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Abstract—Preventing collisions in multi-robot navigation is
crucial for deployment. This requirement hinders the use of
learning-based approaches, such as multi-agent reinforcement
learning (MARL), on their own due to their lack of safety
guarantees. Traditional control methods, such as reachability and
control barrier functions, can provide rigorous safety guarantees
when interactions are limited only to a small number of robots.
However, conflicts between the constraints faced by different
agents pose a challenge to safe multi-agent coordination.

To overcome this challenge, we propose a method that inte-
grates multiple layers of safety by combining MARL with safety
filters. First, MARL is used to learn strategies that minimize
multiple agent interactions, where multiple indicates more than
two. Particularly, we focus on interactions likely to result in
conflicting constraints within the engagement distance. Next, for
agents that enter the engagement distance, we prioritize pairs
requiring the most urgent corrective actions. Finally, a dedicated
safety filter provides tactical corrective actions to resolve these
conflicts. Crucially, the design decisions for all layers of this
framework are grounded in reachability analysis and a control
barrier-value function-based filtering mechanism.

We validate our Layered Safe MARL framework in 1) hard-
ware experiments using Crazyflie drones and 2) high-density
advanced aerial mobility (AAM) operation scenarios, where
agents navigate to designated waypoints while avoiding collisions.
The results show that our method significantly reduces conflict
while maintaining safety without sacrificing much efficiency (i.e.,
shorter travel time and distance) compared to baselines that do
not incorporate layered safety. [Project Webpage]'

I. INTRODUCTION
A. Motivation

Collision-free operation is a fundamental requirement for
multi-robot coordination tasks, such as formation control [1],
multi-robot payload transport [2], and autonomous navigation
[3]. When only two agents interact, there is a single collision-
avoidance constraint, which can be easily managed using
a safety filter. However, with multiple nearby agents, the
resolution of a constraint between two agents can conflict with
a constraint involving a third agent. These conflicts may result
in suboptimal task performance, such as creating a severe
gridlock that prevents agents from taking actions to achieve
their tasks. More crucially, the inability to simultaneously
satisfy all constraints can result in an agent taking an action
that makes collision inevitable. In particular, this issue poses
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a significant safety risk in high-density scenarios like air taxi
operations for Advanced Air Mobility (AAM) [4].

Prior works have addressed safe multi-robot coordination
problems by using model-based control methods like control
barrier functions (CBFs) [5] and reachability analysis [6].
Although CBFs and reachability provide a framework for
safety assurance, they generally offer rigorous guarantees only
when a single safety constraint is considered. The fundamental
challenge in extending these methods to the multi-agent case is
that the intersection of the safe sets corresponding to individual
constraints (each derived from a pair of agents) does not
necessarily represent the true safe set when all constraints
are considered together (see Figure 2 for an example). In the
Hamilton-Jacobi (HJ) reachability literature, the gap between
these two regions is referred to as the “leaky corner” [7].
Agents that enter a leaky corner can no longer satisfy all
safety constraints simultaneously and are inevitably forced to
violate at least one. Unfortunately, identifying leaky corners
without recomputing the reachability analysis from scratch
while incorporating all constraints remains an open problem
[8, 9]. Performing reachability analysis or designing CBFs for
all possible combinatorial interaction scenarios is computa-
tionally intractable. In summary, the fundamental challenge in
achieving scalability with such control-theoretic methods in
multi-agent settings lies in handling conflicting constraints.

In this work, we combine the control barrier-value function
(CBVF) [10], which is a CBF design method based on
Hamilton-Jacobi reachability, with multi-agent reinforcement
learning (MARL) into a layered safety architecture. This
integration is driven by the essential role MARL can play in
learning to strategically optimize task performance in multi-
agent scenarios while proactively navigating potential conflict-
ing constraints, which helps achieve safer and more effective
behaviors. As a result, our approach enhances both safety and
performance to a level that neither safe control methods nor
MARL alone could achieve.

B. Contributions

1) Architecture: We propose a layered architecture that
combines safety-informed MARL-based policy and
CBVF-based safety filtering mechanism (Figure 1),
which can significantly mitigate the issues arising from



conflicting constraints, such as inefficiency due to grid-
lock and the leaky corner problem.

