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“A man walks forward”

“He is running
straight and stopped”

“A man waves his
right hand”

We propose a language-directed humanoid whole-body control framework that translates natural language commands into continuous robot actions

through a Conditional Variational Autoencoder (CVAE). The structured latent space brought by the CVAE enables smooth transitions between diverse and
agile behaviors, as shown in the sequence where the robot seamlessly transitions from walking to running, concluding with a hand-waving motion prompted
by the corresponding text commands. See more experiments at https://youtu.be/9ANOGulqWwc

Abstract—General-purpose humanoid robots are expected to
interact intuitively with humans, enabling seamless integration
into daily life. Natural language provides the most accessible
medium for this purpose. However, translating language into
humanoid whole-body meotion remains a significant challenge,
primarily due to the gap between linguistic understanding
and physical actions. In this work, we present an end-to-end,
language-directed policy for real-world humanoid whole-body
control. Our approach combines reinforcement learning with
policy distillation, allowing a single neural network to interpret
language commands and execute corresponding physical ac-
tions directly. To enhance motion diversity and compositionality,
we incorporate a Conditional Variational Autoencoder (CVAE)
structure. The resulting policy achieves agile and versatile whole-
body behaviors conditioned on language inputs, with smooth
transitions between various motions, enabling adaptation to
linguistic variations and the emergence of novel motions. We
validate the efficacy and generalizability of our method through
extensive simulations and real-world experiments, demonstrating
robust whole-body control. Please see our website at Lang-
WBC.github.io for more information.

1. INTRODUCTION

Humanoid robots hold immense potential for integration
into human environments due to their anthropomorphic design,
particularly in areas such as healthcare, personal assistance,
and interactive services. For such robots to be truly effective,
especially for users with limited technical proficiency such
as the elderly, intuitive interaction modalities are essential.
Natural language stands out as the most accessible and natural
medium for human-robot communication, enabling users to

convey complex instructions effortlessly.

However, translating natural language commands into dy-
namic, agile, and robust whole-body motions for humanoid
robots remains a significant challenge. The fundamental chal-
lenge stems from two interconnected aspects: First, as a motion
generation problem, the system needs to produce diverse and
generalizable movements that accurately reflect the intent of
varied natural language commands. Second, as a real-world
control problem, it must ensure these generated motions are
physically executable while maintaining balance and stability
under environmental uncertainties and disturbances. These two
aspects are tightly coupled — generated motions must be phys-
ically realizable, while the control strategy must be flexible
enough to accommodate the diversity of language-commanded
behaviors. While prior works on language-directed real-world
humanoid control have shown success by decoupling the
problem into kinematic motion generation and whole-body
tracking control [34, 10, 25], this hierarchical approach has
key limitations. The generated motions are often physically
implausible — e.g., lower-body floating in the air or upper-
body exceeding stability margins — forcing the tracking policy
to trade off between accurately tracking these motions and
maintaining balance. Moreover, these methods are restricted
to fixed-duration motions, limiting their ability to handle
disturbances or ensure smooth transitions between motions.

In this work, we introduce LangWBC, a framework that
addresses these dual challenges through a single end-to-end



model, eliminating the inherent conflicts between motion
generation and physical feasibility. This approach enables
humanoid robots to execute agile and diverse whole-body mo-
tions from natural language commands with flexible duration,
smoothly transition between sequential actions, and synthesize
diverse and novel motions through latent space interpolation.

LangWBC uses a two-stage training process. First, a teacher
policy is trained via reinforcement learning to track retargeted
motion capture (MoCap) data, acquiring a rich repertoire
of dynamic and physically plausible behaviors. Then, a stu-
dent policy based on a Conditional Variational Autoencoder
(CVAE) [36] is trained via behavior cloning to learn the
mapping from natural language commands and proprioceptive
history directly to control actions, forming a joint distribution
of language and actions within a structured and unified latent
space.

We demonstrate the capabilities of LangWBC through ex-
tensive simulations and real-world experiments. The robot
successfully executes agile motions, including running and
quickly turning around, as well as expressive motions like
waving and clapping. It also exhibits robustness to distur-
bances, such as recovering from kicks while executing tex-
tual commands. Furthermore, our framework enables smooth
transitions between motion clips and generates novel motions
through interpolation, demonstrating generalization beyond the
training data.

Our key contributions are summarized as follows:

e We propose a novel framework that maps natural lan-
guage commands directly to whole-body robot actions in
a closed-loop control setup, achieving agile and robust
performance suitable for real-world deployment.

e Our method enables the generation of diverse motions,
smooth transitions, and adaptability to a wide range of
textual inputs, including the synthesis of novel behaviors
through latent space interpolation using the CVAE archi-
tecture.

« We validate our approach extensively on a physical
humanoid robot, demonstrating its practical applicability,
robustness to disturbances, and ability to execute complex
whole-body motions from natural language commands.

II. RELATED WORK

This work explores the intersection of learning-based hu-
manoid whole-body control and generative action modeling.
Here, we review prior research in both fields.

