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Fig. 1: Metivation. Acknowledging that real-world uncertainties are inevitable, we exploit environmental constraints to shape
the manipulation process toward the desired outcome rather than expecting the robot to precisely execute any trajectories.
The example demonstrates the system’s two major components: 1) progressively identify environmental constraints to localize
the target hole; 2) form a constant contact between the inclined peg and its corresponding corner from the hole to serve as
motion constraints for insertion refinement. Such an uncertainty-absorbing paradigm is formulated based on the composition of
manipulation funnels —a concept that guarantees a strict space shrinkage through task-specific interactions, in the perception

state space and execution task space.

Abstract—Robust and adaptive robotic peg-in-hole assembly
under tight tolerances is critical to various industrial applications.
However, it remains an open challenge due to perceptual and
physical uncertainties from contact-rich interactions that easily
exceed the allowed clearance. In this paper, we study how to lever-
age contact between the peg and its matching hole to eliminate
uncertainties in the assembly process under unstructured settings.
By examining the role of compliance under contact constraints,
we present a manipulation system that plans collision-inclusive
interactions for the peg to 1) iteratively identify its task envi-
ronment to localize the target hole and 2) exploit environmental
contact constraints to refine insertion motions into the target hole
without relying on precise perception, enabling a robust solution
to peg-in-hole assembly. By conceptualizing the above process
as the composition of funneling in different state spaces, we
present a formal approach to constructing manipulation funnels
as an uncertainty-absorbing paradigm for peg-in-hole assembly.
The proposed system effectively generalizes across diverse peg-
in-hole scenarios across varying scales, shapes, and materials in a
learning-free manner. Extensive experiments on a NIST Assembly
Task Board (ATB) and additional challenging scenarios validate
its robustness in real-world applications.

1. INTRODUCTION

Robotic peg-in-hole assembly is a foundational skill in
various industrial applications and beyond, involving inserting

a peg into its matching hole on another object under tight clear-
ances [28]. Common strategies seek to optimize the insertion
trajectory under certain conditions, either through explicitly
modeling the task environment or formulating the problem
as a POMDP [29] (partially observable Markov decision
process) to enable reactive policies based on sensory input.
Regardless of the debate on how accurately a model describes
reality, both types of approach neglect that the onus of fine
manipulation lies in the execution [52]. It is the execution
that brings the optimized result from planning into the real
world through motor actuation by the controller. However,
real-world perception challenges and physical uncertainties,
such as those arising from hardware limitations, can introduce
small deviations between planned and executed trajectories.
Under the tight tolerance of peg-in-hole assembly, even minor
uncertainties can lead to undesired manipulation outcomes.
Therefore, robotic peg-in-hole assembly requires non-trivial
effort to tackle real-world uncertainties beyond solely planned
trajectories.

Acknowledging that planned trajectories are rarely executed
perfectly in the real world due to uncertainties, focusing on
the outcomes of interactions between the system and the
environment [15, 14], rather than on explicit trajectories, offers



a promising approach to achieving robust manipulation. This
formulation often requires the role of compliance, either from
mechanical design [12, 42] or computational simulation [22],
to passively adapt to external contacts. Rather than causing
undesired outcomes, environmental constraints can shape the
compliant manipulation process toward the desired outcome
under deliberate exploitation [34], even without elaborate con-
tact models [44, §8]. With this insight, we propose leveraging
the contacts between the peg and its matching hole as an
advantage to eliminate uncertainties for fine insertions.

In this paper, we introduce a manipulation system (shown
in Fig. 1) that plans compliant interactions between the
manipulated peg and its task environment to identify and
exploit contact constraints for robust insertion. Safe contact
is ensured by impedance control [22], which allows external
contact to alter the pose of the peg by mimicking a spring-
damper behavior. Since the steady pose of the peg after
each interaction is observable and is a combined effect of
the environmental constraints and potential from impedance
control, the system can 1) identify its encountered constraints
to shrink the target hole’s proposal distribution progressively
and 2) exploit the environmental constraints to shape the
motion of the peg to enter its matching hole. Specifically,
the exploitation process involves maintaining constant contact
between the peg and the hole to serve as motion constraints.
Since the environmental constraints can shape a large margin
of uncertainties and the interaction mechanism of force-pose
regulation is independent of the specific trajectory taken, the
proposed system can tolerate uncertainties smaller than its
execution precision, even under tight tolerances.

As the system dynamics progressively eliminates uncer-
tainty in perception and execution, we formulate the proposed
system as a composition of manipulation funnels in different
state spaces. The original concept of the manipulation funnel
was introduced by Mason [39] to eliminate uncertainties in ob-
ject location, emphasizing that the robustness of funnel-based
manipulation requires the co-design of robot interaction and
task mechanics. A general formulation of the funneling process
can be defined in any task-relevant space as a progressive
space shrinkage for uncertainty elimination. Inspired by the
planar theory of automatic motion synthesis [34], we establish
a formal approach to constructing manipulation funnels for
robust fine insertion of general prismatic pegs in the real world.
The primary contributions of this paper are:

« We present an uncertainty-absorbing paradigm for general
peg-in-hole insertion based on the concept of manipula-
tion funnel, which does not plan on the explicit trajecto-
ries but rather the outcome of each compliant interaction.

« We present a formal approach to constructing the funnel-
ing process for both perception and execution, which can
be further composed for general peg-in-hole insertion.

« We provide a system with detailed algorithms to imple-
ment the above funnel-based manipulation paradigm on
real-world assembly tasks.

« We conduct ablation studies through extensive experi-
ments on a standard assembly benchmark NIST ATB and

additional challenging tasks to validate the robustness and
generalizability of the proposed paradigm and system.

The rest of this paper is organized as follows: Section II
reviews related works. Section III introduces the preliminaries
and problem statement for funnel-based manipulation planning
in peg-in-hole assembly. Section IV introduces the task me-
chanics and presents a formal approach to constructing manip-
ulation funnels in perception and execution. Section V demon-
strates the robustness of the proposed system in simulation
and real-world experiments. We discuss the limitations under
current settings in Section VI and summarize the contributions
in Section VIIL.

II. RELATED WORK
A. Peg-in-Hole Assembly

Over the past decade, pipeline-based and end-to-end ap-
proaches have driven advancements in robotic peg-in-hole
systems. Pipeline-based approaches aim to explicitly esti-
mate intermediate system states for motion planning. Previous
works [25, 51, 27] leverage tactile or force/torque sensors
for contact state estimation. Vision-based methods [54, 21]
estimate alignment deviations for correction or search motion
planning. This modular design provides interpretability and
flexibility, allowing for the integration of both analytical and
data-driven methods. In contrast, end-to-end approaches [30]
aim at deriving an implicit function to map sensory inputs to
motor skills from trial-and-error. The entire system connects
feature extraction to planning in a unified manner [13, 37, 50,
35, 24, 36].

However, previous methods are mainly based on the prin-
ciple that assembly is a relative positioning task [49], as-
suming the robot will precisely execute the issued trajectory.
Our research targets a different perspective [34], as the fine
insertion motion is a passive refinement process that exploits
environmental constraints.