2) Training method: We propose a method to incorporate
a CBVF-based safety filter into the training of MARL,
considering two key aspects. First, a main challenge in
this safety-constrained training is that the conservative-
ness introduced by safety filtering can hinder the explo-
ration necessary for MARL to learn an effective policy.
To address this, we introduce curriculum learning into
the application of the safety filter, carefully balancing
safety and exploration. Second, based on reachability
analysis, we derive a conservative estimate of the safe
region that is free from the issue of conflicting constraint
(represented by the range 7congict in Figure 1). Based on
this estimate, the MARL policy is informed to minimize
entry into this region, thereby avoiding potential conflict-
ing constraints. Crucially, unlike many existing methods
[11, 12], our proposed training approach does not im-
pose safety through penalty terms directly penalizing the
safety violation. Instead, MARL learns to enhance safety
by making strategic decisions that mitigate conflicting
constraints. This indirect approach significantly reduces
unnecessary conservativeness, a common side effect of
safe reinforcement learning-based methods.

3) Experimental validation: We conduct hardware experi-
ments using Crazyflie drones and perform simulations of
high-density AAM scenarios to validate our hypothesis.

The remainder of this paper is organized as follows. Section
II provides background on safety for multi-agent coordination.
Section III describes the system, environment, and problem
statement. Section IV presents the safety analysis of multi-
agent problems under collision avoidance constraints. Sections
V and VI present our proposed Layered Safe MARL approach,
the experiments performed, and the results obtained. We dis-
cuss some limitations of our approach in Section VII. Finally,
we conclude and propose future work in Section VIII.

II. RELATED WORK
A. Core related works—safety for multi-agent problems

Classic Control barrier function (CBF)-based approaches.
CBFs [13] are used to design safe controllers via the principle
of set invariance, and their application to safe multi-agent
coordination has been explored in [5, 14, 15]. A primary
challenge in employing CBFs lies in constructing a valid CBE,
which often requires system-specific, handcrafted designs [5].
In [15, 14], a more generic design principle based on expo-
nential CBFs [16] is employed; however, this approach does
not address control input bounds. Another common limitation
of existing methods is the treatment of multiple, potentially
conflicting CBF constraints, which can lead to infeasibility. To
address this, we adopt the CBVF-based framework to construct
valid CBFs and handle multiple safety constraints in multi-
agent coordination via a layered safety architecture.

Neural CBF-based approaches. While learning-based meth-
ods [17, 12, 18, 19] are proposed to design approximate CBFs,
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Fig. 1: The figure shows our approach using an example
scenario of four agents. Agent ¢ must reach the waypoints
shown on the right. Our Layered Safe MARL framework
consists of three key components, and we describe it as applied
through agent i: 1) The MARL policy generates an action
based on the observation within the range 75 while aiming
to reduce the likelihood of entering other agents’ potential
conflict range 7consiic- 2) The prioritization module identifies
the most critical neighboring agent in a potential collision
scenario by evaluating the CBVE. In this example, agent j;
is within the potential conflict region and forms a potential
collision pair. 3) The CBVF safety filter adjusts the action to
ensure safe navigation.

they lack deterministic safety guarantees due to the noncon-
vexity of the learning problems. Graphical CBF (GCBF) in
[12, 18] offers a CBF based on local observations under
multi-agent interaction, but how it learns to handle multi-
ple constraints is not explicitly examined. Discrete Graphi-
cal Proximal Policy Optimization (DG-PPO) [19] proposes
a model-free approach to learning decentralized CBFs and
a safe control policy optimizing the task objective. Unlike
DG-PPO, our approach leverages model-based information to
compute Control Barrier Value Functions (CBVFs) [10] for
pairwise collision avoidance, thereby ensuring deterministic
safety guarantees. Finally, the aforementioned methods focus
on learning safety certificates and policies for uncertain dy-
namical systems, often with high-dimensional system states.
In contrast, our work specifically addresses the challenge of
conflicting constraints in multi-agent interactions—a critical
issue that persists even when each agent’s dynamics can be
effectively represented by simple, low-dimensional models.



Reachability for multi-agent interaction. Classical HJ reach-
ability analysis computes the set of states that are guaranteed
to be safe by computing the optimal control value function
with dynamic programming. Prior works have investigated
the reachability analysis for the special case of three-agent
interaction [20] and using the value function to guide the
planner, and its optimal control law is used in the tracking
controller for safe multi-agent interaction [6]. Due to the curse
of dimensionality in dynamic programming [21], the applica-
bility of HJ reachability to high-dimensional systems is inher-
ently limited. Recent work leveraged deep learning techniques
to learn high-dimensional reachability [22, 23, 24, 25, 26],
demonstrating their use in multi-agent collision avoidance
scenarios. However, the learned solution does not generalize
to new scenarios involving different agents. Additionally, the
question of how to certify the safety of the learned safe set
is still an open research topic [27, 28, 26]. Finally, alternative
methods for solving reachable sets with over-approximation
have been used in the context of multi-agent problems and air
traffic management [29, 30].