A. Learning-based Humanoid Whole-body Control

Learning-based controllers have demonstrated the ability to
perform complex whole-body control for humanoid robots. In
physics-based animation, robots have learned various dynamic
tasks [28, 29, 38, 16], object interactions [43, 24, 7], and even
full-body motions from the AMASS dataset [23, 39, 14].

However, transferring these controllers to real-world hard-
ware faces challenges due to the sim-to-real gap. As a result,
prior work has largely focused on specialized controllers for a

limited set of agile motions on bipedal robots, such as walk-
ing [4, 21, 31, 8, 22], jumping [19, 42], and running [20, 37].
More recent efforts aim to scale up the range of feasible
humanoid motions. For example, [1, 15, 5] incorporate dozens
to a few hundred motions, while [11, 10, 6, 12] focus on a
curated subset of the AMASS dataset. Unlike policies trained
for specific skills, these approaches treat motion generation as
a tracking problem: the policy learns to track kinematic trajec-
tories but does not inherently compose them into downstream
tasks. Instead, an additional high-level planner is required to
execute specific motions at test time. In contrast, our work
directly learns a text-conditioned motion generation policy,
enabling both robust sim-to-real transfer and the ability to
generate and execute diverse motions as a downstream task
within a single framework.

B. Generative Action Modeling

Prior approaches to model actions with a generative model
can be broadly categorized into two approaches: hierarchical
kinematics-based tracking and end-to-end action generation.

1) Hierarchical Kinematics-based Tracking: A common
approach is to use a hierarchical framework, where a high-
level generative model produces diverse kinematic motions
conditioned on inputs such as text [40, 35], keyframes [3],
obstacles [17], etc., while a low-level tracking controller
learns to follow these trajectories. Most prior works adopt
this scheme. For example, OmniH2O [10] uses a pre-trained
fixed-length MDM model [40] for text-conditioned motion
generation, followed by a tracking controller. HumanPlus [6]
uses behavior cloning to learn a high-level policy from human
tele-operation to output target poses for downstream tasks.
Exbody?2 [15] separately trains a CVAE to generate kinematic
motions autoregressively, but lacks text conditioning.

While hierarchical methods have proven effective, they
require complex frameworks and often suffer from artifacts or
physically infeasible motions in generated trajectories, such
as floating bodies, foot sliding, and penetration. To address
these challenges, Robot MDM [34] incorporates a learned Q-
function to refine motion generation and enhance feasibility.
However, this adds additional training overhead.

2) End-to-end Action Generation: An alternative is to
model control actions directly using a generative approach,
eliminating the gap between kinematics generation and track-
ing. While this method offers advantages in continuity and
coherence, it remains under-explored due to its complexity,
particularly in high-dimensional dynamic control.

In robotic manipulation, diffusion-based policies [2, 41]
have demonstrated this approach for quasi-static manipulators.
For legged robots, DiffuseLoco [13] extends it to dynamic con-
trol but is limited to state-based commands and quadrupedal
robots. A more recent work, UH-1 [25], introduces text-to-
action generation but only supports open-loop control, making
it less robust to real-world disturbances. In this work, we
present a fully functional text-conditioned end-to-end gen-
erative controller for humanoid robots. Our model not only
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Fig. 2. The Overview of the Training Framework. The training process includes a motion-tracking teacher training phase and a language-directed student
training phase. We first retarget the MoCap dataset and train a teacher policy via reinforcement learning. Then, a student policy, leveraging a CVAE architecture,
jointly models high-level linguistic instructions and low-level physical actions of the teacher policy in a unified latent space. During deployment, we use the
student policy for zero-shot sim-to-real transfer on hardware, demonstrating diverse behaviors.

enables robust real-world deployment but also generates novel,
unseen motions while generalizing to similar text commands.

III. METHODS

In this section, we present LangWBC, an end-to-end frame-
work that jointly models high-level linguistic instructions and
low-level physical actions, enabling robots to execute complex
whole-body motions directly from language commands.

We begin by training a language-agnostic teacher policy
to learn and track a diverse set of human motions. A CVAE
student policy is then used to align these physically-plausible
motions with language inputs, forming a unified latent space
that captures the joint distribution of language and actions.
This latent space facilitates generalization, smooth interpola-
tion, and seamless behavior transitions. Simultaneously, by
training the CVAE with behavior cloning, we transfer the
privileged teacher policy to the student policy that operates
solely on proprioceptive inputs, enabling zero-shot sim-to-real
transfer using onboard sensors without additional training. An
overview of this framework is illustrated in Fig. 2.

A. Motion-Tracking Teacher Policy

The teacher policy is designed solely as a motion-tracking
policy to track complex human motions without language
understanding. The training process of the teacher policy
involves two stages, motion retargeting and motion tracking.