B. Compliance-enabled Manipulation

Compliance mitigates unknown external disturbances
through passive adaptability. The role of compliance in robot
manipulation often involves compensation for uncertainty
and safe interaction with the environment, which has been
adopted in a wide range of tasks, including dexterous grasp-
ing [6, 33, 12], in-hand manipulation [32, 41, 2], grasp
adaptation [31, 19, 26], assembly [40, 38, 55] and human-
robot co-manipulation [47, 43].

Additionally, compliance-enabled contact can safely exploit
environmental constraints to eliminate uncertainties, ensuring
robust and dexterous manipulation [14, 20, 11, 46, 56, 23, 7].
In this work, we propose a formal approach for compliance-
enabled contact between the peg and the hole to eliminate
uncertainty in insertion motions.

C. Funnel-based Manipulation

Mason [39] proposed the original concept of manipulation
funnels to eliminate uncertainties based on task mechanics
and task-specific interaction. The importance of exploiting



task mechanics to eliminate uncertainties is also revealed in
concepts such as pre-image [34] and backprojections [16].
Early works have applied funnel-based designs in manipula-
tion tasks, including ball batting [3], part orienting [18, 17] and
feeding [1], grasping [9], and peg-in-hole assembly [53]. Bhatt
et al. [2] investigated funnel-based action primitives for in-
hand manipulation through an empirical study. Canberk et al.
[S] proposes “canonicalized-alignment” as task mechanics to
funnel the large space of possible cloth configurations into a
smaller, structured one.

The major challenges in developing funnel-based manipu-
lation lie twofold: 1) formulating the general task mechanics
for a given manipulation task and 2) defining task-specific
interaction beyond hardware-associated control. To tackle the
above challenges in real-world peg-in-hole tasks, we provide
a general formulation of the task mechanics of peg-in-hole
insertion and an object-centric interaction mechanism, which
is not dependent on any specific hardware.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this work, we consider the peg-in-hole assembly problem
as inserting a peg into its matching hole on a planar board
surface as illustrated in Fig. 2-(a). We aim to plan compliant
motions of a manipulated peg that frequently makes and breaks
contact with its task environment, first to perceive the location
of the matching hole on the task board and then insert the peg
into it under tight clearance.

A. Preliminaries

1) Geometry of the Peg and Hole: The 3-dimensional (3-
D) geometry of the hole is described in the hole reference
frame {H}, as an intrusion of a 2-D polygonal base defined
by an ordered sequence of vertices V;, = (v3, v}, ..., v%), vy, €
R?, z,, = 0 on the XY -plane of {H}. S(V,,) = U o{v;} C
R? is the corresponding unordered set of the V},. The intrusion
is along the negative direction of the Z-axis of {H}. V,
defines a planar region A;, C R? on the XY -plane of {H}
as:

An={(z,9,2) €R*| fa,(z,y) SOA2=0} (D)

where f4, (x,y) is an implicit distance function to describe
the boundary of Ay, as fa, (z,y) = 0 and its interior area as
fa, (x,y) <0, exterior area as f4, (z,y) > 0.

The 3-D geometry of the peg is described in the peg
reference frame {E}, as an extrusion of a 2-D polygon
base V. = (v¥,v!, ..., v7),v. € R® 2z, = 0 on the XY-
plane of {E}. Its corresponding unordered set is denoted as
S(Ve) = U_{vi} C R®.The extrusion is along the positive
direction of Z-axis of {E'}, and V. is considered approximated
equal to V}, but defined in different frames.

2) Task Environment: We specify the Cartesian world
frame {O} attached to the task board, as its XY -plane is
aligned with the board surface and its orthogonal Z-axis points
outward the task board. The pose of the hole in the world
frame is denoted as Tiory € SE(3). We describe the task
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Fig. 2: (a) The peg-in-hole problem is considered as inserting
a peg into its matching hole on a planar board (a randomly
generated peg is adopted as the example). (b) An overview
of the task formulation is presented, including the geometry
representation of the peg, the hole, and the overall task
environment.
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environment using a occupancy function I' : R3 +» [—1,0, 1],
which is defined as follows:

-1, 2 <OA frioman(@,y) >0
Tz, y,2) = 1, Z>O\/(Z§O/\fT{OH}Ah(:C7y) <0)
0, Otherwise

@
in which —1 denotes occupied by the task board, 0 denotes
on the surface of the task board, and 1 denotes the free space.
An initial area of interest Apq C R? is specified on the
XY -plane of {O} that guarantees T{ox}An C Aboad-

3) Compliant Interactions for the Peg: As the peg is in a
prism-shaped geometry as defined in Sec. III-A1l, we use the
densely sampled points P, = {p. € R3*}*, on the edges of
the peg for collision checking (considered continuous along
the lateral and base edges), in which p. = (z,y, z) is in the
Cartesian coordinates of { £'}. The sampled points are assumed
to be rigidly attached to each other, as the entire point set
undergoes the same rigid body transformation (rotation and
translation). The pose of frame { £} with reference to frame
{O} at time t is represented as x; = [p;r] € RS, in which
p € R? is the position vector and r € R? is the orientation
represented with Euler angle. The target peg-in-hole state is
denoted as x*. The corresponding transformation matrix of
x; i8 denoted as T{ppy,: € SE(3). An overview of the task
environment with the manipulated peg is illustrated in Fig. 2-

(b).



To enable safe contact between the peg and its task envi-
ronment, we formulate the impedance control based on the
desired state x¢ € R at time ¢. A wrench F € R (consisting
of 3-D force and torque) is applied to the peg by a Cartesian
impedance controller as formulated:

F = Kg(x{ — x:) — Dgx; 3

in which Ky € R®%6 is the diagonal stiffness matrix to
decouple compliance in each degree of freedom, Dy € R5%6
is the damping matrix for movement stabilizing and %x; € R®
is the velocity of {E'} with reference to {O} at time f.

An interaction command c¢; = (x;,x{) at time ¢ is defined
by its starting state x; (considered steady as x; = 0) and a
desired state x¢. A compliant interaction x;; = II(x;, x%)
between the peg and its task environment is an unknown but
observable process 11 : RS x R® > R® from the starting state
X; to the next steady state x;11, under the drive of xg and the
environmental constraints in the frame of {O}. Except for the
virtually defined desired state x¢, any physical existing state
x4+ during this process is constrained by its task environment
as follows:

¥po € T(opyt11Pe: D Epy Upo 20,) # —1 (4

We do not explicitly predict or trace the trajectory of the peg
during this process but only observe its steady state at x; and
Xs11. At the steady state x;41, any external contact wrench
Fex € RS in frame {O} is balanced by the pose deviation as:

Feu = Ka(x! — %¢41) ©)

while the velocity x;11 = 0 of the peg remains zero.

We use the intersection point set Py footprint,t C R? between
the peg’s edges and the XY -plane of {O} at the steady pose
x; to describe the outcome of each interaction as:

Po,footprim - {po € T{OE},tPe | vpo - (:Caya Z)a z = 0} (6)

Po toorprint Tflects the spatial relation between the peg and the
task board.