Safe multi-agent reinforcement learning (MARL). A com-
mon approach to safe MARL is through constrained Markov
decision processes (CMDPs) [31]. In theory, CMDPs have no
duality gap under certain assumptions [32], but in practice,
training with PPO-Lagrangian [33], and its multi-agent variant
[34] often suffers from instability due to suboptimal policies
and inaccurate Lagrange multipliers. Another approach is
shielded MARL, which uses safety filters [35, 11] to enforce
safety during training and deployment. Originally introduced
for single-agent RL [36], this method has been extended
to multi-agent settings [37]. However, designing a shielding
policy remains challenging due to the curse of dimensionality.

B. Other related works

Multi-agent reinforcement learning. Multi-agent extensions
of single-agent RL algorithms, such as PPO [38] and DDPG
[39], include MA-PPO [40] and MA-DDPG [41], both of
which assume full observability. However, in many real-world
applications, such as autonomous driving, agents have to make
decisions based on their local information and coordinate
effectively with other agents. A key challenge in MARL is
the decentralized decision-making under partial observation.
InforMARL [42] leverages graphical neural networks for in-
formation sharing to develop an efficient, coordinated learning
framework for acquiring a high-performance MARL policy.
Our approach builds on InforMARL to allow agents to make
decentralized decisions based on their local observations.

Control and game-theoretic methods. In collaborative multi-
agent settings, Model Predictive Control (MPC) has been used
to ensure safe control [43, 44, 45, 46, 15] and its integration
with MARL is explored in [47]. However, the complexity of
the constrained optimization involved in MPC often limits its
real-time execution in complex systems. When agents pursue
distinct objectives, the problem becomes a non-cooperative
game, with various solution approaches proposed in prior
work [48, 49, 50, 51, 52, 53]. However, treating the safety

constraints in the game-theoretic solutions remains an open
research challenge [54, 55].

Collision avoidance & conflict resolution for air traffic
control. With the growing interest in AAM applications such
as drone deliveries and air taxi services, developing a scalable
low-altitude air traffic management system that is automated
or semi-automated has become an urgent need. Compared to
current aviation, AAM operations are expected to be large-
scale, ad hoc, on-demand, and dynamic. These characteristics
motivate the development of a new air traffic management
(ATM) framework that can achieve scalable, efficient, and
collision-free operations [4, 56].

Existing work on collision avoidance and conflict resolution
for ATM is categorized into strategic deconfliction, which
focuses on preemptive deconfliction, and tactical deconfliction,
which focuses on imminent proactive collision avoidance. A
substantial body of work leverages control theory to design
methods for strategic deconfliction. An early work proposed
a flight mode switching framework derived from a hybrid au-
tomaton and reachability-based analysis [57]. As this method
suffers from the computational complexity of HJ reachability,
[20] uses a mixed integer program to assign avoidance respon-
sibilities and resolve conflicts cooperatively. The work in [58]
alternatively organizes vehicles into platoons on structured air
highways, treating each platoon as a coordinated entity. While
these methods provide strong safety guarantees, they rely on
a predefined set of coordination rules for those guarantees to
hold. Additionally, the approach in [59] uses preemptive strate-
gic speed adjustments to prevent perceived conflicts without
requiring controller intervention. Finally, a negotiation-based
framework is introduced in [60] for collision-free strategic
planning.

In parallel, the aviation community employs tactical colli-
sion avoidance modules as the final layer for safety. The Traffic
Alert and Collision Avoidance System (TCAS) is an onboard
system developed in the 1980s for conventional airliners,
designed to detect and prevent collisions through vertical
separation [61]. A method for tactical collision avoidance
through horizontal resolution is also proposed in [62]. The
successor of TCAS, the Airborne Collision Avoidance System
(ACAS) X, integrates predictive modeling with real-time sen-
sor inputs [63] using a partially observable Markov decision
process framework. These existing methods crucially rely on
the assumption that no more than two vehicles are involved
in a single conflict resolution. This assumption is typically
upheld by the upstream strategic deconfliction decisions.

Various methods in both strategic and tactical deconflic-
tion are integrated further into layered, hierarchical decision-
making architectures, enhancing the safety of ATM [64, 65,
66]. Our work is inspired by these layered approaches in
the aviation community; however, the separations between
layers underlying the existing approaches do not directly
apply to high-volume AAM scenarios. As such, we have to
consider how to achieve safe collision avoidance in instances
of simultaneous multi-vehicle engagement.

Finally, MARL-based methods have also been explored in



air traffic control to ensure tactical deconfliction through pre-
conditioned strategic planning [67], demonstrating improved
safety and efficiency over rule-based methods. However, the
available actions of each agent in this work are limited to the
adjustment of speed or position.

III. PROBLEM FORMULATION

In this section, we define the system, environment, each
agent’s dynamics and their safety requirement, and the prob-
lem statement.