1) Motion Retargeting: To ensure the MoCap trajectories
are kinematically feasible for the teacher policy to track, we
perform motion retargeting by applying inverse kinematics
(IK) based on the Levenberg—Marquardt (LM) algorithm [26].
We formulate the retargeting as a nonlinear least squares opti-
mization problem that minimizes the position and orientation
errors between the robot and MoCap keypoints, while incor-
porating smoothness constraints to ensure natural transitions
between frames. The optimization is solved using the LM
algorithm with joint limit constraints, yielding kinematically
feasible motions that closely match the original MoCap data.
The detailed formulation and implementation are provided in
Appendix B.

2) Motion Tracking: The primary objective of the teacher
policy is to accurately track the retargeted MoCap trajectories
without language information. Therefore, we employ a simple
neural network architecture consisting of a multi-layer percep-



tron (MLP) with layer sizes of 512, 256, and 128 units.
The teacher policy can be formulated as:

a"tl" _ ﬂ_teacher(st, S;’ef), (1)

where s; € R'7 represents robot states, including both pro-
prioceptive states and privileged information (friction, mass,
external perturbations, and motor properties) available only
in simulation [18], and 5%/ € R!! s the reference motion,
specifically, the future five-frame keypoint positions in body
frame and reference joint positions from the retargeted motion.
The inclusion of privileged information (in s;) enhances the
policy’s ability to master complex dynamic skills by providing
additional context about the environment and the robot’s
physical properties. The definition of each specific input state
can be found in Appendix A. The action output a} & R?7
corresponds to the desired joint positions for the low-level PD
controllers. We apply domain randomization for the teacher
policy, with details provided in Appendix D.

Since MoCap datasets contain highly agile motions that
are difficult to track in the early stages of training, including
the entire datasets often leads to high gradient variance and
slow convergence. To improve training efficiency, we design a
motion curriculum that gradually increases motion complexity,
allowing the policy to adapt progressively to more challenging
motions.

We categorize the motions into two levels of difficulty:

a) Easy motions: static or quasi-static movements, typically
characterized by low-speed motions.

b) Hard motions: agile motions that require more dynamic
whole-body coordination, including actions such as sudden
turns or rapid running.

Training begins with easy motions, and gradually we add
hard motions as tracking performance improves. With this
curriculum, the teacher policy learns a wide range of physical
skills required for executing diverse motions.

The teacher policy is trained using Proximal Policy Opti-
mization (PPO) [33] to minimize the discrepancy between the
robot’s movements and the reference motions. To encourage
symmetry in the learned policy, we also incorporate symmetry-
based data augmentation and an additional symmetry loss.
Specifically, for each state-action pair (s¢, a) ), we generate its
mirrored counterpart (57", a; ™) through left-right reflection.
The augmented training objective is formulated as

‘Cteacher = EPPO + )\symﬁsym; (2

where Agm is a weighting coefficient, and L encourages
consistent policy outputs for mirrored states, i.e.,

Esym _ EstND [Hﬂ_teacher(st)

o M(ﬂ_teacher(sln))”ﬂ . (3)

Here, M(-) denotes the mirroring operation for actions. This
symmetry constraint helps the policy learn more balanced and
natural movements while reducing the sample complexity of
training. The tracking reward formulation is summarized in
Table 1. The teacher policy runs at 50 Hz.

TABLE I
REWARD FUNCTION COMPONENTS FOR TEACHER POLICY

Term Expression Weight
Z linear vel penalty ||vioet|)? —0.2
XY angular vel penalty g |2 —0.05
Joint torque penalty b 7-3 —2x106
Joint acc penalty > 62 —1x1077
Joint action rate penalty > (Aal)? —0.05
Energy cost S| - 0412 —1x107°
Termination penalty Tterminated —200
Joint limit penalty To, 16 in+Ormas] -1
Orientation penalty g |12 —10.0
Feet slide penalty I( Freer > 100N) - > ||vf§;1||2 —0.1
Hip joint deviation > 16hip — Odefaunt| —0.03
Leg joint deviation > 1b1eg — Odetaute] —-0.01
2
Keypoint tracking exp | — M 1.0
2
Joint tracking exp (7W> 1.0
Single stance reward I AREES0.05 tstance 1.5
tstance €[0.1,0.5]
Notations: Iy denotes indicator function, ||-|| is Euclidean norm,

T: joint torque, : joint angle, v: velocity, w: angular velocity,
Feer: ground reaction force, fstance: single-foot stance duration.

B. Language-Directed Student Policy

To enable the robot to interpret and act on natural language
commands, we design a CVAE-based student policy that
encodes textual instructions and physical actions into a unified
latent space, using only language inputs and proprioceptive
readings.

The input of the student policy consists of two parts:

1) Text Caption Embedding: We utilize the CLIP text
encoder [30] to convert the input natural language com-

mand ¢ into a fixed-length embedding vector

’U;em _ fCLIP(CItext) c R512' (4)

This embedding captures the semantic meaning of the
text command.

2) History of Proprioceptive Observations: Instead of
providing the full privileged state used in the teacher
policy, we provide only proprioceptive observations
0: € R% to the student policy, which encapsulate joint
positions, joint velocities, base linear velocities, base
angular velocities, and projected gravity. We input a
sequence of historical observations and actions, sampled
at 10 Hz over a 2-second window, yielding a 20-step
trajectory of input-output pairs.