B. Problem Statement

We formulate the peg-in-hole assembly task as a progressive
uncertainty elimination process in the state space of perception
and execution. We aim to plan interactions ¢; = (xy,x$)
between the peg and its task environment to 1) iteratively re-
duce the uncertainty of the perception result of the target hole
and 2) finish the peg insertion under execution and perception
uncertainty. An overview of the peg-in-hole assembly process
is outlined in Alg. 1. _

Perception State Space: We use Ty to denote the esti-
mated state of the ground truth T{oz7). The estimation result
at time ¢ is represented with a probabilistic density function
P;(T{omy) bounded by a proposal region A; C SE(3), which
is defined as follows:

Pt(f{OH}) { [ (7

where |A;| denotes the volume of region A;.
We aim to form a recursive sequence of proposal regions
based on the outcomes P, footprint,: Of €ach interaction c;:

X 2X1 24 22 Ay (8)

As A, shrinks over steps, the expected spread of T{O H}
decreases and the uncertainty range of the perceived hole’s
state is reduced.

Execution Task Space: Let Ax € R be the deviation
between the steady state x; and the peg-in-hole state x*. Based
on the estimated state distribution of Pri(Tow), we aim to
shrink Ax at each step of interaction c; to progressively reach
the peg-in-hole configuration as follows:

AX() > AXl > AXQ > e > AXTQ (9)

We consider a successful peg-in-hole assembly when Ax
reaches zero.

Algorithm 1 Peg-in-Hole Assembly

Input: base polygon Vy, initial area of interest Apoard, peg
geometry as P., world frame {O}

1.t 0 > Initialize time step for perception

2: Xpy < InteractivePerception(Vy,, Avoard, Pe, {O}) >
Alg. 2

3: t< 0 > Reset time step for execution

4: x; < CornerAlignment(X7) > Alg. 3

5. while not reach x* do

6:  x¢ < InsertionPlanning(x;) > Alg. 4

7: Xt < Ct(Xt,Xg)

8 t+t+1

9: end while

IV. FUNNEL-BASED MANIPULATION PLANNING

A manipulation funnel represents a convergence process by
iterative contractions from a larger entrance to a smaller exit
state space, ensured by task-specific interactions. A general
funnel formulation is defined as Definition 4.1.

Definition 4.1. Let S be a task-relevant space that could
represent any system parameters. Given a target state s*, we
aim to find subspaces Sy, C S so that after applying some
state transition functions, denoted as 11 : S — S, the resultant
output space Sy C S is guaranteed to be strictly smaller than
the input space: |Sy| > |Sou|- If these conditions are satisfied
, 8 € Sy and s* € S, a tuple F = (Sin, 1L, Spue) is called
a manipulation funnel.

We first define the task-specific interactions based on the
task mechanics in Section IV-A. Then, we introduce the formal
approach to construct manipulation funnels in perception state
space (Section IV-B) and execution task space (Section IV-C).

A. Task Mechanics and Interaction Primitives

Funnel-based manipulation planning requires deep exploita-
tion of the intrinsic task mechanics [39]. As perception and
physical uncertainties are inevitable [45], our key insight is



forming an aligned corner between the inclined peg and the
target hole to create contact constraints for undesired motion
freedoms and progressively enter the allowed clearance (as
illustrated in Fig. 3-(a)). A corner from the hole is defined
by arbitrary vertex v7°™" € S(V4) as the local angle Zv5o™
formed by v;°™" and its nearby edges from the interior side.
In this paper, we use the case of Zv{"™" < m for motion
funnel construction. However, theoretically, it also applies to

the case of Zv5™™ > 7 as long as the local convexity exists.
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Fig. 3: (a) The task mechanics of peg-in-hole insertion: first,
constant contact between the peg and the hole is formed;
second, the formed constraints are leveraged to refine the
insertion motions. (b) A paired corner on the peg and hole:
this local geometry enables the downstream iterative insertion
process. (c) The inclined state is constrained by its supporting
vertex p,, inclined angle « and rotation angle S.

Despite the trajectory being a dominant action representa-
tion in manipulation planning, it is unsuitable for funnel-based
manipulations as interactions with the task environment are
allowed to alter the motion of the manipulator [39]. Given the
target corner v; """ of the hole, its corresponding vertex on the
base of the peg is denoted as p, = vS"™" € S(V.) C Pe, as
shown in Fig. 3-(b). To integrate the alignment mechanism as
an inductive bias for interactions, the task-specific interaction
c: = (x¢,%x;) is extended as ¢! = (x¢,%;,p,) in Defini-
tion 4.2.

Definition 4.2. For a task-specific interaction c{, the starting
state x; and desired state x$ is constrained by a common

supporting vertex p, defined as follows:

Vx € [Xtda Xt] : vpoapo € T{OE}PE A Po 7é T{OE}pv (10)

1 Zpo = ZT(0m}Po

Such a formulation ensures that the vertex p, on the peg base
possesses the lowest value along the Z-axis of {O}, while the
interaction process is unchanged as x; 1 = I1(x;, x%).

An inclined state is visualized in Fig. 3-(c). Let n represents
the positive direction of Z-axis of { E'} with reference to {O}
at the inclined state, we use « as the inclined angle and 3 as
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Compliant
Interaction

Compliant
Interaction

Intersection

3 Area
Contact Point

XY-plane of {O} XY-plane of {O}

| Po foorprint,t| > 1

| Po oorprint,t] = 1
Fig. 4: The observation P, footprins, from ¢y can be divided
into binary categories, (a) contact point when |P, toomprint,t| = 1
or (b) intersection area when |P, foorprint,¢| > 1. based on its
cardinality.

the rotation angle to define n as follows:

cos(a) cos(f)
cos(a) sin(f)

sin(«)

n—

(1

Interaction with inclined states is designed to identify and
exploit its environmental contact constraints. Such a formu-
lation offers several advantages: 1) when the peg engages
with the task board from above (as illustrated in Fig. 4),
the observation P, footprint,s 1S divided into binary categories
based on the cardinality of the set |7)07f001p1—im7t|: whether it is
a contact point or an intersection area between the peg and
hole; 2) an inclined state relaxes the requirement for a peg to
be partially entered into the hole [34]; 3) before an insertion
task is finished (considered vertical w.r.t. the board surface
plane), all peg states can be described as inclined states during
the insertion process.

B. Perception Manipulation Funnel

The perception manipulation funnel aims to iteratively re-
duce the proposal region X; of the target hole’s distribution
P;(T{omy) through observation from each interaction. By
strategically placing the supporting vertex p, of the desired
state x¢ beneath the XY -plane of {O}, we can intentionally
capture the encountered contact constraints reflected on the
resulted steady state x;. 1. As illustrated in Fig. 4, after each
interaction, the observation P, tootprint,s €an be interpreted as
an inequality constraint as defined in Definition 4.3 to limit
the distribution of T(ory-

Definition 4.3. An inequality constraint on the possible space
of Tiomy is defined as g:(Tiomy) > 0 based on the observa-
tion P, gootprint,t» Where gi(Tomy) is defined as:

vpo € 7)0 Jootprint,t»

fT{OH}-Ah (po); |7)ofootprint,t| =1
— max fT{OH}Ah (po), Otherwise

(12)
in which |-| is the cardinality of the set. For a potential hole’s
state T{OH}, any contact point (as |770fgmpr,'myt| = 1) should
be excluded from the hole’s area, while any intersection area

gt(T{OH}) =



(as |Po footprint,t| > 1) should be fully contained by the hole’s
areaq.