1) Preliminaries: We formulate our multi-agent system as
a Decentralized Partially Observable Markov Decision Pro-
cess (Dec-POMDP) defined by the tuple (N, S, 0, A, P, R,~),
where:

e N is the number of agents

o 5() ¢ RP is the state of each agent with D as the state
dimension, including their position variables,

e 5 € S =RNXD ig the environment state, which is the
concatenation of each agent’s states and the state space
of the environment, respectively,

o 000 = O(s1)) € RY is the observation of agent 4,

e a'¥ ¢ A is the action space for agent i. a'”) denotes the
sequence of actions for timesteps £ =0,1,---,

o P(s'|s,a) is the transition probability from s to s’ given
the joint action a, the concatenation of each agent’s
actions,

o R(0')a'") s the common reward function of all agents,

e 7 €10,1) is the discount factor.

The objective is to find a policy II = (7r<1), e ,7r<N)), where
7@ (a]o¥)) is agent i’s policy that selects an action based
on its observation.

2) Agent’s dynamics & safety constraint: We consider each
agent’s dynamics as a sampled data system, meaning that
their underlying physical dynamics evolve continuously in
time, but their actions are updated at discrete timesteps. Their
continuous dynamics are given as

() = O 0.0V W), SO0 =5 )
and their action is updated at every sampling time At—i.e.
the action sequence a'” maps to the signal in time given as
a(t) = ag) for t € [kAt, (k + 1)At). Their discrete-time
state is given as sg) = s (kAL).

The primary safety constraint we consider in this work is
the collision avoidance between agents. For all time ¢ > 0,
agents must satisfy

dist (s (), s9 (1)) > rapay, for Vi j, 2

where rgry is the safety distance.

In the subsequent safety analysis, we consider the relative
dynamics between a pair of agents, (i,7). We define the
relative state between the agents, which can be given as
sU) = rel(s'9, 5\9)), where rel is a mapping from two
agents’ states to the relative state. We assume that relative
position variables are part of s(*); thus, dist can be defined

based on 5(*7). The dynamics of the relative state are described
by
0D = JOD (0D (1), D (1), 0D (1)), )

which is derived from (1).

3) Observations: For each agent to learn an effective policy
for performance and safety, the observations 0(*) need to con-
tain adequate information. We make the following assumptions
that are generic for many multi-agent robot tasks.

o Each agent i’s observation o) consists of its local
observations of other agents and entities relevant to their
task goals (e.g., goal location) within their observation
range defined as rqy,s and any additional information
needed for its task. Thus, the reward given to agent 7 at
each timestep, R(0'),a("), is defined based on its local
observation and action.

o We define I(i) : N — 2" as the index set of the agents
within the observation range of agent :. We assume that
o) contains information that can be used to reconstruct
59} from o) for all j € I(i). Thus, for agent i, with
its observation, it is feasible to execute a feedback policy
on s} if agent j is within its observation range. This
assumption will be used in the design of our safety
framework.

4) Problem statement: 'To sum up, the decentralized multi-
agent coordination problem, subjected to the collision avoid-
ance constraint we consider in this work, can be described
as

max [E
(i)

> o)
k=0
st sgr1 ~ P(s | sk, ax) 4
ag) ~ 7r<i)(a<i) | og))
dist (s (1), s (1)) > Faatery, for Vi # j,¥t >0,

where each agent’s action ag) is determined by their policy
79, based on their local observations. The agent learns
to maximize its objective subject to its collision avoidance
constraint.

IV. SAFETY ANALYSIS

In this section, we present the safety analysis of the multi-
agent problem under collision avoidance constraints. Specifi-
cally, we first derive the safety analysis for a pair of agents
and then investigate how it applies to the multi-agent scenario.

A. Collision avoidance for a pair of agents

To ensure dist(s%7)(t)) > regey for all ¢ > 0, we consider
the following cost function, which captures the closest relative
distance along the trajectory:

J(s57,a® a9y = min dist(s")(1)). (5)
te(0,00)
If J(sgij),a@), a'%)) > regey, the agents i and j are rendered
safe (collision-free) by their actions.