The encoder processes the concatenated textual and obser-
vational inputs to produce the parameters of a latent Gaussian
distribution, outputting a mean vector p € R'?8 and a diagonal
covariance matrix represented by o € R123. This architecture
models the conditional distribution of robot motions given text
commands through the latent space, where the text embedding
serves as a conditioning signal that shapes the latent distribu-
tion. During training, we sample the latent vector z using the



standard reparameterization trick:

Ht, Ot = wiff?e“‘(oh e Otfzo,viem)a &)
z=p+orOe, € ~N(0I), (6)
ai = 321, 01), (M

where @ denotes element-wise multiplication, St ig the
student encoder, and wg‘eucd‘em denotes the decoder. This repa-
rameterization allows gradients to flow through the sampling
process. The decoder then takes the sampled latent vector z;
along with the latest state observation to output the action.
We use an MLP with layer sizes of 2048, 1024, and 512
units for the encoder, and an MLP with layer sizes of 512,
1024, and 2048 units for the decoder. During inference, we
simply use the mean p; of the encoded distribution as the latent
vector, eliminating the sampling step to ensure deterministic
behavior. The student policy is applied with the same domain
randomization as the teacher.

We employ the Dataset Aggregation (DAgger) algo-
rithm [32] to train the student policy from the teacher pol-
icy with language labels. The training objective follows the
variational lower bound

Logent = [laF — @13 + M. Dxw (o (z1101-20:0, 0 (1)),

(8)
where Dyq, is the KL-Divergence operator, and \g; balances
reconstruction quality in behavior cloning with the structural
regularization of the latent space.

The training process consists of five steps:

1) Data Collection: We simulate 1,024 parallel environ-
ments. At each time step, the student is given the
language command and its history observation.

2) Teacher Action Query: For each state encountered by
the student, the corresponding optimal action is obtained
by querying the teacher policy.

3) Experience Buffer Construction: We insert the col-
lected student’s observations and the teacher’s actions
to a buffer of 1024 x 512 ( 500, 000) state-action pairs.

4) Loss Computation: In the early stage of training, the
student policy results in large accumulated errors that
push the teacher policy out of its training distribution.
To mitigate this, instead of tracking absolute positions,
the student policy tracks displacement relative to past
positions. Let p; be the robot’s root position at time
t, with Ap; = p; — ps_ s Tepresenting its displacement
over interval At, and Aprert = Prer,t — Pref,t—A+ denoting
the reference displacement. The robot’s tracking objec-
tive then becomes minimizing the error between its own
displacement and the reference displacement

min HApt - Apref,if”z- (9)

This mitigates deviations from the reference motion and
preserves the quality of teacher demonstrations.

5) Policy Update: We update the student with the loss in
(8). We use a batch size of 1024 x 64 and a learning
rate of 1 x 1077, with one epoch per iteration. We then
use the student’s actions to step the environment.

Fig. 3.
demonstrates robust stability while executing a hand-waving motion under
external perturbations. When subjected to kicks (top row) and pushes (bottom
row), the robot maintains balance and continues the commanded motion,
showcasing effective disturbance rejection capabilities without interrupting
the primary task.

Robustness to External Disturbances. The humanoid robot

We repeat the iterative process, where the student pro-
gressively learns to replicate the teacher’s behavior while
understanding both language inputs and its own observation
history. The student policy also runs at 50 Hz.

1V. EXPERIMENTS

We conduct extensive experiments to evaluate our frame-
work for language-directed humanoid whole-body control with
a Unitree G1 humanoid robot. We begin with an overview
and demonstrate diverse motions enabled by our approach. We
then analyze the learned latent space and its contribution to
the policy’s generalization to unseen commands, highlight key
features such as smooth transitions and latent interpolation,
and follow up with an ablation study on core design choices.
Finally, we showcase a complex LLM-guided compositional
task, illustrating the full capabilities of LangWBC. We use
Isaac Lab [27] for training.

A. Diverse Humanoid Motions

In order to learn a diverse set of motions, we utilize
the HumanML3D dataset [9] in training the teacher policy,
which provides human MoCap data annotated with textual
descriptions. For deployment, we use an AMD Ryzen 9
CPU for inference. As shown in Fig. 3 and 4, the robot
successfully executes a diverse range of upper- and lower-
body motions in response to natural language commands,
including walking in different directions, turning, performing
hand gestures, and executing more complex whole-body move-
ments, while remaining robust to external perturbations such
as heavy kicks and pushes. For a diverse set of whole-body
motions, we provide more results in Appendix C. Through
these demonstrations, our framework exhibits zero-shot sim-
to-real transfer capabilities, effectively addressing both core
challenges through a unified network — generating diverse,
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Fig. 4. Real World Demonstration. Conditioned on text commands, our framework is able to learn a diverse distribution of whole-body motions in action
generation directly, and can be zero-shot deployed on real-world robots. More results are shown in the accompanying video.

language-aligned motions while maintaining robust control
under real-world conditions and disturbances.