The proposal region at t = 0 is derived from the initial area
of interest Apoarg as follows:

Xo = {Tiomy | TiomyAn C Avoara}

The proposal region at step ¢ is defined as:

(13)

X ={Tiomy € X0 € SEB) | 9:(Tomy) > 0,1 =1,2,...,1}

(14)
which is updated at step ¢ + 1 with the new added constraint
gt+1(T{OH}) Z 0 as:

XN {Tiomy € SEB) | ge1(Tromy) = 0} (15)

Lemma 4.4. As defined in Eq. (15), the volume |X;| of the
feasible region Xy is monotonically decreasing (Xi41 C A%)
over nonidentical interactions cy.

Xipq =

Proof: Since Xt+1 is the intersection of Xt with another
constraint set gt+1(T{0H}) > 0 and {gt(T{OH}) > 0} #
{gt+1(T{O my) = 0} under nonidentical interactions, |X;| is
decreasing or stays the same when new constraints are added.

|

As A& shrinks over steps in Lemma 4.4, the expected spread

of Tio gy decreases, and the allowable state space of the target
hole narrows.

Lemma 4.5. The ground truth state of the hole is always
included in the allowable state space as Tomy € X over
interactions cj.

NP)"OOf:' As T{OH} € Ay and T{OH} S {T{OH} |
9:(Tiomy) = 0}, thus proven Tyopy € A; as defined in
Eq. (14). ]

Since the proposal region A3 € A; of the target hole
is monotonically shrinking over interactions c;, meanwhile
the target state T{op) i$ guaranteed to be contained by X
and &1, we introduce the perception manipulation funnel as
defined in Theorem 4.6.

Theorem 4.6. The process of proposal region shrinkage
Xip1 © A&y through compliant interactions ¢ is a manipu-
lation funnel in the perception state space.

Proof: As proven in Lemma 4.4 and 4.5, the proposal
region Ay is shrinking and approaching Tyogy over random
interactions ¢; , thus proving that the perception manipulation
funnel is established based on the general Definition 4.1 H

Additionally, a maximum entropy-based method is intro-
duced to improve convergence efficiency. An overview is
outlined in Alg. 2. The probability distribution P;(Tyoy) of
the target hole’s state is defined by Eq. 7 and the initial area
for exploration Apeara is divided into grid points G = {g; |
i =1,2,..,N} where g; € R3 on the XY-plane of {O}.
Durmg each interaction, number K of potential hole’s states
is sampled as {T{OH}l}Z 1~ Pt(T{OH}) The probability
P, that g is included by the target hole is defined by:

Zfi h(f OH ,mg)
Rﬂ(g) - L Ié } 3

~ 1, g¢ T, A
hTiomy,8) = { 0, ogfn;isz

(16)
7

Let H(-) represent the entropy of the given probabilistic
density function. The expected entropy reduction is formulated
as:

AH(g) = H(Pt(T{OH})) - E[H(Pt(T{OH}) | )]

where E[’H(Pt(f{o my) | g)] is the expected entropy after
evaluating g. To maximize information gain, the desired state
should spatially overlap with the selected grid point g* € G
that maximizes AH(g) for contact constraints identification:

19)

(18)

- A
g" — argmax H(g)

The convergence of the proposed entropy-based exploration is
proven in Theorem 4.6.

Algorithm 2 Entropy-based Interactive Perception

Input: V;,, Apoards Pe, {OF
1. t<0
2: Sample grid points G <+ Apoard
3: Initialize proposal region X; < Apoara
4: while not converged do
5. g" < Select grid point for interaction > Eq.(19)
6
7
8
9

> Eq.(13)

Po footprint,¢ <— Active contact with the selected point

X; 11 < ConstraintsUpdate(P, tootprint,¢) > Eq.(15)
tt+1

: end while

Output: bounded region Apq

C. Physical Manipulation Funnel

The physical manipulation funnel aims to leverage envi-
ronmental contacts as physical constraints in the execution
task space to iteratively reduce Ax for peg-in-hole insertion.
Based on the task mechanics as Fig. 3-(a), we consider a
sequential process as 1) aligning an inclined state to its
corresponding corner and 2) adjusting the aligned inclined
state to insertion. All the states x; described in this section
are considered inclined states, which are defined by p,, a,
and S as introduced in Eq. (10) and (11). We describe
the spatial relationship between the x; and x* (the target
peg-in-hole state) based on the P, foorprin, and the target
corner v;™". Specifically, Py footprint,t forms a 2-D polygon
as Vo,footprim,t - (pg;p};;---;p];);po < Po,footprim,t with a
corresponding area A, footprint,t C R? on the X Y -plane of
{O}. The state deviation Ax is defined based on V, footprint,t
and v;°>™" as Definition 4.7.

Definition 4.7. Given an inclined peg state x; with the lateral
edge of the supporting vertex p,, intersects with the XY -plane
of {0}, we project its state as ¥ : RS s R*. We use the
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Fig. 5: (a) The peg’s state x; is projected as [Viaeral; Pateral]- (D) By setting the translation deviation between the desired state xg
and the starting state x; only on the XY -plane of {O}, a 2-D potential energy field is formulated. (c) The corner alignment

process is formulated as aligning the point v; = Vjaera to the corner v; = vy

field, while the edges are considered non-penetration walls.

Vigterat © R® and the angle value Ojgora; € R 0f LVtatorar t0
describe the pose as V(X)) = [Vaterat; Oraterat], as illustrated in
Fig. 5-(a). Vigeral is the intersection point between the lateral
edge of p, and the XY -plane of {O}, ZLvjera is the angle
Sformed by Vigserar and its nearby vertices in Vo, goorprin t- Given
the target corner for alignment v;°™" and its corresponding
angle Zv°™", the deviation Ax is transformed into As as

follows:

translation deviation: Av inclined deviation: \@

As = ||Ulateml - T{OH}U}CLomerH =t |ecomer — 91ateral| (20)

where 0™ O1p1erq1 is the angle value of Zvi°™ and Zvjqerq

respectively. Ax — 0 is considered equal to As — 0.

Since the footprint fully contains the projection of the inter-
section part beneath the board surface plane, the environmental
constraints as defined in Eq. 4 are projected into the XY -plane
of {O} as »Ao,footprim,t - T{OH}Ah

In the following, we describe the process of inclined corner
alignment as Av reaches zero and the process from inclined to
insertion as Af reaches zero. Since each degree of freedom in
the Cartesian space of {O} is decoupled as K is a diagonal
stiffness matrix, we aim to leverage the potential caused
by translation deviation for corner alighment and rotational
deviation for insertion based on Lemma 4.8.

