletons from
consideration by the task planner if their constraint networks
contain the same unsatisfiable constraint subgraph. For exam-
ple, in Figure 9, the blue button is out of reach of the Franka,
requiring it to use the stick to press the button. The kinematic
constraint for pressing the blue button directly without the
stick would always have zero satisfying particles. Thus, any
plan skeleton that attempts to press the blue button directly
can be pruned, as it is infeasible.

Because it is generally intractable to prove constraint un-
satisfiability, we periodically re-initialize particles for the
parameters involved in the failed constraint subgraphs. If we
find a counterexample, i.e., at least one particle that satisfies
the constraint, we add all corresponding pruned skeletons back
to the search queue, as the constraint has been proven feasible.



(a) Single Object Packing

(b) Bookshelf with Obstacle

Fig. 8: TAMP Problems with Obstructions. (a) Requires
packing a square-shaped block. (b) Requires packing the blue
and green books into a shelf with a red obstacle.

VIII. EXPERIMENTAL EVALUATION.

We evaluate cuTAMP on a range of simulated TAMP
problems with varying levels of difficulty. These problems
differ in the number of plan skeletons that are feasible, and the
volume of the solution space due to the complex interaction
between constraints. We conduct ablation studies on cuTAMP
to analyze the impact of particle batch size, tuning of the cost
weights A, and subgraph caching. We consider the following
baselines, which emulate existing serial sampling-based [7]
and optimization-based [34] planners when run with a single
particle (N, = 1):

a) SAMPLING: Particles are continuously resampled
without optimization via OPTIMIZEPARTICLES.

b) OPTIMIZATION: Particles are initialized uniformly
within bounds (e.g., joint limits) without sampling.

Experimental Setup. For each approach, we run at least
10 trials and report the coverage (i.e., success rate) along
with the mean and 95% confidence interval across metrics
including the number of satisfying particles and runtime to
find a solution. Grasps are parametrized as top-down 4-DOF or
6-DOF poses, while placements are only 4-DOF poses. Robot
configurations correspond to 7-DOF joint positions. Grasps are
always sampled and fixed, while placement poses and robot
configurations are optimized. To evaluate the generality of cu-
TAMP, we use the same cost weights across all problems and
the same learning rates for Adam. The primary hyperparameter
we vary is the particle batch size N, in order to investigate
how increased parallelism affects performance.

We defer motion generation until after solving for place-
ments and robot configurations. While cuTAMP supports di-
rectly jointly optimizing collision-free trajectories (Figure 10),
we found that in practice it is more computationally efficient to
optimize for collision-free start and end configurations and de-
fer full motion planning until after optimization. Specifically,
we iterate through satisfying particles until we find one that
admits full motions in a semi-hierarchical fashion. We use the
GPU-based motion planner within cuRobo [17]. The timing
information we present does not include this motion planning
time, which requires only around a few hundred milliseconds
for each trajectory parameter and almost always succeeds for
our distribution of problems. Additional experimental details

Approach N, Coverage #Satisfying  Sol. Time (s)
1 3030 1133 135 0.648 + 0.171

64 3030 59470 +9.82 0.096 = 0.011

SAMPLING 256 30/30 141920 + 12.97 0.100 + 0.002
1024 30/30 1839.07 + 1445  0.163 = 0.001

1 4130 1.00 + 0.00 3.096 + 1.914

64 3030 563 + 095 2383 = 0.192

OPTINIZATION  gop 3030 2220+ 182 1857 + 0.113
1024 3030 9117 +393 1.394 % 0.082

1 26/30 0.85 + 0.15 0.530 = 0.101

—— 64 3030 46.67 = 137 0.138 + 0.041
256 3030 192.67 =231 0.099 % 0.002

1024 3030 77097 599 0.163 + 0.002

TABLE I: Results on Single Object Packing. We ablate the
particle batch size N,, where N, = 1 is representative of
serial approaches [7, 34]. The #Satisfying metric measures
the number of satisfying particles. The best solution time for
each approach is bolded, and the overall best is highlighted.

and full results can be found in Appendix A4.

A. Solving TAMP Problems with Obstruction

Single Object Packing (Figure 8a). The TAMP planner
must find placement poses for the object that do not collide
with the grey walls. Each method is given a 5 second budget
for resampling or optimization. Table I shows that all methods
successfully find solutions in at least some trials. Due to the
short horizon of this problem, SAMPLING alone with a small
batch size is sufficient to solve it. However, OPTIMIZATION
with uniform random initialization performs poorly. Although
increasing the batch size improves its performance, it remains
14x slower than the other approaches to find satisfying solu-
tions. This highlights the importance of particle initialization
via conditional sampling to start near the solution manifold.

Bookshelf Problem (Figure 8b). The robot can choose
either to: 1) pack the books directly into the shelf without
removing the red obstacle, or 2) first remove the obstacle
before packing the books. The CSP induced by the first
strategy is significantly more constrained, requiring increased
sampling and optimization time to find a satisfying solution.
We sample 6-DOF grasps in this problem, as they are required
to ensure collision-free placements of the books.

Our results are presented in Table II. We observe that the
plan feasibility heuristic (Eq. 5) prioritizes skeletons that first
move the obstacle out of the way, as they result in more
satisfying solutions. Both variants of cuTAMP are over 45%
faster than SAMPLING to find a solution and achieve full
coverage with much smaller batch sizes. Subgraph caching
improves the runtime of cuTAMP by 28%, as it speeds up
patticle initialization over skeletons. However, it can suffer
from local minima with smaller batch sizes.