B. Latent Space Analysis

One key advantage of using a CVAE as the student pol-
icy — rather than a simple MLP network as in previous
works [10, 15] — is that it provides a structured latent space.
This structured latent space aligns language inputs and motion
actions to the same latent codes, enabling the model to
learn disentangled representations where each latent variable
captures both semantic meaning and motion dynamics. As a
result, variations in latent space correspond not only to distinct
motion styles and transitions but also to meaningful differences
in language instructions. This allows for better generalization
to unseen commands, smoother motion interpolation, and more
coherent transitions between behaviors.

To verify this property, we apply the t-SNE algorithm to
embed the high-dimensional latent codes of various motions
into a 2D plane. As shown in Fig. 5, we plot nine different
motions from four categories (walking, raising the left or right
hand, and clapping), with each category color-coded.

From the visualization, we see that the latent space has
several interpretable features. First, motions in each category
form distinct clusters, reflecting clear separation by motion
type. Second, there is a striking symmetry: raising the left
hand versus the right hand appears mirrored about the center
of the latent space, near which more symmetric motions (e.g.,
walking or clapping with both hands) are located. Third, all
motions exist in a common region near the origin, which we
interpret as the “standing” latent code — every motion begins
and ends in a standing pose. Overall, this analysis confirms
that the CVAE learns a meaningful latent manifold, which we
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Fig. 5. t-SNE Analysis of Latent Space. The plot shows 9 motions from
4 categories of motion, as shown in the legend. We see that similar motions
(in the same color band) are closer than dissimilar ones. The axes suggest an
interpretable structure: lateral symmetry (left/right motions mirrored across
the y-axis) and vertical hierarchy (upper-body motions cluster at higher y-
values, lower-body motions at lower y-values). We observe that all motions
share a common region near the origin (0,0), likely representing a typical
standing posture.

can leverage to perform smooth transitions between motions
and generate novel, unseen motions.

C. Generalization to Unseen Texts

Understanding language variations is key to human commu-
nication, and essential for flexible communication with robots
as well. Since our CVAE’s latent space is inherently structured,
where semantically similar commands cluster together while
remaining distinct from dissimilar ones, we hypothesize it pro-
vides robustness to unseen yet contextually similar commands.

To verify this hypothesis, we qualitatively evaluate the
policy’s response to three semantically similar text commands,
as illustrated in Fig. 6. We find the policy performs forward
motion in a consistent speed and style despite phrasing dif-
ferences like “move” vs. “walk,” demonstrating robustness to
linguistic variation.

However, this generalization capability may also stem from
the CLIP text encoder itself. To isolate the contribution of the
CVAE architecture, we compare our approach (CLIP+CVAE)
to a baseline that pairs an MLP with a CLIP encoder alone
(CLIP+MLP). We evaluate the generated motion quality of
both models on a test set of 15 unseen commands spanning
three categories:

1) Similar (e.g., Walk slowly),
2) Moderately different (e.g., Walk into store),
3) Semantically distant (e.g., Jump).

Shown in Table II, both variants perform similarly on
commands close to the training data. However, as commands
become more unfamiliar, CLIP+CVAE consistently produces
higher-quality motions. We posit that it is because, while the

Fig. 6.

Rollouts of Unseen Text Commands. Our method can generalize
to unseen text commands with similar semantical meanings. Of the three,
only one command “A person walks forward” (a) is included in the training
dataset.

TABLE II
MOTION QUALITY METRIC ON UNSEEN COMMANDS.

Model Similar Moderate Different
CLIP+CVAE 80.92% 69.58% 54.62%
CLIP+MLP 80.62% 64.20% 50.28%

The Motion Quality Metric is a weighted sum of keypoint and joint errors,
normalized by an exponential function to (0, 1] (see Table I).

CLIP encoder handles minor linguistic variations well, it pro-
duces significantly different encodings for out-of-distribution
commands, which the MLP policy struggles to generalize
from. In contrast, the CVAE’s structured joint latent space
reduces the effective distance between novel and seen com-
mands, mitigating overfitting to the training set and enabling
more plausible motions for out-of-distribution commands.
Summarizing the results, we conclude that our CVAE-based
approach generalizes more effectively to language variation,
compared to non-structured MLP baselines. This makes it
well-suited for integration with large language models (LLMs)
in more complex reasoning tasks, as shown in Section IV-G.

D. Smooth Transitions Between Agile Motions

Furthermore, a major benefit of the structured latent space
is the ability to transition smoothly between motions. We
demonstrate this capability through examples of agile motion
transitions, a challenging task in humanoid control. As shown
in Fig. 1, the robot seamlessly transitions from walking to
running, then gradually slows to a stop before waving its
hand. In another rollout shown in Fig. 7, the robot performs
an upper-body movement (waving its hand), then begins
running, stops, and waves again. Given the high-dimensional



“He is running
straight and stopped”

“A man waves his
right hand”

“A man waves his
right hand”

Fig. 7. Smooth Transitions between Different Text Commands. The
humanoid robot seamlessly executes a sequence of actions: waving its right
hand, transitioning into running, coming to a stop, and concluding with
another hand wave. The policy demonstrates the ability to handle diverse
motion transitions within a single execution, without requiring resets between
different actions.

dynamics of humanoid motion, achieving smooth and coherent
transitions — such as running, stopping, and switching to limb
movements — within a single policy, without requiring resets, is
a significant challenge that has not been demonstrated in prior
works. These results underscore the diversity and robustness
of our method, as well as its ability to generalize to transition
motions that were underrepresented in the training dataset.