Lemma 4.8. Under the quasi-static assumption, the motion
of the peg x is considered driven by a potential energy field:

U(x) = %(xd —x) ' K4(xq — %) (21)

Given an interaction cy (x4,x%), the resulted steady
pose X,y automatically falls into its nearby local minimum

energy under the non-penetration environmental constraints as

U(xt) > U(xe1) > U(xf) -

comer under the drive of the created potential energy

Proof: The peg tends to rest at a lower energy state in the
potential energy field. Also, the peg cannot move to a higher
energy state without external force. ]

Inclined Corner Alignment: By constraining the deviation
between the starting state x; and desired state x{ only as planar
translation in the XY -plane of {O} (as illustrated in Fig. 5-
(b)), the applied external force to the peg defined by Eq. (5)
can be projected into the XY -plane as follows:

Fplanar = Kd[Axa Aya 05 05 05 O]T

ext

(22)

The formulation of FP™"™ can be rewritten into a potential

energy field based on the desired point v, € R® and any point
v € R? on the XY -plane of {O} in a quadratic form:

(23)

1
Uxoy(v) = 5(%1 —v) " Kgli:3.1.3(vg — )

As illustrated in Fig. 5-(c12), for an angle formed by the target
corner vertex v; = T{omv;™"" and its nearby vertices, its
edges are considered non-penetration walls in Uxoy(v). Let
v be the position of vjyera at time ¢; we aim to leverage such
constraints to shape the motion of v; to rest at v; under the
drive of Uxoy(v). Specifically, our objective is to formulate a
potential well to let v; be the local minimum in a potential
energy field so that v; tends to rest at v; without escaping. This
process involves two fundamental requirements: 1) finding an
area Ay to place the attraction point vy (defined by W(x$))
and 2) finding the basin of attraction Aypsin where all initial
states v; inside it will eventually move to v;. Both Ay and
Apasin should only condition on the non-penetration constraints
from angle Zv;v;vy.

We start with a straightforward example of aligning a point
v; to a determinate vertex v; in the small interior area of an
angle Zv;v;v;, on the XY -plane of {O}. First, the formulation
of Ayen is defined in Lemma 4.9. Then, we introduce the
formulation of Ap,sn in Lemma 4.10.



Lemma 4.9. Area A,.; C R? exist on the XY -plane of {O}
and only condition on the angle Zv;v;vy (as visualized in
Fig. 5-(cl): Region A), for any desired point vq € Awey, Vj
is always the local minimum state in the created basin of
attraction A}?_ C R? (as visualized in Fig. 5-(c2): Region

basin

B). A,y is defined as:

Apern = {v € R? | g < Zvwiv < (3% — Zvvsug)} (24)

while Aye. is defined as:
Apasin ={v € R® | Zvjvqv < Lvsvgor N Zvjvjo < Zvwjogt

(25)

Proof: The absolute distance between vy € Ayey and v
represents the energy level of a quadratic-formed energy field.
As Yoy € Aweu,Vvt < Aﬁjsm,vt 7& vj |Ud — Ut| > |Ud — Uj|,
thus proven v; is the local minimum state in .Af)jsm, Auen and

74 establish. [ ]

basin

Lemma 4.10. Area Ay, C R? exist on the XY -plane of
{O} and only condition on the angle Zv,v;vy (as visualized
in Fig. 5-(c3): Region B). For any desired point vq € Ayey
defined in Eq. (24), v; is always the local minimum state in

»Abasiw »Abasin - Q{Avd | vvd < »Awell} is deﬁned as

basin

Apasin —{v € R? | Lovjo; < =0 Zowgw; < =}

) vy < = N ZLovgv; < —

basin PRI = 9 ko= 2 (26)
when |vg —v; | 00 Avg € Ay

Proof: The original energy gradient of Uxoy (v) is derived
as Fopergy ~VUxoy(v). While | vg — v; |# 0, any
vt € Apasin moves along with the force gradient and will
get in contact with the non-penetration wall first. As long as
vy 18 in contact with the wall, the component of the energy
gradient Fnerey that is normal to the wall is canceled out
by the non-penetration constraint as illustrated in Fig. 5-(b2).
Given the wall’s normal vector ny,y at the contact point, the
modified force gradient is derived as Figa1 = Fenergy + Fwan =
—VUxoy(v) + (VUxoy (v) * Dyan ) Dyan. For any vy in contact
with the wall, it performs physical gradient descent under force
Fisa1 and reaches the local minimum as the force gradient
Fiowl = 0 when nyj is on the same line of Feperey. As proven
in Lemma 4.9, the local minimum of energy field is at v;, thus
proven Ay, establish. [ |

Based on Ay and Ay, the corner alignment process is
introduced in Lemma 4.11 through potential well construction.

Lemma 4.11. Under the condition that energy caused by
translation deviation is significantly larger than that caused
by rotation deviation, by setting the desired state x¢ with its
projected vg € Ayen, any starting state Xy with vy € Apgsin
will automatically align with the target corner (as the lateral
edge of p, intersects with v; at state X, 11 = I11(x4, x4)).

Proof: As the command from impedance control and
the target corner creates a potential well with v; as its local
minimum energy state, as proved in Lemma 4.9 and 4.10, x; 1
automatically rests at the local minimum state as vs1 — v;.

|

We relax the assumption on a determinate v; =
Tromvy™ and expand the potential well construction pro-
cess on the probabilistic distribution of the target hole’s state
P(T(omy), as outlined in Alg. 3. K states are sampled as
{f{OH}yi}iK:l ~ P(T{OH}) and the ground truth of Ty
is assumed to be covered the samples. By calculating the
intersection area of Apun = ﬁ{flbasin,i}f:l and Agey =
N{ Aweni }2£, over pose samples {T{OH},i}Z'K:p it is guaran-
teed to find a sub-area as Ay C T(omy Awen and Abasin C
Tio H}Abasm for potential well construction. Theoretically, the
robustness of the corner alignment is conditioned on Avwell and
Apasin instead of the geometric size of V.

Algorithm 3 Nondeterministic Corner Alignment

Input: bounded region ,)v(Tl’ P(T{O ) eNXTl
1: Initialize samples {T(omy .}y ~ P(Tiom), Tiom €
T{OH},i}iK:p Avetl = Apasin = XY -plane of {O}
fori=0,1,..,K —1do
Avel = Avent N1 T{ony,iAwen
»Abasin = »Abasin N T{OH},iAbasin
end for B
Ulateral <— \IJ(X), Vlateral € »Afklasin
Uldateral A \P(Xd)’ deateral € ’AWCH
Execute interaction ¢’ = (x,x9)

Insertion under Motion Constraints: As constant contact
between the peg and its matching hole is established, we aim
to leverage the motion constraints from the environment to
synthesize insertion motions. Successful insertion motions are
formulated as a sequence of interactions S = [c§, ¢, ..., c}]
that connect the initial inclined state to the target peg-in-
hole configuration. We keep the alignment tight by keeping
the projection vy of the desired state inside vy € Ayen-
The alignment is formed by the energy field caused by the
translation deviation; additionally, we aim to leverage the
energy field caused by the rotation deviation to drive the
insertion process.

Definition 4.12. Ler o = g, the insertion process is
formulated as follows: under the condition that the corner
contact is formed as a pivot point, a complete insertion is
regarded as progressively turning the inclined angle of the
peg approaching vertical as o — «*.

We describe the relative motion between the peg and its
matching hole using a contact reference frame and a manipu-
lation frame. As illustrated in Fig. 6, a contact reference frame
{C} is attached to the on the corner Tiop i, where
its origin is at Tiomyvy™" and its Z-axis shares the same
direction with {O}. The positive direction of its X-axis is
aligned with the rotation angle 3 from the inclined state of the
peg on the XY -plane of {O}. The Y-axis is placed orthogonal
with reference to the X Z-plane of {C'}. By definition, {C'}
is not fixed with reference to {O} as its X-axis is defined by
the rotation angle S of the peg’s inclined state.
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Fig. 6: An overview of the motion constraints based on the XY -plane (planar view 1) and X Z-plane (planar view 2) of {C}.
Planar View 1: An uncertainty w.r.t to rotation is constrained by the range of A# through interactions. Meanwhile, A6 is also
decreasing significantly over insertion motions. Planar View 2: The translation of {A} w.r.t {C} induced by the potential
energy field caused by rotation deviation and environmental constraints (red friction cones) is a passive result to balance Fey,
thus the position of the origin of { M} will not reach the XY -plane of {C'} as the process finishes at o — 7.