B. Optimizing Goal Costs

We consider minimizing the goal distance between four
objects in a goal region (Figure 5). We compare SAMPLING
against two versions of cuTAMP: one that explicitly optimizes
the goal cost and one without. For each approach in Table III,



Approach N, Coverage #Opt. Plans Sol. Time (s)
64 7/30 157 £1.05 3.95 % 3.65

S 2 24/30 154+ 037 5.83 +2.29
AMPLING 579 28/30 125+0.07 7.22+1.72
2048 30/30 127 £026 11.59 + 3.15

64 30/30 1.80 + 0.65 4.09 + 1.29

256 30/30  1.00 £ 0.00 2.1 £ 0.17

WIAMP 515 3030 1.03+007 268 +0.19
2048 30/30 1.00 + 0.00 6.59 + 0.72

64 29/30 193 + 0.87 4.61 + 2.67

ZEEAZHQ W 256 3030 1.03 £ 0.07  1.61  0.39
Caclirnp 512 30/30  1.00 £ 0.00 1.52 + 0.15
g 2048 30/30  1.00 £ 0.00  2.15 + 0.27

TABLE II: Results on Bookshelf. #0pt. Plans metric mea-
sures the number of plan skeletons that were optimized or re-
sampled before a solution was found (Stage 2 of Algorithm 1).

Approach Ny #Satisfying Best Cost
256 3380.70 3954 6325 2.19

S 512 424940 + 68.54  62.66 +2.76
AMPLING 9048 4795.00 = 39.19  60.00 + 3.35
4096 5136.10 £ 49.83  60.14 + 3.51

256 12200 + 410 68.97  4.99

cuTAMP | 512 260401139 6337 £248
W.0. 804l 2048  1092.80 + 54.68 61.25 + 1.58
cost 4096 1936.20 + 54.06  58.34 + 1.86
256 23.90 + 249 4470 + 0.55

cuTAMP 512 4840 + 439 44.57 £ 0.53
A=0025 2048 12560 + 11.86 4521 + 0.65
4096 331.80 2676 46.90 + 0.72

TABLE III: Optimizing Goal Costs. We minimize the dis-
tance between four objects and compare the best particle cost.
A is the weight applied to the goal cost during optimization.

we allocate 10 seconds for optimization or resampling. Our re-
sults demonstrate the clear benefit of combining sampling with
differentiable optimization for substantially reducing the goal
cost. SAMPLING struggles to find good solutions compared to
cuTAMP as shown in Figure 5.

C. Solving Highly-Constrained Problems

The objective in the Tetris domain is to pack 5 blocks with
non-convex shapes into a tight goal region (Figure 1). This task
requires reasoning about precise positions and orientations, as
the shapes will only fit if they are arranged in particular con-
figuration modes. Each particle is 90-dimensional (ten 7-DOF
arm configurations and five 4-DOF placements), highlighting
the complexity of the problem.

Hyperparameter Tuning. We conduct an ablation of cu-
TAMP where we automatically tune the weight A\. for each
cost ¢ (Eq. 2) using Optuna [48], an off-the-shelf hyperparam-
eter optimization framework, with the number of satisfying
particles as the target objective. To reduce the dimensionality
of the tuning space, we group costs by type and assign a shared
weight to each group (e.g., all kinematic position error terms
share the same weight). We tune the cost weights over 220
trials, and provide further details in Appendix A4-D.

Results. We present our results in Table IV. SAMPLING fails

Approach N, Coverage #Satisfying Sol. Time (s)
SAMPLING 4096 0/50 - _
512 30/50 0.70 £ 030 11.51 £ 2.72

1024 34/50 1.18 £0.33 11.55 + 2.04

CUTAMP 9048 47/50 179 £ 036 11.82 + 2.69
4096 50/50 4.10 £0.71 12.21 + 2.34

512 48/50 1.75 +034 7.13 +1.51

cuTAMP 1024 50/50 3.00 £ 048 5.38 + 0.63
Tuned 2048 50/50 6.54 £ 090 5.63 + 0.58
4096 50/50 11.96 = 1.14  7.99 + 0.58

TABLE IV: Results on Tetris 5 blocks. In cuTAMP Tuned,
we tune the cost weights automatically using Optuna [48].

completely, while both tuned and untuned variants of cuTAMP
successfully find solutions within seconds. Only 0.3% of the
optimized particles are satisfying, underscoring the advantage
of sampling and optimizing thousands of candidate solutions in
parallel. Larger particle batch sizes N, consistently improve
the success rate, the primary planning metric, especially on
highly challenging problems like Tetris. Appendix Figure A.4
shows that the cuTAMP’s runtime remains roughly constant
up to a batch size of 512, then scales linearly beyond that.
Automated tuning of the cost weights more than halves the
time required to find a solution and nearly triples the number of
satisfying particles. The tuned weights generalize to a 3 block
variant of Tetris, achieving a similar solve time to untuned
cuTAMP while increasing the number of satisfying particles
(Table A.4). However, they can perform worse than untuned
cuTAMP on other problems due to overfitting (Table A.2).

D. Efficiently Searching over Plan Skeletons

In Stick Button, the robot must press the red, green, and
blue buttons using either its fingers or a stick as a tool
(Figure 9). Due to the kinematic limitations of the Franka, the
robot must use the stick to press the blue and green buttons, as
they are out of direct reach, demonstrating ctTAMP’s ability
to plan with non-prehensile actions. This results in a large
number of plan skeletons that are infeasible or have extraneous
actions, such as pressing the blue button with the robot’s
fingers or pressing the white distractor buttons. A TAMP
planner must quickly identify skeletons likely to be infeasible,
and reason that the stick must be grasped near one of its ends
to press the blue button without colliding with the gray walls.