Additionally, we observe that the policy can autonomously
transition from the end of a motion back to its beginning,
enabling seamless looping. As shown in Fig. 4a, where the
reference consists of a single turn, the policy can perform two
consecutive turns without interruption. Although the starting
and ending poses can be quite different, the policy success-
fully infers the correct timing for transitioning to ensure a
continuous motion.

E. Interpolation in Latent Space

Since the CVAE creates a smooth and continuous latent
space, we find that it also enables the generation of novel
motions via a meaningful interpolation between latent codes.
This is achieved by encoding the current observation and
CLIP-encoded text into latent codes via the CVAE encoder,
and then interpolating them in the CVAE latent space and
decoding to generate the corresponding action.

To illustrate, we show an example of interpolation between
the two distinct commands: “a man walks forward briskly”
and “a person shuffles from left to right, then shuffles back
to the left”. As shown in Fig. 8, the policy generates a
novel yet intuitive motion - blending forward walking with
lateral shuffling - despite the absence of such behavior in the
training data. This interpolated movement emerges naturally as
a result of latent space blending, demonstrating the capacity
to synthesize new behaviors from learned patterns. Moreover,
the robot’s movement stays agile and stable, demonstrating the
framework’s robustness to unseen latent codes.

TABLE III
ABLATION STUDY ON THE PROPOSED ARCHITECTURE, SYMMETRY LOSS,
AND STUDENT TRACKING OBJECTIVES

Metric CVAE No-Symm No-Rel MLP
Motion Quality 1 96.2% 91.6% 93.8% 91.9%
Stability 1 99.10% 98.50% 96.60% 96.81%
Imitation Loss | 0.085 0.107 0.098 0.091

All metrics are reported after 10k iterations. The Motion Quality metric is
defined in Table II, the Stability metric indicates success rate over 1000
steps under perturbations, while the Imitation Loss is the student’s final loss
in training.

Similar to the ablation in Section IV-C, since both the CLIP
encoder and CVAE architecture have interpolatable latent
spaces, this raises a natural question: Is CLIP alone sufficient
for interpolating diverse motion commands, or does the CVAE
provide essential capabilities? To answer this question, we
again isolate the effectiveness of the CVAE latent space
by comparing its interpolation performance against a CLIP-
only MLP baseline, assessing which latent mixing generates
meaningful novel behaviors.

« Interpolating directly in the CLIP text-embedding space

(CLIP Interpolation).

« Interpolating in the CVAE latent space learned by the

student (CVAE Interpolation, Ours).

As shown in Fig. 9, we see that, with the help of the
CVAE architecture, the interpolated motion results in a smooth
diagonal walk, whereas the baseline with the CLIP encoder
alone produces noticeable jitter and difficulty in walking (as
seen by the orange CoM trajectory). This result highlights that
the CVAE induces a smoother and more structured latent space
than the CLIP encoder alone, enabling better generalization to
unseen motions through meaningful motion interpolation.

These results highlight the strength of our CVAE-based
architecture in capturing motion space structure, enabling
novel motions from dataset diversity. This allows our proposed
method to generate flexible, diverse motions and generalize
beyond explicit training examples.

F. Ablation Study

In the ablation study, we comprehensively evaluate the
effectiveness of the three core design choices in our proposed
framework: (i) the symmetry loss applied during teacher train-
ing, (ii) the relative-tracking objective used for the student, and
(iii) the CVAE architecture of the student policy. Below, we
summarize our full framework alongside the ablation baselines
used to assess the contribution of each component. We conduct
the ablations in simulation.

1) LangWBC (CVAE, Ours): Our proposed method, in
which the teacher is trained with a symmetry loss, and
the student leverages a CVAE architecture trained using
the relative-tracking objective.

2) No Teacher Symmetry (No-Symm): A variant of Lang-
WBC in which the symmetry loss is removed from the
teacher’s training, while all other components remain
unchanged.
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Fig. 9. Latent Space Interpolation: CLIP+CVAE vs. CLIP Alone
Comparison of motion quality when interpolating between forward and side-
ways walking. The CLIP+CVAE model (left) produces smooth and coherent
diagonal walking, while the CLIP-only baseline (right) results in jittery
motions.

3) No Relative Tracking (No-Rel): A variant where the
student is trained without the relative-tracking objective,
while all other components remain unchanged.

4) MLP Student (MLP): A variant that replaces the
student’s CVAE architecture with an MLP, while all
other components remain unchanged.