1) Reachability analysis for computing the maximal safe
set: The agent pair prioritizing safety would want to maximize
(5) to move away from each other. From this intuition, we can
consider the following optimal control problem

V(sgij)) ‘= max J(sgij),a@,a(j)).

ali) g3

(6)

Solving V' is a specific type of reachability problem called the
minimal Backward Reachable Tube (BRT) problem [68]. To
see this, consider £ = {s07) | dist(s7)) < rypey}, the
near-collision region, as the target set. The minimal BRT of
£09) is defined as

BRT (L)) = {s7 | va™ aP 3t > 0st. s (t) € £OY,

)
which encapsulates a region from which no action sequence
can prevent the relative state from entering the near-collision
region L9, Using the definition in (6), we can express
BRT(£)) as {7 | V(s$7) < ragey }-

The complement of BRT (L)) becomes the maximal safe
set from which the agent pair can avoid collisions since
it encompasses all the states from which there exist action
sequences a'”) and a'/) that can avoid collision. This maximal
safe set is denoted as

S = {$9 | 30 oD stV > 0,0 (1) ¢ L0},
€]

and satisfies
S = (BRT(LD)) = {557 | V(s57) > rasey}. (9

We use the open-source library in [69] to compute (6) and
S') which computes the Hamilton-Jacobi (HJ) partial differ-
ential equation (PDE) associated with the BRT problem [70].

Running example. We consider the reduced-order dynamics
of an autonomous air taxi given as

(10)

T =wcosf, y=wvsinb, 8 =w, v=a,

where the robot state consists of s'*) = [x;y; 0; v], representing
the positions, heading, and speed. The allowable actions are
al) = [w,a], corresponding to the angular rate and the
longitudinal acceleration, respectively. The speed is limited
to the range of [Umin, Vmax)- The action space is defined as
A = [~Wmaxs Wmax] X [@min, @max|- The parameters we use
are defined in Table I and are explained in more detail in
Section VI-D.

The relative state s\ = [z(19);409). 9lid); (D), ()] jn-
cludes the relative position and heading of agent j from agent
1’s perspective, where x-axis is in the direction of the agent
i’s heading. The relationship between s\“7) and (s, sU)) and
the relative state dynamics are given in Appendix B.

The computation of V was completed within an hour using
an Nvidia RTX A4500 GPU. ?> The computed maximal safe
set S, defined in the relative state space of ), can
be projected to the position space of the ego agent (agent

>The computation time is not a critical concern in our setting, as the value
function is computed offline rather than during real-time deployment.

1), which incorporates all safe positions of the agent that
can ensure collision avoidance, given its heading, speed, and
the opponent agent (agent j)’s state. Examples of S\ are
visualized in Fig. 2 (a) with respect to two different opponent
states.

2) Control barrier-value function-based safety filtering:
Next, we investigate how the computed value function V' can
be used to constrain the relative state s{*) to stay within the
safe set S(7). Since each agent makes their primary decision
based on their MARL policy in our framework, we consider
how to filter the MARL action if it is potentially unsafe.

To achieve this safety filtering mechanism, we consider the
barrier constraint-based mechanism of the CBFs. For a generic
state variable s and its dynamics $§ = f(s,a), if a function
B(s) satisfies the barrier constraint given by

VB(s)- f(s,a) +vB(s) = 0, (1

for every state inside the zero-superlevel set of B, i.e. Vs €
{s | B(s) > 0}, and for some constant v > 0, we can
guarantee that B(s(t)) > 0, for all ¢ > 0 [13]. Thus, the
state can be maintained to stay within {s | B(s) > 0}.

If the computed reachability value function V' in (6) is
almost-everywhere differentiable, we can construct a CBF by
taking B(s(7)) = V (5} — rggey. This choice of B satisfies
the barrier constraint (11) almost everywhere, and results in
the maximal safe set to be represented as the CBF zero-
superlevel set, S = {s() | B(s1)) > 0}. Such usage
of the reachability value function as the CBF is referred to as
the Control Barrier-Value Function (CBVF) [10].

Remark 1. In [19], V is denoted as a constraint-value function
and is used to learn Graphical CBF (GCBF) for uncertain
dynamics. In this work, we consider its exact computation
for a hard safety guarantee. However, our approach can be
combined with the learning methods proposed in [19] or other
learning-enabled approaches [71, 72] to be extended to agents
subjected to uncertain dynamics.

Remark 2. For certain types of dynamics, the value function
can be discontinuous without introducing a discount factor in
time to the cost function (5) [73].

Finally, the CBVF-based safety filtering can be implemented
in a decentralized manner, with each agent executing its own
safety filter. Here, we assume that the agents are cooperative
for safety, meaning that although their unfiltered actions can
be selfish, their final filtered actions are coordinated to avoid
collision with each other. To achieve this coordination, agent
7 and agent j can individually solve the identical optimization
program defined as

CBVF Safety Filter (cooperative case):
(4)

safe

((L(i)

&, a9y =arg min  [ja® —all |17 + [[a) a0 |2

(ali),a))eA
.t VB(S(U)),JC(U) (S(ij),a(i),a(j))Jr,yB(S(ij)) >0, (12)
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Fig. 2: Running example illustrating the CBVF-based safe sets, safety filtering, and the leaky corner issue. (a) Visualization
of the ego agent (s{") = [0.4km, Okm, 0°, 110 kt])’s maximal safe sets (exterior of the level sets) against two agents, s(% =
[1.7km, 0.3km, —120°,110kt] and 53 = [1.7km, —0.6km, —180°,60kt]. (b) In the two-agent case, each agent executing

their CBVF safety filters (12) successfully prevents collision.