Our results in Table V indicate that ctTAMP autonomously
infers that the stick must be used, leveraging the plan fea-
sibility heuristic to avoid optimizing plan skeletons that are
likely infeasible. This heuristic becomes more accurate as we
increase the batch size. While SAMPLING reliably solves stick
button with 512 particles, it is over 3x slower than cuTAMP
with subgraph caching. Subgraph caching substantially speeds
up particle initialization and enables quicker transition to the
optimization phase of cuTAMP (Stage 2 in Algorithm 1). In
contrast to the Franka, the URS can reach all the buttons
directly without using the stick (Figure 9). When deployed
on the URS, cuTAMP automatically and implicitly infers this
difference in reachability.



Franka Panda

UR5

Fig. 9: Cross-Embodiment Generalization in Stick Button.
The blue button is beyond the reach of the Franka, requiring it
to use the stick as a tool. It plans to grasp near the stick’s end
to ensure it can press the blue button without colliding into
the walls. In contrast, the URS can directly reach the button.

Approach N, Coverage #Opt. Plans Sol. Time (s)
32 3/10  233+287 5.10+297

S 64 5/10  220+269 5.15+5.74
AMELING 515 1010 1.00 + 0.00 4.78  1.16
2048 1010 1.00 + 0.00 1220 + 3.77

32 10/10 460 + 644 450 + 231

64 1010 120 + 030 2.94 % 0.56

enTAME 512 1010 1.00 + 0.00 437 + 055
2048 10/10  1.00 + 0.00 10.82 + 2.41

32 8/10 10.00 = 10.37  7.96 + 375

C“gAMi W 64 10/10 330+ 122 8.72+333
zzcﬁir;p 512 10/10  1.00 + 0.00  1.45 % 0.05
& 2048 10/10  1.00 + 0.00  2.06 + 0.04

TABLE V: Results on Stick Button The #Opt. Plans metric
measures the number of plans that were optimized or resam-
pled before a solution was found (Stage 2 of Algorithm 1).

E. Real Robot Experiments

We deploy cuTAMP on two embodiments: 1) a URS arm,
and 2) a Kinova Gen3 robot. We use the open-world perception
strategy from [49] to reconstruct the objects and tabletop.
We minimize the goal distance between four objects on a
URS in Figure 3 and achieve a tight packing. In Figures 4
and 11, cuTAMP autonomously reasons to move obstacles
out of the way to achieve the goal on a Kinova Gen3 and
URS, respectively. Finally, we show that cuTAMP supports
jointly optimizing grasps, placements, and full trajectories
parametrized as knot points in Figure 10. Trajectories are
initialized by linearly interpolating between the start and end
robot configurations. We highly encourage the reader to refer
to our website and supplementary video, which showcases the
fast planning capabilities of cuTAMP in the real world.

IX. LIMITATIONS

While cuTAMP supports 6-DOF grasps, we model place-
ment poses with 3-DOF position and yaw (Section VIII). In

- 2. Place

Fig. 10: Real-World Block Stacking We jointly optimize
grasps, placements, and trajectory knot points using cuTAMP.

Pick Pick Place ®

Pick @

Fig. 11: Packing fruit with obstacles. The strawberry is
obstructed by four Lego blocks, requiring at least two to be
moved for a feasible grasp. cuTAMP autonomously infers this
to find a feasible plan skeleton and valid solution.

the future, we would like to also model varying placement roll
and pitch, accounting for stable orientations on approximately
planar surfaces. Our experiments show that cuTAMP’s optimal
configuration is sensitive to the number of particles and
cost weights A, though it performs robustly with the default
weights across all tested domains. Future work could explore
augmented Lagrangians to dynamically scale costs to satisfy
constraints [41, 33], as well as particle pruning to avoid
optimizing particles that converge early due to local minima.
cuTAMP leverages parallelism during continuous optimiza-
tion but does not parallelize the search of plan skeletons. GPU-
accelerated task planning [50], via Boolean Satisfiability (SAT)
solvers [51], may be able to parallelize all of planning. Our
approach addresses deterministic observable planning. Future
work involves leveraging GPU acceleration to reason about
stochastic actions and partial observability [52, 53]. Extending
cuTAMP to tasks involving more complex non-prehensile and
contact-rich manipulation is another important direction.

X. CONCLUSION

We propose cuTAMP, the first GPU-parallelized TAMP
algorithm for robot manipulators. cuTAMP uses GPU accel-
eration first during compositional sampling to generate an
initial set of plan parameter particles, and second, during joint
optimization to solve for particles that satisfy plan constraints
and minimize plan costs. We show that increasing the number
of particles, particularly beyond a single particle, improves
planning runtime and solution quality in challenging, long-
horizon manipulation problems. We deploy cuTAMP on sev-
eral robot embodiments, demonstrating its real-world planning
capabilities from perception to action in seconds.
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Al. PROBLEM FORMULATION

We expand on our formulation in Section III by fully
defining types, predicates, constraints, and actions used in our
formulation.

Types:

conf - a robot configuration.

traj - a robot trajectory comprised of a sequence of
configurations.

obj - a manipulable object.

grasp - an object grasp pose.

placement - an object placement pose.

surface - a placement surface.

button - a button that can be pressed.

press - a pose at which we press a button.

Predicates:

AtConf(g: conf) - the robot is currently at configura-
tion q.

HandEmpty() - the robot’s hand is currently empty.
AtPlacement(o: obj, p: placement) - object o is
currently at placement pose p.

Holding(o: obj, g: grasp) - object o is currently
grasped with grasp pose g.