The quantitative results, summarized in Table III, indicate
that our full framework outperforms all ablation baselines,
confirming the contribution of each proposed component to
efficient learning and high-quality motion generation. Notably,
the CVAE architecture not only enhances generalization, as
discussed earlier, but also improves motion tracking accuracy
and robustness compared to the MLP baseline.

— @ 4————. “There is a friend 3 meters in front of you,
LLM what should you do?”

“A person walks forward
briskly then stops”

“A man waves his left hand”

Fig. 10. LLM-guided Humanoid Motion Sequence. Given the social
scenario “There is a friend 3 meters in front”, the LLM decomposes this high-
level instruction into primitive motion commands, which the robot executes
by walking forward, stopping, and greeting with a hand wave.

G. Integrating LLMs for Complex Tasks

To handle abstract instructions and social scenarios, we
integrate our framework with a large language model (LLM)
as a high-level planner, as shown in Fig. 2(b). The LLM
translates unstructured natural language inputs into structured
command sequences executable by our end-to-end policy.



However, LLMs tend to provide commands that are seman-
tically similar to, but not identical to the training data. Thus,
the generalization to similar text commands provided by the
CVAE becomes critical in this task.

We prompt the LLM to decompose abstract tasks into
motion primitives similar to the training dataset, using the
structure “(Text Command): (Duration in Seconds).” Given the
social scenario “There is a friend 3 meters in front of you, what
should you do?”, the LLM generates an intuitive sequence of
timed commands:

e “A person walks forward briskly then stops: 4.0”
o “A man waves his right hand: 5.0”

During deployment, we run the CLIP encoder at a lower
frequency and reuse its embedding across multiple control
steps. As shown in Fig. 10, the robot successfully performs this
socially appropriate sequence, demonstrating our framework’s
ability to execute high-level, context-aware instructions.

V. LIMITATIONS

We have demonstrated a set of humanoid whole-body mo-
tions directed by natural language commands. However, the
number of language-conditioned motions remains limited to
only several dozens of motions due to compute constraints. Ex-
panding the range of language-directed humanoid motions on
a larger scale could further validate and enhance our approach.
Additionally, the current examples predominantly focus on
locomotion-oriented whole-body control due to the absence
of a vision module. In future work, we aim to incorporate
more whole-body motions that can be leveraged in agile loco-
manipulation tasks critical for the deployment of humanoid
robots. Due to the limited expressiveness of the variational
autoencoder model, we experience some sim-to-real gap which
could have been improved via incorporating a more expressive
generative model, such as diffusion models, which could
capture more subtle diversity in domain randomizations.

V1. CONCLUSION

In this work, we presented an end-to-end language-
directed humanoid whole-body control framework. It com-
bines learning-based whole-body control with generative ac-
tion modeling, allowing a single neural network to interpret
language commands and execute corresponding physical ac-
tions robustly on humanoid hardware in a zero-shot manner.
Our framework demonstrates the following characteristics:

Diversity, Generalization, Smooth Transition: Our frame-
work enables diverse humanoid whole-body motions and
composes novel behaviors through latent space interpolation.
Leveraging the structured latent space which models the
distribution of actions conditioned on language semantics and
proprioceptive observations, the policy generates a wide range
of motion sequences, including agile behaviors like running,
conditioned on language inputs. Furthermore, our method
generalizes to contextually similar commands and generates
novel motion compositions beyond the training distribution.

Moreover, it enables smooth transitions between agile mo-
tions, such as from walking to running, with simple language
commands, a capability not demonstrated in prior work.

End-to-End Learning: Unlike prior works, our language-
directed humanoid whole-body control framework is trained
end-to-end, mapping language commands directly to actions
without intermediate representations or complex planning
modules. By aligning text embeddings with the motion la-
tent space, our approach effectively bridges the gap between
language understanding and physical robot skills.

We believe that learning a language-conditioned generative
action model for complex humanoid behaviors marks a signifi-
cant step toward developing a foundation model for humanoid
control, paving the way for more intuitive, adaptable, and
generalizable deployment of humanoid robots in real-world
environments.
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APPENDIX
A. Teacher Policy Input State

The input of the teacher policy is defined as follows.

« Base Linear Velocity (3 dimensions): The robot’s current
linear velocity in the base frame.

« Base Angular Velocity (3 dimensions): The robot’s
current angular velocity in the base frame.

¢ Projected Gravity (3 dimensions): The gravity vector
projected onto the robot’s coordinate frame.

« Actual Keypoint Positions (7 links x 3 dimensions =
21): The positions of key body links (e.g., limbs and
torso) in the robot’s body frame that need to be tracked.

« Joint Positions (27 dimensions): The current positions
of the robot’s joints.

« Joint Velocities (27 dimensions): The current velocities
of the robot’s joints.

e Last Action (27 dimensions): The last action executed
by the robot.

e Privileged Information (64 dimensions): Simulation-
exclusive information encompasses: 1) physical proper-
ties including static friction, dynamic friction, and resti-
tution coefficients (3 dims); 2) joint armature (27 dims);
3) body link mass (28 dims); 4) external force (3 dims);
and 5) external torque (3 dims).