Lemma 4.13. During the insertion process (Definition 4.12),
{C'} is a constrained frame with a fixed position and a limited
orientation range with reference to {O}.

Proof: As the lateral edge of p, intersects with the corner
vertex as illustrated in the Planar View I from Fig. 6, the
possible pose of the peg is restricted by its projection fateral <
6°°™" and the uncertainty range is subject to A#. Since the
orientation of the inclined peg is subject to A, proving that
{C?} is a constrained frame with reference to {O}. [ |

Selecting a manipulation frame {M} attached to the peg is
critical to describe its relative motion in {C'}. Since the inter-
actions ¢y are constrained as Definition 4.2 by a supporting
vertex p,, we set the origin of {M} to p, with its Z-axis’s
positive direction towards n. The X-axis of {M} is placed
orthogonally in the plane formed by the lateral edge of p,
and the X -axis of {C'} as illustrated in the Planar View 2 of
Fig. 6. We denote the instantaneous relative motion of { M}
with reference to {C'} at time ¢ as a twist vector & = [w  d]T,
in which w = [wy, wy, w,] € R? is the rotation rate along each
axis of {C} and d = [dy,d,,d,] € R? is the rate of change
of the position.

Lemma 4.14. During the insertion process (Definition 4.12),
& is restricted to translation in the X Z-plane of {C} and
rotation about the Y -axis of {C}, forming a subset of SE(3).

Proof: Since the X Z-plane of {C'} and the X Z-plane of
{M?} lies in the same geometric plane in {O}, thus proving
that the relative motion is restricted as £ = [0, wy, 0, d5, 0, d.]

|
Since frame {C} is within a limited range, it can be
regarded as a static frame at any instant movement &; described

in Lemma 4.15.

Lemma 4.15. Under the condition that the energy caused by
rotation deviation is significantly larger than that caused by
translation deviation, by setting the desired state’s orientation
as a small rotation wyAt on the current state, the deviation
Ao = o — « is decreasing, and the uncertainty range A8 of
{M} is shrinking.

Proof: As illustrated in the Planar View 2 of Fig. 6,
the translation motion v is a result refined by the passive
force from the environmental contacts. The peg cannot break
the alignment according to Lemma 4.8, as the result {M} is
always lower than {C} in the world frame. Such formulation
also guarantees that an enlarged inclined angle represents
a smaller potential energy state in the caused energy field;
the transition between the peg’s state automatically leads
to a higher inclined angle under its environmental motion
constraints according to Lemma 4.8. As illustrated in the
Planar View 1 of Fig. 6, the rotation motion w, and w, is
constrained by the limited range of A#, as the « increases,
A6 decreases. |

By incrementally increasing the inclined angle o and up-
dating the measurement of the inclined state’s rotation angle
B, the peg’s state will progressively move towards the target
state while its uncertainty range A@ is shrinking towards
zero. Theoretically, the robustness of the insertion process is
conditioned on the peg’s state x; instead of its geometric size.

Theorem 4.16. The insertion process introduced by inclined
angle adjustment after corner alignment is a manipulation
funnel in the execution task space based on the general
Definition 4.1.



Proof: The deviation in the peg’s state As = Av + Af
is decreasing decoupled. As Av decreases to zero as proven
in Lemma 4.11 and A€ decreases to zero as proven in
Lemma 4.15 over environmentally constrained interactions cy,
thus proving the physical manipulation funnel established. H

Algorithm 4 MPC-based Insertion Planning

Input: system dynamics model f[, initial state x;, target
inclined angle o
1: while not |a; — a*| — 0 do
2 (x{,..,x{ ;) < ConstrainedOptimization >
Eq.(27)

3. Execute the interaction ¢! = (x;,x%)

4: Re-measure X;i1, Qg1 < X1

5:  Update system dynamics model 11 > Appendix
6: t<+t+1

7: end while

Additionally, we introduce a Model Predictive Control
(MPC) framework to find the formulated insertions process
S. We initialize the system transition function II with a linear
prior and update it online with a Recursive Least Squares
(RLS) adaptive filter (see Appendix). At time step ¢, the system
sets a desired state x¢, and the state of the peg transitions
from x; to x;41 under environmental constraints. Interactions
during insertion are successive, which means the resulting
steady state from the previous interaction serves as the starting
state for the next interaction. The cost function is defined by
the inclined angle o at state x; and the target inclined angle
a* at x* as J(xi,x*) = |az — a™|. A sequence of actions
(x¢,...,x{, p_;) is selected to minimize the defined loss over
a finite horizon T as:

T—1
(x¢,...,x{ p_1) = argmin Z(J(H(xt+i, X0, X") F W)
=0
subject to: AXmin < [Xeqi — xgﬂ-\ < AXmax
\I/(Xgﬂ') = [Vtateral, rateral ], Vtateral € Awell
i=0,...,N—1
@7
where us4; = ||x¢+;—x{, ;|| is added to ensure smooth control
inputs by discouraging unnecessarily large or aggressive con-
trol actions. At each step ¢, the system applies the first selected
desired state to execute and updates the transition model II.
An overview of the MPC framework is outlined in Alg. 4, and
its convergence is proved in Lemma 4.15.

V. EXPERIMENTS

In this section, we evaluate the proposed framework across
a diverse range of peg-in-hole tasks to demonstrate its robust-
ness and generalizability. Ablation studies are conducted to
gain deeper insights into how the funnel-based manipulation
approach mitigates uncertainties arising from perception and
execution. Specifically, these experiments aim to validate:
(1) the perception manipulation funnel eliminates uncertain-
ties in the proposal distribution of the target hole’s state

while tolerating uncertainties from the imprecise interactions;
(2) the physical manipulation funnel absorbs perception and
execution uncertainties to achieve precise insertion; (3) by
leveraging funnel-based manipulation planning, the system
achieves robust and precise insertion tasks with a tolerance
level surpassing the robot’s inherent execution precision.

A. Experiment Setup

Our experimental setup is shown in Fig. 7-(a). We test the
proposed funnel-based manipulation framework on a robotic
system consisting of a Franka Emika Panda manipulator with
GelSight Mini attached to the fingertips of its parallel jaw
gripper. No camera is required as our system eliminates
uncertainties purely through physical interactions. This design
removes any system dependence on variable lighting condi-
tions and textures, making it easily generalizable to different
scenarios. It is worth noting that, though visual modality is not
mandatory, it can be easily integrated as providing the initial
estimation of the target hole, which can be further refined
by interactive perception or directly bridged with insertion.
The in-hand pose of the grasped peg is observed from its
corresponding tactile imprints, as discussed in the Appendix.
Our system design does not require slipping-free conditions
since the proposed funnel theory is object-centric. Two types
of controllers are adopted in our real-world experiments:
1) a Cartesian impedance controller with a translation error
up to 2mm and 2) a Cartesian position controller with a
translation error up to 1'mm due to imprecise internal models.
A detailed formulation of Cartesian impedance control for
a manipulator is discussed in the Appendix. The Cartesian
position controller is applied in position-based commands, and
the Cartesian impedance controller is applied in commands
requiring physical interactions. Under external contacts, the
object undergoes only minor elastic movements on the tactile
sensor’s planar surface, while major pose deviations are reg-
ulated by the robot’s Cartesian impedance controller through
the end-effector.