On(o: obj, s: surface) - object o is placed on top of
surface s.

IsStick(o: obJ) - object o is a stick we can use to
push a button.

Pressed(h: button) - button b has been pressed.

Constraints:

Motion(gi: conf, 7: traj, ga: conf) - 7 is a trajec-
tory that connects configurations ¢; and ¢», and is within
the joint limits of the robot.

Kin(g: conf, o: obj, g: grasp, p: placement)
- configuration ¢ satisfies a kinematics constraint with
placement pose p when object o is grasped with grasp
pose g.

Grasp(o: obj, g: grasp) - ¢ is a valid grasp pose for
object o.

StablePlace(o: obj, p: placement, s: surface)
- p is a stable placement pose for object o on surface s.
CFreeTraj(r: traj) - 7 is a collision-free trajectory
with respect to the objects in the world and does not cause
robot self-collisions.

CFreeHold(o: obj, ¢g: grasp, q: conf) - g is a
collision-free grasp for object o using robot configuration
q.

PressButton(b:button, p:press, ¢: conf)

con:

pre
eff:

PressButtonStick(b : button, o :

[Kin(g,b,p), ValidPress(b,p,q)]
: [HandEmpty(), AtConi(q)]
[Pressed(b)]

obj, g : grasp, p :

press, ¢: conf)

con:

pre
eff:

Fig.

[Kin(g,0,9,p), ValidStickPress(o,g,p,b)]
: [IsStick(o), Holding(o,g), AtConf(g)]
[Pressed(b)]

A.l: Additional Parametrized Actions. We list the

additional actions required for the Stick Button domain in
Figure 9.

CFreeTrajHold(o: obj, ¢g: grasp, 7t traj) - tra-
jectory 7 while holding object o with grasp ¢ is collision-
free with respect to the objects in the world and does not
cause robot self-collisions.

CFreePlace(o: obj, p: placement) - placing object
o at placement pose p is collision-free.
ValidPress(b: button, p: press, ¢: conf)-pisa
valid press pose for button b and would make contact.
ValidStickPress(o: obj, g: grasp, p: press, b: button)
- p is a valid press pose for button b when using the stick
o which is held with grasp pose p, i.e., any point along
the stick would make contact with the button.

Actions:

In

MoveFree(qi, ga: conf, 7: conf) - move in free space
from robot configuration ¢; to g» using trajectory 7.
Pick(o: obj, g¢: grasp, p: placement, g: conf - pick
object o, which is at placement pose p, with grasp ¢ and
corresponding robot configuration q.

MoveHolding(o: obj, g: grasp, p: placement, g: conf)
- move in free space from robot configuration g; to ¢
using trajectory T while holding object o with grasp g.
Place(o: obj, g: grasp, p: placement, s: surface, g: conf)
- place object o which is being held with grasp g on
surface s with placement pose p, and corresponding robot
configuration q.

PressButton(b: button, p: press, ¢: conf) - press button
b with press pose p at corresponding robot configuration
q.

PressButtonStick(b: button, o: obj, ¢: grasp, p:
press, g: conf) - press button b at press pose p with
the stick o, which is being held with grasp g, and robot
configuration q.

A2. THEORETICAL ANALYSIS OF CUTAMP

this section, we prove that a simplified version of cu-

TAMP is probabilistically complete, which informally means

that

lems
prior
7, 8]

it will almost surely solve nondegenerate feasible prob-
. Thus, cuTAMP has comparable theoretical properties to
sampling- and optimization-based TAMP solvers [19, 20,
. Note that TAMP is actually decidable [54, 55]; however,



the decomposition-based algorithms provided to prove decid-
ability are computationally inefficient in practice.

Like in constrained motion planning [56], we make the
distinction between equality constraints (e.g. kinematics con-
straints Kin) and inequality constraints (e.g. collision con-
straints CFreeTraj). We assume that the real-valued func-
tion J.(-) implicitly defining each equality constraint ¢ is
continuously differentiable and its Jacobian has full rank. As
a result, the set of satisfying values is a lower-dimensional
submanifold of the ambient constraint space, and thus the con-
straint is dimensionality-reducing. Following prior work [56]
and usage in practice, we consider equality constraints satisfied
if ||Je(Xparam(c) )| |2 < € for a small € > 0, namely values close
to this submanifold are deemed satisfying, comprising an open
subset of the ambient space.

We begin by defining robust feasibility, a property of a
problem that holds the problem admits a non-degenerate set of
solutions. Let X = {x € X | Vc € con(7). Jo(Xparam(c)) <
¢} be the set of parameter values that satisfy the inequality
and equality constraints along plan skeleton .

Definition 1. A plan skeleton # = (ai,...,a,) with a
bounded d-dimensional parameter space X C R? is robustly
satisfiable if the set of satisfying parameter values X, C X
has positive measure.

Definition 2. A TAMP problem is IT = (A, so, S.) robustly
feasible if there exists a correct and robustly satisfiable plan
skeleton 7 = (a1,...,a,) € A that starting from initial
state sg that reaches a goal state s, € S,.

Finally, we define probabilistic completeness and prove
cuTAMP is probabilistically complete.

Definition 3. A TAMP algorithm is probabilistically complete
if for any robustly feasible problem II, it returns a correct
solution in a finite amount of time with probability one.

Theorem 1. cuTAMP is probabilistically complete.