« Target Keypoint Positions (6 frames x 7 links x 3
dimensions = 126): Future desired positions of keypoints
over six time steps, providing a trajectory for the robot
to follow.

« Degree-of-Freedom (DoF) Commands (15 dimensions):
Commands specifying desired joint configurations.

B. Motion Retargeting Details

We formulate the retargeting problem as a nonlinear least
square optimization over the entire motion sequence. Let T
be the number of frames, and ¢; € R™ be the vector of robot
joint angles at frame ¢. Our objective is to find the set of joint
angles that minimize the following cost function:

T
I{nlI}l Z(erobot,t(qt) - xmocap,tHz
qt —1
., (10)
+ Wori HATt(qt)Hz) + wsmoothz Hqt - qtlez 5
t=2
subject to:
Gmin < ¢ < Gmax, VtzlaaT (11)

To solve this optimization problem, we employ the Lev-
enberg—Marquardt algorithm, which is suitable for solving
nonlinear least squares problems in IK. At each iteration, we
linearize the residuals around the current estimate qgk) and

compute the update Ag; = qgkﬂ) — qgk) by solving:

(Jd Tk + M+ Wsmoo ST S) Aq = —J} fr.. (12)

Where:

e Trbot,: denotes the positions of the robot’s keypoints at
frame t as a function of the joint angles g;.

e Tmoecap,: Tepresents the target keypoint positions from the
mocap data.

e Ari(q:) represents the orientation error between the
robot’s end-effectors and the mocap data at frame ¢,
calculated using the Lie-algebra error.

e Wy 18 the weighting factor for the orientation error term.

e Wsmooth 18 the weighting factor for the smoothness term.

e (min and gmax define the joint limit boundaries.

e Aq = [Aq),Aq),...,Aqf]" is the stacked update
vector for all frames.

e Jj is the Jacobian matrix of residuals at iteration k&, com-
bining position and orientation terms across all frames.

e fi is the stacked residual vector at iteration k, defined
as:

[ xrobot,l(qyg)) - xmocap,l 1

RV woriATl (Q§k))

Zropou7( (k).) _
robot, T\ 4 Lmocap, T
‘/wOﬁATT(qéﬁ))
k k
vV wsmooth(‘]ék) - (Ak)
VBmoon(a5” — ¢8)

Je = (13)

.k k
L v/ wsmooth(‘](T) - q<T21) i

e X is the damping parameter that balances the Gauss-
Newton and gradient descent methods, ensuring conver-
gence and stability in the LM algorithm.

o I is the identity matrix.

e S is the sparse matrix representing the smoothness con-
straints, defined as:

-1 I
-1 I

S = (14)

-1 1
The term Wemooh S ' S in Eq. (12) adds regularization that
enforces smooth transitions between consecutive frames, pro-
moting natural motion. By solving this equation, we obtain
the updates Aq; for all frames, which are used to update the
joint angles:

¢t = ¢ 4 Ag,. (15)

After each update, we enforce the joint limits by projecting
qgkﬂ) onto the feasible set defined in Eq. (11).

Iteratively applying the LM algorithm under these con-
straints yields kinematically feasible motions that closely
match the original mocap data, thus providing suitable ref-
erence trajectories for the teacher policy.

C. Diverse Whole-body Motions on Real Robot

We demonstrate our framework’s capability to generate and
execute diverse whole-body motions on real hardware. As
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Fig. 11. Upper-body Motion Examples. Our framework generates diverse upper-body movements including reaching, lifting, and manipulation tasks. The
learned motions can be directly deployed on the real robot.
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Fig. 12. Lower-body Motion Examples. The framework also enables various lower-body movements such as stepping, squatting and balancing. These
motions are also successfully transferred to the real robot without additional training.



TABLE IV

DOMAIN RANDOMIZATION PARAMETERS

Mode Component Range
Reset Initial velocity (linear) [~0.5,0.5] m/s
ese Initial velocity (angular) [—0.5,0.5] rad/s
Reset Joint positions [0.5,1.5]x default
Joint velocities [0.0,0.0] rad/s
Ankle friction (static) [0.2,0.6]
Startup  Ankle friction (dynamic) [0.2,0.6]
Ankle restitution [0.0,0.4]
Link masses [0.9,1.1]x default
Startup Base mass modification [—1.0,1.0] kg (additive)
Joint armature [0.8,1.2]x default
Startup Joint default positions [—0.05,0.05] rad (additive)
Reset Base torque [-5.0,5.0] Nm
Interval  Push robot (every 10-15s) [-1.0,1.0] m/s (x,y)

shown in Fig. 11 and Fig. 12, our method can learn a rich
distribution of both upper-body and lower-body movements,
and successfully transfer them to the physical robot with zero-
shot. The accompanying video provides more comprehensive
demonstrations of these motions.

D. Domain Randomization Configuration

Table IV describes the domain randomization parameters
applied to the robot . “Reset” parameters are applied at
environment reset, “Startup” parameters are applied once
during initialization, and “Interval” parameters are applied
periodically during simulation.