(c) In the three-agent case, although agent 1 started inside the

intersection of S(1?) and S(™), it is not able to prevent safety violation. This is because the initial state of robot 1 is in the

leaky corner.

and then execute their own action. If the dynamics f@j )
are affine in actions, the optimization becomes a quadratic
program [13, 10].

If the opponent agent is non-cooperative for safety, agent 7
can solve for its own safe action considering the worst-case
possible action of the opponent:

CBVF Safety Filter (non-cooperative case):
(@

_ . @y _ @) g2
asafe arga%glenA ||a amarl ||
st min VB(s0)). f0) (s00) o) @) 1yB(s0)) > 0,

alile A

where now B has to be constructed based on a value function
for a differential game, which considers the opponent’s worst-
case actions [74], given as

Vworst(séij)) := [min max | J(sgij),a@,a(j)).

{aﬁf,af)}kzo

(13)

Here, [min max] denotes the alternating operation min (over
ag )) and max (over ag)). The computation of this worst-case
value function can be done similarly to the computation of V'
by solving the min-max HJ PDE [70].

Running example. In the two-agent case, in Figure 2 (b),
the initial relative state between agents I and 2 is set near
the boundary of the maximal safe set SU"). By each agent
applying the CBVF safety filter, both agents reach their goals
safely under the safety-filtered MARL actions.

B. Analysis of the multi-agent case

We begin the analysis of this section by continuing with the
running example of the multi-agent case:

Running example. In Figure 2 (c), we now consider the
case where a third agent is introduced. The relative states
still remain within the pairwise maximal safe sets SU2),
SU3) and S@3). Despite all agents actively attempting to
avoid collisions, their relative distances fall below Ty As
mentioned in the introduction, this demonstrates the issue
of conflicting constraints, implying that although agent I’s

initial state did not cross the boundaries of the individual
safe sets, it may already be outside the true safe set when
considering all interactions simultaneously. Computing this
true safe set requires defining the relative dynamics of the
three agents, which increases the system’s dimensionality.
While approximations of this set have been computed, such
as in [22], the computation of this multiple-agent safe set is
challenging.

As can be seen in the above running example, it is crucial
to prevent the agents from falling into the region in which
one safety constraint can potentially conflict with the other,
i.e., the leaky corners. Although their exact computation is
hard, we define the region that can tightly overapproximate
this potential conflict region.

Proposition 1. Define
S(z) = {{S(j)}jef(i) ‘ Vj € I(Z),V(S(w)) > Tsafety &

ﬂjlajZ S I(Z) S.L. Vworst(s(ijl)) < Tsafety & Vworst(s(ijz)) <Tsafety}

(14)
where V' is defined in (6), and Vior: 1S defined in (13). Note
the difference between V and Vo Then for any opponent
agent states {s)} 7y € S, there exists a and a'?) for
all j € I(i), such that ¥t > 0, s@)(¢) ¢ £09) for all j € I(3).
In other words, set S@ can be maintained forward invariant.

Proof: The second condition in (14) allows at most one
opponent agent to enter the area in which Viyers (57 < Tpery-
We denote this agent as jnear. FOr (7, jnear), since V (s(mear)) >
Tsafety Dased on the first condition in (14), agent 7 and agent
Jnear are within their CBVF safe set S{==) and can select their
action sequences a') and @), such that s'wa) (t) ¢ L)
for all £ > 0.

Next, we consider all other agents j € I(7) \ {Jnear}- Based
on [75, Proposition 4], for any Lipschitz continuous Vierst, its
level set is a robust control invariant set. Thus, for all j € I(i)\
{jnear }» there exists a'¥) that results in Viorst (s (£)) > Tsatery
for all t > 0, regardless of a'), ensuring s/} (t) ¢ SO, m

Intuitively, the set S prevents conflict of constraints by



allowing only one agent to coordinate for collision avoidance
with the ego agent and by prohibiting the other agents from
entering the worst-case safe set. These other agents are able to
stay away from the pair (4, jnear) due to the robust invariance
property of the level set of Virst.

Practical implementation: In practice, enforcing each agent
to stay within S can be computationally expensive since we
have to evaluate V' and Vi, for all pairs of interaction. In
the next section, we use this analysis to inform MARL to
implicitly learn not to enter this region. For this, we define
the potential conflict range as below:

(15)

s.t. Vworst(s@j)) > Tsatety vsid) gt dist(s@j)) > 7.