The system is tested on a NIST ATB benchmark and
additional tight-clearance tasks, with detailed parameters of
the peg-in-hole tasks shown in Fig. 8. The experimental
pegs are selected with different base symmetries (ranging
from central symmetry and axial symmetry to asymmetry),
materials, scales, and clearance levels for a comprehensive
evaluation. It is also worth noting that, although chamfer' on
the peg and the hole would make the insertion process easier,
as it relatively enlarges the entry space, it is excluded in our
experiments for a more challenging task formulation.

B. Perception Manipulation Funnel

We conducted detailed experiments in PyBullet [10] to
evaluate the robustness of the perception manipulation funnel
for uncertainty elimination in the perception state space (as

'In the context of peg-in-hole tasks, the chamfer refers to the beveled or
tapered edge at the entrance of the hole (and sometimes at the tip of the peg).
A chamfer added to the edges can help reduce contact forces, reduce jamming
and tolerate misalignment.
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** Pegs with random generated polygonal base; scales are described with
the bounding box of the base.
Fig. 8: Overview of the Peg-in-Hole Tasks in Real-world
Experiments.

illustrated in Fig. 7-(b)). Specifically, we aim to demonstrate
that 1) the perception manipulation funnel is robust against a
large range of action uncertainties and 2) the entropy-based ex-
ploration significantly accelerates the uncertainty elimination
process.

To quantify the uncertainty level of actions, given a de-
sired interaction point g4 = (x4,y4,0) on the board sur-
face plane (XY -plane of {O}), the actual interacted point
go = (%4, %4,0) incorporates additional positional noise as

action uncertainty from a 2-D Gaussian distribution as follows:

| L)
Loy Yo) = —F——e€xp| —zz X 'z
f(Za; Ya) PSS p( 5

_ |%La — Ld |1 0
Z[yayd] 2[0 1]0

where o represents the noise level of distance. We use the
Jaccard index to calculate the distance between the ground
truth hole area and the union of sampled areas {A} =
{Tromy AR ET2 ~ P(T;omy) based on the refined pro-
posal distribution as the convergence level:

N TompAnnNU{AL] A4

| TrouyAn UU{AY | [U{A}|
Random exploration serves as a baseline policy to demonstrate
that 1) the intrinsic convergence mechanics of the perception
manipulation does not rely on any specific action strategy
and 2) the proposed entropy-based exploration benefits the
convergence efficiency.

The results, presented in Fig. 9, show the system’s perfor-
mance after eight steps of interaction under different levels of
action noises and a random policy. Pegs with smaller scales
are more sensitive to the system’s uncertainty, as the relative
error is significantly larger than the pegs with larger scales.
Despite high action noise relative to the peg’s scale, all the
test objects successfully converge to a high convergence level.
Even random actions would significantly shrink the proposal
distribution of the target hole due to the mechanics of the
formulated perception funnel.

(28)

29)

(30)

J({A})

C. Physical Manipulation Funnel

We evaluate the robustness of the physical manipulation
funnel through peg insertion into the target hole as shown
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Fig. 9: Experimental result of the uncertainty elimination process in simulation with different levels of action uncertainty
and object scales. “R” denotes the random policy; o denotes our entropy-based policy with different uncertainty levels in

millimeters.
Name Clearance Position-based” Funnel-based?
Round 8 ~ 0.8 4/10 10/10
Round 12 ~ 0.8 5/10 10/10
Round 16 ~ 0.8 5/10 10/10
Rectangle 8 ~ 0.6 3/10 10/10
Rectangle 12 ~ 0.7 5/10 10/10
Rectangle 16 ~ 0.8 4/10 10/10
Random #1 ~ 0.4 1/10 9/10
Random #2 ~ 0.4 0/10 8/10
Random #3 ~ 0.4 0/10 10/10
| Average I \ | 3.0/10 | 9.7/10 |

! Baseline: Actuated with Cartesian position controller.

2 QOurs: Actuated with Cartesian impedance controller.
TABLE 1. Experimental Result of Real-world Insertion
Tasks

in Fig. 7-(c), which is considered a known position. We
compare the robustness of funnel-based manipulation with
position-based manipulation as a baseline, which formulates
the insertion process by positioning the peg into the hole
without collisions. The collision-free trajectory is defined
as a top-down insertion with a vertical peg state after a
stable grasp. Since execution uncertainties are inevitable in
real-world scenarios, we aim to demonstrate that 1) when
system uncertainty exceeds the allowed clearance, funnel-
based manipulation for peg insertion is more robust against
position-based manipulation in real-world settings, and 2)
precise manipulation tasks can be achieved through imprecise
funnel-based manipulation.

The experimental result is shown in Table 1. Despite the
tight clearance being smaller than the robot execution preci-
sion, our funnel-based insertion effectively absorbs unmodeled
uncertainties and inserts the peg at a near-perfect success rate.
In contrast, position-based manipulation expects a precisely
executed trajectory while lacking the ability to tolerate such
uncertainty. Without the help of chamfers on the peg and the
hole, it can easily fail due to the unexpected misalignments or
impact caused by the wedging phenomenon [53]. Especially
for asymmetric pegs with a tighter tolerance in both translation
and orientation, we observe that position-based control is
ineffective at small scales.

D. Real-world System Performance

Ultimately, we combined the perception and physical ma-
nipulation funnel in a unified system to perform robust inser-
tion without visual feedback in an open loop, as illustrated in
Fig. 7-(d). To comprehensively evaluate the proposed system,

we consider two levels of prior on the target hole’s state: 1) the
initial pose of the peg is placed partially inside the target hole
by kinesthetic teaching and 2) a larger search area (bounding
circle with ~ 30% dilation) is specified, containing the target
hole on the board surface. The robot needs to identify the
possible state of the target hole on the board surface to finish
the insertion. The results (as presented in Table II) depict the
steps of interactions, uncertainty level (1 — J({.A})) and the
successful rate for each tested peg. Since the proposed system
effectively absorbs uncertainties from an imprecise target hole
state and interactions, we observe very few failure cases from
the overall performance.

We acknowledge the gap between the established object-
centric theory and real-world implementation; the failure mode
can be divided into the following categories: 1) high contact
force which breaks the condition of in-hand stable grasp, i.e.,
the gripper is opened and the peg beyond the observation
range of the tactile sensor; 2) high friction force caused by
interactions between the peg and the hole that causes the
peg largely slipped and is out of the tactile perception range
and 3) the inaccurate dynamics model of the manipulator
for impedance control that leads to unsatisfied compliance
performance during physical contacts. We believe that using
a more forceful end-effector or a more advanced compliance
mechanism would effectively resolve this issue.