Proof: We analyze a simplified version of cuTAMP that
initializes parameter particles independently and randomly
with positive probability density across X and omits the plan
skeleton feasibility heuristic (Section VII). cuTAMP performs
a backtracking plan-space best-first (e.g., breadth-first) search
that enumerates the countable set of plan skeletons (Sec-
tion 1V). For a plan skeleton m that is robustly satisfiable, each
random initialization has positive probability of sampling a
satisfying particle x € X, because X, has positive measure
and cuTAMP samples with positive probability density over
X . Thus, the probability that cuTAMP produces a satisfying
particle when randomly restarting the initialization arbitrarily
many times is one. Because cuTAMP continuously revisits and
resamples all identified plan skeletons, which can alternatively
be viewed as creating a separate thread per plan skeleton,
once identified, a robustly satisfiable plan skeleton will be
randomly restarted arbitrarily many times and thus a solution
will be identified with probability one. ]

A3. EXPERIMENTAL CONFIGURATION

We evaluate on an NVIDIA RTX 5880 GPU with 14,080
CUDA cores and 48 GB of VRAM. For comparison, a RTX
4090 has 16,384 CUDA cores and 24 GB of VRAM. Our
current implementation of cuTAMP saturates the CUDA cores
with larger batch sizes and uses around 2.5GB and 4.5GB of
GPU memory for batch sizes of 1024 and 2048, respectively.

Collision Representation. We use the primitive collision
checker from cuRobo [17], which approximates static objects
in the world as oriented bounding boxes. The robot and
movable objects are approximated using collision spheres.

Cost Weights. We use the same set of cost weights A
across all experiments, apart from where we explicitly tune the
weights in Tetris with 5 blocks. All weights for constraints are
set to 1.0 except for kinematic rotation error (5.0) and stable
placements (2.0).

Constraint Tolerances. As exactly satisfying an equality
constraint of 0.0 is hard with numerical optimization, we
usually set small tolerances. These are the values we used
across all experiments. All satisfying particles satisfy all these
tolerances.

o Collisions with objects in the world: 1 millimeter (mm).

« Robot Self-Collisions: 0 penetration distance (meters).

o Kinematics: Smm translational error, 0.05 radians rota-
tional error.

« Robot Joint Limits: 0.

« Stable Placement: 1 centimeter for checking support on
a surface, Imm for checking object contained within a
surface.

Real URS Configuration. Grasps are sampled and fixed,
while placement poses and robot configurations are optimized.
Once either a maximum optimization timeout or a set number
of satisfying particles is reached, we generate motions using
cuRobo. In the supplementary videos, we interleave the gen-
eration and execution of these motions on the URS. A large
number of failures in real-world trials can be attributed to
inaccuracies in our perception system and a noisy depth sensor
(Intel RealSense D435). This results in objects being either
under- or over-approximated.

A4. FULL EXPERIMENTAL RESULTS

A. Single Object Packing

We give a maximum resampling or optimization time of 5
seconds after initialization. The full results are in Table A.1l.
Since cuTAMP uses the same particle initialization phase as
SAMPLING, the results are near indistinguishable outside of
noise due to randomness.

B. Bookshelf

We provide cuTAMP an optimization budget of 1000 steps
per plan skeleton. For the parallelized SAMPLING baseline,
we set a maximum of 50 resampling steps per skeleton. We
present the full results in Table A.2.



Approach Ny Coverage #Satisfying  Sol. Time (s)
1 30/30 11.33 £ 1.35 0.648 £ 0.171

2 30/30 21.40 £ 140 0.383 +£ 0.071

4 30/30 4447 £ 240 0.244 £ 0.046

8 30/30 89.00 £ 3.54 0.205 + 0.033

16 30/30 170.20 £ 482 0.178 + 0.027

32 30/30 321.23 £4.82  0.128 £ 0.024

SAMPLING 64 30/30 594.70 £ 9.82  0.096 = 0.011
128 30/30  1002.17 £ 10.13  0.096 + 0.008

256 30/30  1419.20 £ 12.97 0.100 + 0.002

512 30/30  1801.27 £ 19.32  (0.115 + 0.002

1024 30/30  1839.07 + 1445 0.163 + 0.001

2048 30/30 2011.67 +£18.43  0.237 + 0.002

4096 30/30  2077.30 £ 15.63 0.394 + 0.001

1 4/30 1.00 £ 0.00 3.096 £ 1914

2 4/30 1.00 +£ 0.00 3.698 + 0.849

4 6/30 1.00 £ 0.00 3.585 + 0.664

8 15/30 1.33 £0.40 3.568 + 0.482

16 25/30 1.96 + 048 3.182 + 0.419

32 27/30 270 £ 0.59 2.838 £ 0.323

OPTIMIZATION 64 30/30 5.63 £095 2383 +£0.192
128 30/30 10.77 £ 1.48  2.180 + 0.162

256 30/30 2220 £1.82 1.857 £0.113

512 30/30 41.50 £333  1.670 £ 0.125

1024 30/30 91.17 £ 393 1.394 + 0.082

2048 30/30 177.20 £ 633 1.270 + 0.080

4096 30/30  331.80 £ 10.06 1.279 + 0.068

1 26/30 0.85 £0.15 0.530 +£0.101

2 30/30 1.67 £ 0.20 0471 +0.041

4 30/30 3.03 £0.29 0409 £ 0.044

8 30/30 6.43 £ 040 0.304 £ 0.059

16 30/30 11.83 £ 0.80 0.279 + 0.057

32 30/30 2393 £1.06 0.135 £ 0.041

cuTAMP 64 30/30 46.67 £ 1.37 0.138 £ 0.041
128 30/30 96.93 £ 2.00 0.099 = 0.017

256 30/30 192.67 £ 231  0.099 = 0.002

512 30/30 38270 £3.05 0.116 + 0.002

1024 30/30 77097 £ 599 0.163 + 0.002

2048 30/30 1533.97 £ 6.24 0.238 + 0.001

4096 30/30 307597 £ 1026  0.394 + 0.001

TABLE A.1: Full Results on Single Object Packing. This
problem (Figure 8a) is easy enough to solve via sampling
alone. OPTIMIZATION is not robust on small batch sizes, as
uniform random initializations are far from solution manifold.