Tconflict = HlT}Il T

Then, the set of opponent agent states is defined as
8D = {4} jer) | Vi € 1), V() 2 e, &

#j1, 2 € I(0) s.t. dist(s90)) < reonpie & dist(s(92)) <Tconﬁict}

(16)
This is an underapproximation of the true conflict-free set S
by definition (15). To ensure safety, we want to restrict the
number of opponent agents entering this region to be at most
one.

Our analysis requires that the observation range be larger
than the potential conflict range, 7obs > Tconfiict- Rather than
a restriction, this serves as a design guideline for the obser-
vation stack of the robot for safe multi-robot coordination.
As shown in Figure 1, the concept of the potential conflict
range divides a robot’s proximity into three layers: (1) the
range dist(s\")) < rgygey, Where collision is imminent; (2)
the tange reygery < dist(s)) < reonnict, Where engaging with
multiple vehicles may introduce safety risks; and (3) the region
Teonlice < dist(s(%)), where the maneuvers of other agents
pose minimal safety concerns. A similar three-layer structure
was proposed and manually designed in [76]. However, our
approach provides a theoretical foundation for defining these
boundaries based on reachability analysis.

Remark 3. (Limitation) The set S is a conflict-free safe
set only from agent 7’s perspective. In other words, it does
not guarantee that the collision-avoidance maneuvers of other
agents j € I(i) will not interfere with one another. Addressing
this issue requires analyzing the combinatorial number of
possible interactions, which remains an open problem. In our
work, we address this challenge by training the MARL policy
to learn strategies that mitigate these conflicts.

V. MULTI-AGENT REINFORCEMENT LEARNING WITH
LAYERED SAFETY

A. Extending InforMARL for improved decentralized decisions

Our work builds upon the InforMARL architecture [42], a
MARL algorithm that solves the multi-agent navigation prob-
lem by using a graph representation of the environment, en-
abling local information-sharing across the edges of the graph.
InforMARL uses graph neural networks (GNNs) to process

neighborhood entity observations, allowing the framework to
operate with any number of agents and provide scalability
without changing the model architecture. Each agent has a
set of neighboring agents within its observation range, 7ops,
and shares its relative position, speed, and goal information
with these neighbors. Agents are tasked to navigate to their
respective goal positions. When agents reach their respective
goals, they get a goal reward Rgoal(og), ag)).

The extensions we make to the baseline InforMARL to
incorporate the layered safety framework and to make it more
practical for multi-robot navigation tasks are as follows:

1) Sequential goal point tracking: In the updated framework,
the agents navigate to a sequence of waypoints, each specified
by its position and the desired direction and speed, leading to
the final goal (as shown by the green circles in Figure 1). At
each time ste,;), an agent gets the following additional rewards,
Rtracking(og , ag)) which are computed based on the heading
and speed of the agent relative to the current target waypoint.
The details of these terms are presented in Appendix A.

2) Model architecture enhancements: To improve the algo-
rithm and generalize it over diverse scenarios, we update the
observations to incorporate rotation-invariant relative distances
of the ego agent to goals and neighbors. Once an agent
crosses a waypoint, we no longer consider the waypoint in its
observation, and the agent moves to the subsequent waypoint.
We introduce dynamics-aware action spaces that are updated
based on the dynamics model, angular rate, and longitudinal
acceleration, as in the running example in Section IV, ensuring
agents respect motion constraints specific to their dynamics.

3) Curriculum training: The training framework also in-
corporates curriculum learning where we progressively make
the training environment harder [77] for improving agents’
performance, refining safety rewards, and updating the safety
distance rgfery used in the safety filter. This is detailed in the
subsequent sections.

B. Safety filter design for multiple agents

For multiple agents, the CBVF B(s%)) is evaluated for
each agent 7 and any neighboring agent j within the obser-
vation range rg,s. A smaller value of B indicates that the
near-collision is more imminent and safety is at greater risk.
The neighbor agent with the minimum pairwise B(s/)) is
selected as the agent whose actions will be curtailed. We
term the module that selects this prioritized constraint as the
prioritization module. If an agent pair (4, j) has each other as
the minimum pairwise B(s\*/)), then we call them a porential
collision pair.

C. Safety-informed training

1) Curriculum update: We start the training routine without
any safety filter or penalty applied for the first half of the
training steps. This is done to optimize the task performance of
MARL unconstrained by any safety parameters. Once training
reaches half the number of total training steps, we activate the
safety filter. Additionally, we introduce the following safety
parameters, which are updated using the curriculum learning



framework during training. First, the safety distance 7gry is
initialized to zero during the start of model training, allowing
agents to approach each other at close ranges. As the training
progresses, we inCrease ryfery to the desired value. Similarly,
we scale the conflict radius rconsice computed using Eq. (15)
based on the value of the rgr,. This setup allows agents to
explore the environment early on in the training and prevents
them from converging to overly conservative behavior.