VI. LIMITATIONS

Our work has certain limitations, which naturally reveal the
potential future research directions. First, the current system
relies on a stable in-hand grasp of the peg to perform the
insertion process. A re-grasping policy [4] can be incorpo-
rated to initialize a new insertion trial for drastic slippage
that exceeds the tactile perception range. Second, current
exploration relies on a priori of the planar exploratory area.
By combining visual modalities and learning-based estimation
methods, the system can perform environmental identification
and insertion without any prior. Third, as our method doesn’t
model friction explicitly, a variable impedance controller is
considered a requirement when encountering interaction with
high resistance.

We envision a future iteration of the proposed robotic sys-
tem that leverages multi-modal perception to partially perceive
the task environment and further plan funnel-based manipula-
tion strategies to robustly shape the interaction process toward



TABLE II: System Performance under Different Prior Knowledge on the Target Hole

Partially Inside the Hole Bounded Area Overall
Ohject Success  Interactions (£ std) Uncertainty(+ std) | Success Interactions (+ std) Uncertainty(+ std) Success
Round 8 5/5 4.0+ 0.7 0.152 £ 0.029 5/5 46 £ 1.5 0.148 + 0.040 10/10
Round 12 5/5 44+ 1.1 0.155 £ 0.048 5/5 50+ 1.7 0.150 + 0.036 10/10
Round 16 5/5 4.6 + 09 0.163 £ 0.060 5/5 56 £ 1.5 0.162 + 0.063 10/10
Rectangle 8 5/5 6.8 £ 1.6 0.178 £ 0.031 4/5 78 £19 0.174 £ 0.043 9/10
Rectangle 12 5/5 6.8 £ 13 0.174 £ 0.046 5/5 7.6 £ 1.5 0.170 £ 0.033 10/10
Rectangle 16 5/5 7.2 £ 038 0.178 £ 0.031 5/5 78 £2.1 0.193 + 0.055 10/10
Random #1 5/5 92 £122 0.172 £ 0.029 4/5 9.0 £ 29 0.158 + 0.036 9/10
Random #2 4/5 94 £ 27 0.164 £ 0.062 4/5 102 +£ 19 0.181 + 0.065 8/10
Random #3 4/5 9.0 £ 29 0.170 £ 0.045 5/5 9.6 £ 1.8 0.178 £ 0.061 9/10
Average || 4.78 /5 6.8 £ 2.6 0.167 £ 0.041 \ 4.67/5 75+£26 0.168 + 0.046 || 9.44/10

the desired outcome beyond the peg-in-hole insertion task.

VII. CONCLUSION AND DISCUSSION

In this paper, we have presented a funnel-based manipu-
lation paradigm for robust peg-in-hole insertion, along with
a real-world robotic implementation. The advantages of the
proposed system have been demonstrated through careful
experimentation in simulation and in the real world. A com-
prehensive evaluation of the proposed system is provided on
a standard NIST ATB benchmark and additional challenging
tasks with a satisfactory overall success rate. Most critically,
we highlighted the power of compliance and demonstrated
how a robot can leverage imprecise compliant interactions
to perform precise tasks, similar to how humans achieve
dexterous manipulation. For future work, we aim to expand
the current theory to non-planar scenarios and develop au-
tomated learning methods capable of abstracting funnel-based
manipulation mechanics from natural language descriptions or
video demonstrations and their interaction mechanisms.
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APPENDIX
A. Cartesian Impedance Controller

The state of Franka Emika Panda in the configuration space
at time ¢ is denoted as q; € R7, with its velocity as §; € R7
and acceleration as ¢; € R7. Given the desired state x¢ and
current state x; of the manipulated frame, the robot motion is
regulated by the Cartesian impedance controller based on the
simulated force F as:

M(qe)de + C(ae, 4e)a: + gae) = J(aq:) 'F 3D

where M(q;) € R™*7 is the inertial matrix, C(qg;,;) is the
Coriolis and centrifugal matrix, g(q) is the gravity vector and
J(qs)" € R7% ig the transpose of the Jacobian matrix.

B. Tactile Pose Estimation

(D 3)

Fig. 10: (1) A stable grasp of the peg for insertion; (2) The
corresponding tactile image with the object’s imprint; (3) The
estimated in-hand pose of the peg.

We estimate the peg’s in-hand pose based on its tail end’s
tactile imprint (as shown in Fig. 10). After a stable grasping,
the motion of the object is limited in the SE(2) space as
[z,y,w] on the planar gel surface. We identify the keypoints
from the corner of the peg in the tactile image with a gradient-
based feature extraction method [48]. As the connecting seg-
ment between the extracted corners represents the base of the
peg, the peg’s position is defined by its center, and the peg’s
orientation is perpendicular to the formed segment. To alleviate
the perception noise for a stable estimation, we apply an
Extended Kalman Filter (EKF) to smooth the estimated result
and only take it into consideration when it reaches stability. As
long as the peg after slippage does not exceed the observation
range of the fingertip tactile sensors, the estimated in-hand
pose is further leveraged for object-centric manipulation plan-
ning. For our experiments, the perception range of the Gelsight
Mini tactile sensor is around 25mm x 20mm, and the end of
the peg is required to show up completely.

C. System Transition Function for MPC

We model the system transition function with a linear prior,
as if there is no external contact, the steady state will reach
the desired state during each interaction. The discrete linear
state-space model of the system is formulated as:

X1 = Asx; + Byuy where u; = x¢ — x; (32)

where A € RY%® is the state transition matrix and B € R6%6
is the input matrix. Both A and B are initialized as an Identity
matrix.

However, under the un-modeled contact after corner align-
ment, the steady state of the peg is the result of the interaction
between the potential from the impedance control and its
environmental constraints. We aim to approximate the intricate
transition function online, as A and B from Eq. (32) are
updated by an RLS adaptive filter. The system dynamics is
rewritten as:

Xi 41 =P;y; + €, where ¢, € R°

Xt ! 6x12 12x6 (33)
Py = [ut] eER™ 4 =[A: B eR
®, is the regression vector, v; is the system to update and
€ 18 the prediction error. Given a covariance matrix P; and
a forgetting factor A, the gain K, is calculated based on the
prediction error after each interaction as:

€0 = Xe41 — Peye (34)
K, =P;® (A + &P/ ) ! (35)
and the system parameters are updated as:
Y1 = 1t + Kieg (36)
Yer1 = [Arpr Bl (37)
The covariance matrix is then updated as:
1
Piiq = X(Pt — K;®:Py) (38)

_Thus, the approximated
I (x¢, x%) is defined as:

system transition function

I (x¢, x3) = Asx + Be(x) — x;) (39

and updated online to identify the underlying dynamics.

D. Computational Complexity Analysis

We perform an additional analysis of the computational
efficiency of the proposed system. For Alg. 2, we adopted
a rejection-based sampling algorithm with the theoretical time
complexity per accepted sample as O(M) (M is the reciprocal
of the acceptance rate conditioned on the gathered inequality
constraints defined in Definition 4.3). Alg. 3 calculates the
intersection of the union over a constant number of samples
and thus possesses a time complexity of O(1). For Alg. 4,
since we are using a linear state-space model as defined in
Eq. (39), which leads to a convex QP problem that can be
efficiently solved, the MPC planner runs at ~ 30H z.