C. Minimizing Object Distance

Each approach is given a maximum duration of 10 seconds
for resampling or optimization. We ablate the cost weight A of
the goal cost in cuTAMP, and also consider disabling explicit
optimization of the goal cost.

Our full results are in Table A.3. Increasing A decreases the
number of satisfying particles, as the goal cost may conflict
with satisfying the hard constraints. In Figure A.2, we plot
the best cost over time for the top-performing variant of
each approach. cuTAMP with explicit optimization of the cost
significantly outperforms sampling.

D. Tetris

Table A.5S presents our full results for Tetris with 5 blocks,
while Table A.4 presents our results for the 3-block variant.
We find that the cost weights tuned on the variant with 5-block

Approach N, Coverage #Opt. Plans Sol. Time (s)
8 3/30 533+ 10.04 590 + 17.24

16 2/30  1.50 + 635 3.77 + 11.22

32 430 175+ 080  4.26 + 220

64 730 157+ 1.05  3.95 + 3.65

128 15/30  1.87+081 632 +2.80

SAMPLING 554 24/30 154+ 037  5.83 +229
512 28/30  125+017  722+1.72

1024 20/30 1314035  9.03+ 241

2048 3030 127+ 026 11.59 + 3.15

4096 3030 153+ 036 12.95 + 2.16

8 23/30  6.65+ 1.70  20.00 + 8.93

16 28/30 475+ 1.59 1601 + 6.81

32 3030 480+ 1.58 851 +4.11

64 3030 180+ 0.65  4.09 + 1.29

128 3030 113+ 013 2.46 + 040

cuTAMP 256 3030 1.00+000 211 % 0.17
512 3030 1.03+ 007  2.68 +0.19

1024 3030 1.00+0.00 422 +022

2048 3030 1.00+ 000 659 +0.72

4096 3030 1.00+ 000 11.01 +1.34

8 6/30 450+ 449 552 +3.59

16 17/30 5.82+ 193 11.75 + 8.83

32 27/30 419+ 1.66 674+ 473

64 20/30 193+ 087 461 +2.67

Eﬁg‘g%i W 08 30/30 190+ 088  2.37 +0.59
caching 256 3030 1.03 + 0.07 1.61 + 0.39
512 3030 1.00+ 000  1.52 £ 0.15

1024 3030 100+ 000  1.73 +0.17

2048 3030 1.00+ 000  2.15 + 0.27

4096 3030 1.00+0.00  3.42 +044

8 11/30 555+ 263  7.72 + 328

16 17/30 624 +212  7.24 + 3.08

32 25/30 344+ 142  10.88 + 6.03

cuTAMP w. ¢4 2930 276+ 121 921 + 543
subgraph 128 30130 1.73+0.75  4.83 +4.84
caching 256 3030 1.33 £ 0.62 1.87 = 0.45
tuned  on 599 30/30  1.00 £ 0.00 1.88 + 0.19
Tetris 1024 30/30  1.00 £ 0.00 1.98 + 0.25
2048 3030 1.00+ 000 273 + 0.28

4096 3030 1.00+£0.00  3.78 £ 049

TABLE A.2: Full Results on Bookshelf with Obstacle. Note
that in the last approach, we evaluate the cost weights tuned
on Tetris with 5 blocks.

generalizes to the 3-block variant. However, these weights do
not transfer to the bookshelf problem (Table A.2), where we
observe an increase in the time required to find a solution.
Figures A.3 and A.4 depict the overall runtime of ctTAMP,
which includes particle initialization and 1000 optimization
steps. The runtime stays relatively constant up to 1024 parti-
cles in 3-block Tetris, and 512 particles in 5-block Tetris. This
demonstrates the benefit of parallelizing on the GPU.
Hyperparameter Tuning. We tune the cost weights A, in
the particle cost function (Eq. 2) using Optuna [48], an off-
the-shelf hyperparameter optimization framework. To reduce
the dimensionality of the tuning space, we group costs by
type and assign a shared weight to each group (e.g., all
kinematic position error terms share the same weight). In
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Fig. A.2: Minimizing Object Distance over Time. We show
the cost of the best particle over time as we resample or
optimize the particles. We plot the best batch size for each
approach (refer to Table A.3). The early spike in the cost for
cuTAMP may be attributed to no warm-up of Adam using
a learning rate scheduler, which causes particles to become
unsatisfying.

each Optuna trial, we run cuTAMP three times on the Tetris
problem using the current set of weights, and use the average
number of satisfying particles as the objective to maximize.
We first run 20 trials using a Tree-Structured Parzen Estimator
(TPE) sampler [57] to efficiently explore the search space and
identify promising regions. We then warm-start a Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) sampler [58]
using the TPE trials, and refine the cost weights for an
additional 200 trials.

E. Stick Button

In the SAMPLING baseline, we limit the maximum re-
sampling steps per plan skeleton to 50. For cuTAMP, each
skeleton undergoes 500 optimization steps. Our full results
are presented in Table A.6. Enabling subgraph caching in
cuTAMP significantly accelerates the particle initialization
over skeletons.

Approach Ny #Satisfying Best Cost
64 147740 + 2418  65.54 + 2.62

128  2490.80 + 36.59  65.20 + 2.70

256 3380.70 + 39.54 6325 + 2.19

SAMPLING 512 424940 + 68.54 62.66 + 2.76
1024 4330.60 + 79.62  62.49 + 2.61

2048 4795.00 +39.19  60.00 = 3.35

4096 5136.10 + 49.83  60.14 + 3.51

64 3210 £ 3.01  78.86 + 8.94

128 61.00 + 510 7243 + 6.41

cuTAMP 256 12200 £ 410 6897 + 499
w.o. goal 512 269.40 + 1139 6337 + 248
cost 1024 563.60 + 7.82  61.36 + 2.95
2048 1092.80 + 54.68 61.25 + 1.58

4096 1936.20 + 54.06 5834 = 1.86

64 1640 + 2.19  47.57 + 0.75

128 2520 +332 47.62 + 124

256 5780 + 4.84  46.67 + 0.69

cuTAMP 512 12340 +930 46.34 = 0.81
A=01 1024 23320 + 10.66  47.52 + 0.91
2048 566.10 + 23.32  48.60 + 1.50

4096 150650 + 35.92  49.53 + 1.13

64 800 + 255 46.60 + 0.92

128 1320 + 215 45.90 + 0.90

256 23.90 + 249  44.70 + 0.55

A 512 4840 +4.39 4457 + 0.53
=025 04 7990 + 6.81 4531 + 0.80
2048 125.60 + 11.86 4521 + 0.65

4096  331.80 + 2676  46.90 + 0.72

64 090 +0.79 4587 + 1.55

128 1.80 + 0.74  45.12 + 0.84

256 440 + 1.40  45.17 + 1.98

UTAME 512 750 + 1.85  44.26 + 0.81
=0. 1024 10.60 + 1.94  44.35 + 0.70
2048 10.10 222 45.03 + 1.05

4096 530+ 1.17  46.51 + 1.07

TABLE A.3: Full Results on Minimizing Object Distance.
The goal cost is the sum of the distance between the four
objects in centimeters. A is the cost weight we use for the goal
cost in the unconstrained optimization problem for cuTAMP.
All approaches achieved full coverage.



Approach Ny  Coverage #Satisfying  Sol. Time (s)
64 0/30 _ _

128 0/30 _ _

256 0/30 _ _

512 0/30 _ _

SAMPLING 1494 130 100 + 0.00  12.31 + 0.00
2048 1/30 100 £0.00  18.04 + 0.00

4096 0/30 _ _

8192 4130 1.00 £ 0.00 48.94 + 23.99

64 23/30 187 £0.63  1.62 + 0.4

128 30/30 247066 157035

256 29/30 493090 1254022

512 30/30 877122  1.07 % 0.12

cTAMP 55y 3030 1733 +200  1.07 % 0.06
2048 3030 3650 +280 130+ 0.04

4096 3030 7603 +4.17  1.99 + 0.06

8192 3030 15747 £592 343 + 005

64 30/30 200+ 060  1.78 + 0.49

128 29/30 359082 171035

256 30/30 723 +088 124 +0.12

cuTAMP 515 3030 1407 +135  1.09 % 0.09
Tunedon 5 30/30 2740 +205  1.16 + 0.05
S Blocks 5048 30/30 5847 +389 136+ 0.04
4096 3030 11727 £ 670 2.05 + 0.05

8192 30/30 22787 + 1267 3.54 + 0.06

TABLE A.4: Results on Tetris with 3 blocks. Parallelized
SAMPLING only succeeds due to chance of sampling a valid
solution in the limit of more samples. The difference in the
time to the first solution is minimal between cuTAMP and
cuTAMP tuned on Tetris with 5 blocks. However cuTAMP
tuned finds 47% more satisfying particles on average.

Approach N, Coverage  #Satisfying Sol. Time (s)
64 0/50 - -

128 0/50 - -

256 0/50 - -

512 0/50 - -

SAMPLING (54 0/50 - -
2048 0/50 - -

4096 0/50 - -

8192 0/50 - -

64 5/50  0.60 +0.68 1546 + 8.31

128 6/50 067 +0.54 13.37 £5.82

256 16/50  0.69+032  9.50 + 3.53

512 3050 070 030 11.51 £2.72

CuTAMP 054 34/50 118 £0.33  11.55 + 2.04
2048 47/50 179036 11.82 + 2.69

4096 50/50 410071 1221 +2.34

8192 50/50  7.98 £0.76  14.07 + 1.48

64 16/50 050 + 034  11.53 + 4.15

128 36/50 061 £0.19  11.91 + 1.77

256 44/50 105026  8.54 + 147

cuTAMP 512 48/50 175+ 034  7.13 %151
Tuned 1024 50/50  3.00 +0.48  5.38 + 0.63
2048 50/50 654 +0.90  5.63 +0.58

4096 50/50 11.96 + 1.14  7.99 + 0.58

8192 50/50 2344 +1.66 11.29 + 0.39

TABLE A.5: Full Results on Tetris with 5 blocks. Paral-
lelized SAMPLING fails across all batch sizes. While untuned
cuTAMP with 256 particles has a low solve time, it has very
low coverage. This could be explained by noise in the sampling
process, meaning a good initialization has been sampled by
chance. Tuned cuTAMP significantly increases the number of
satisfying particles and decreases the time required to find a
solution.



Approach Ny Coverage #Opt. Plans  Sol. Time (s)

8 1/10 100 + 000  1.68 = 0.00
16 410 675+ 846 1348 + 1473

32 3/10 233 +2.87 5.10 + 2.97

64 510 220+ 2.69 5.15 + 5.74

128 8/10 1.50 + 0.63 473 + 2.00

SAMPLING 554 10/10 1.20 + 0.30 450 + 1.91
512 10/10 1.00 + 000 478 + 1.16

1024 10/10 1.00 + 0.00 8.54 + 2.23

2048 10/10 1.00 + 0.00 1220 + 3.77

4096 10/10 1.00 + 000 1697 + 4.35

8 5/10 1440 + 17.83  13.88 + 7.29

16 1010 2.90 + 1.63 6.27 + 2.57

) 1010 460+ 644 450+ 231

64 10/10 120+ 030  2.94 + 0.56

128 10/10 1.10 + 0.23 333 + 0.26

cwTAMP 556 10/10  1.00+000  3.28 + 0.47
512 10/10 1.00 + 000 437 + 0.55

1024 10/10 1.00 + 000 688 + 1.13

2048 10/10 1.00 + 000  10.82 + 2.41

4096 10/10 1.00 + 000  21.50 + 5.40

8 1710 11.00+ 000  29.05 + 0.00

16 6/10 867 +12.12  10.04 + 1477

32 8/10  10.00 + 10.37 7.96 + 3.75

cuTAMP 64 10/10 330 +1.22 872 + 3.33
Ww. 128 1010 420+282  11.14 + 8.14
subgraph 256 10/10 1.00 + 0.00 1.46 + 0.12
caching 512 10/10 1.00 + 000  1.45 + 0.05
1024 10/10 1.00 + 0.00 175 + 0.10

2048 10/10 1.00 £ 000  2.06+ 0.04

4096 10/10 1.00 + 0.00 3.17 + 0.04

TABLE A.6: Full Results on Stick Button. We present our
results on Stick Button for different batch sizes. SAMPLING
with a batch size of 8 happens to find a solution very quickly
in 1/10 trials by pure chance.



cuTAMP Runtime for 1000 Optimization Steps (Tetris 3 Blocks)
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Fig. A.3: Runtime of cuTAMP in Tetris with 3 Blocks. We show the runtime behavior of cuTAMP, which includes particle
initialization and 1000 differentiable optimization steps, across doubly increasing batch sizes. Results are averaged over 10
trials. The runtime remains nearly constant for up to 1024 particles, beyond which we observe linear scaling.

cuTAMP Runtime for 1000 Optimization Steps (Tetris 5 Blocks)
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Fig. A4: Runtime of cuTAMP in Tetris with 5 Blocks. We show the runtime behavior of cuTAMP, which includes particle
initialization and 1000 differentiable optimization steps, across doubly increasing batch sizes. Results are averaged over 10
trials. The runtime remains nearly constant for up to 512 particles, beyond which we observe linear scaling. This problem is
more difficult and involves more constraints than Tetris with 3 blocks (Figure A.3), hence we observe constant scaling only
up to a smaller batch size.



import torch
from jaxtyping import Float

from curobo.types.math import Pose

def curobo_pose_error (

pose_a_mat4dx4: Float[torch.Tensor, "b *h 4 4"], pose_b_mat4d4x4: Float[torch.Tensor, "b %xh 4 4"]
) —> (Float[torch.Tensor, "b %xh"], Float[torch.Tensor, "b xh"]):

Computes the translational and rotational errors between two poses using curobo.

Used for computing end-effector pose errors for kinematic constraints.
ww

# Flatten
pose_a_flat = pose_a_matd4x4.view (-1, 4, 4)
pose_b_flat = pose_b_mat4x4.view (-1, 4, 4)

# Create curobo pose
pose_a = Pose.from_matrix (pose_a_flat)
pose_b = Pose.from_matrix (pose_b_flat)

# Compute distance and unflatten

p_dist_flat, quat_dist_flat = pose_a.distance (pose_b)
p_dist = p_dist_flat.view(pose_a_mat4dx4.shapel[:-2]
quat_dist = quat_dist_flat.view(pose_b_matdx4.shape[:-2])
return p_dist, quat_dist

def dist_from_bounds (
vals: Float[torch.Tensor, "b xh d"],
lower: Float[torch.Tensor, "d"],
upper: Float[torch.Tensor, "d"],

) —> Float[torch.Tensor, "b xh"]:

Fuclidean distance of values from the given lower and upper bounds. If within the bounds, returns

Used to check if objects are within the goal region, robot Jjoint limits, etc.
diff_lower = lower - vals

diff_upper = vals - upper

diff_max = torch.maximum(diff_lower, diff_upper)

diff_max = diff_max.clamp (min=0.0)

dists = diff_max.norm(p=2, dim=-1)

return dists

def obj_dist (goal_obj_position: Float[torch.Tensor, "b n 3"]) -> Float[torch.Tensor, "b"]:
Computes the total distance between all pairs of goal object positions.
Can be used to minimize or maximize the distance between objects.

all_obj_dists = torch.cdist (goal_obj_position, goal_obj_position, p=2) # (b, n, n)

mask = torch.triu(torch.ones_like(all_obj_dists), diagonal=1l) == 1
obj_dists = all_obj_dists[mask].view (mask.shape[0], —-1) # reshape into num pairs
dists_sum = obj_dists.sum(-1)

return dists_sum

0.

Listing 2: Example Cost Functions. We present vectorized implementations for the following: curobo_pose error:
computes the error between batches of poses, used in kinematic costs. dist_from bounds: calculates the distance from
boundaries, used for verifying whether an object is within the goal region or whether configurations are within a robot’s joint
limits. obj_dist: computes the distance between object positions, employed in the soft cost to minimize object distance (see

Figures 3 and 5).