2) Safety-informed reward: In addition to the heading,
speed, and goal rewards, we introduce some additional penal-
ties. When more than two agents are within the conflict radius
Teonflict, W€ apply a potential conflict penalty

>

]e{] |diSt<5(ij>)<rconﬁict}

Cconﬁim = maX{O, Tconflict — dlSt(S<”))}

o) }
vffj) )

relative distance change

X max {0, — [x(ij) y@j)]

7
which evaluates whether the agent j is within the potential
conflict range and is approaching towards agent 7. Based on
Proposition 1, we do not apply the penalty when there is just
one agent within rconfiict-

The penalty Ceongic; 18 carefully designed to mitigate the risks
associated with potential conflicting constraints when multiple
agents enter the range, while simultaneously minimizing the
conservatism it may introduce. This penalty is an indirect
safety penalty, as it is not incurred based on explicit safety vi-
olations but rather indirectly through the proximity of multiple
agents.

The final reward structure is

Rtotal(os); alg)) - Rtracking(olg)a alg))

(@ @

+ pgoaleoal(Ok y O (18)

) - pconﬂictcconﬂict

where pgo.1 18 a binary indicator when the agent is at the goal,
and pconfiict 18 @ binary indicator when the number of other
agents within the potential conflict region is more than one.

VI. RESULTS

The main robotic application we focus on is the safe
autonomous navigation of aerial vehicles. We apply our frame-
work to Crazyflie drones navigating through waypoints in
both simulation and hardware experiments, as well as to the
simulation of air taxi operations in realistic settings.

A. Experiment Setup

Considered dynamics. We consider two types of dynamics,
one for the quadrotors and the other for the air taxi vehicle
in a wing-borne flight. The parameters for both dynamics
are summarized in Table I and are set to match the industry
standard [78, 79, 80]. For instance, we use an angular rate
bound of 0.1 rad/s for the air taxi dynamics, as it results in
the lateral acceleration 0.5g under the nominal speed, which
amounts to the maximum tolerable lateral acceleration for
passenger comfort in NASA market studies [81].

TABLE I: Parameter Summary for Different Vehicle Dynamics

Parameter Air taxi (Sim) Crazyflie
Groundspeed
Vmin 60 knot (30 mV/s) -1.0 nv/s
Umax 175 knot (90 mv/s) 1.0 m/s
Vnominal 110 knot (57 mv/s) 0.5 m/s
Acceleration
Amin -3.3 ft/s? (-1.0 n/s?) | -0.5 mys?
Gmax 6.6 ft/s? (2.0 n/s?) 0.5 my/s?
Angular Rate (wmax) (rad/s) 0.1 -
Sampling Rate (s) 1.0 0.1
Waypoint Thresholds (+)
Distance to Goal 0.186 miles (0.3 km) 0.2 m
Heading 45° 45°
Speed 38.9 knot (20 m/s) 0.1 m/s
Observation Range (7gps) 3.1 mi. (5.0 km) 40 m
Safety Distance (7sagety) 500 - 2200 ft (0.152 0.5 m
- 0.671 km)
Potential Conflict Range (r¢onfiict) | 4600 ft (for 1.0 m
Tsafety =2200 ft)

(a) Crazyflie (holonomic)

2

(b) Airtaxi (nonholonomic)

.....

o -

30
D B(S(ij))
10

Fig. 3: Maximum safe sets (exterior of the white level sets),
potential conflict region, and CBVF (colormap) for each
vehicle dynamics, displayed in the relative position space when
(a) relative velocity is (vz,vy) = (1,1) [m/s], (b) relative
speed and heading is 220 knots and 180°, respectively.

: collision avoidance constraint (7'safecy)
: maximal safe set (S )
7.3 :potential conflict region (ronaice)

The quadrotor dynamics in the horizontal plane are repre-
sented as simple double integrators with

T = Vg, Y = Uy, Ug = Qg, Uy = Qy, (19)

where s = [z,y,v,,v,] and a¥ = [a,,a,]. The quadro-
tor runs the low-level onboard flight controller to track the
commanded actions.

The air taxi dynamics in the horizontal plane are represented
using the kinematic vehicle model in (10) of the running
example in Section IV. Three features of the air taxi dynam-
ics considered in this work make its safety assurance more
challenging and interesting. First, the vehicle cannot stop as
it has to maintain the wing-borne flight (v, > 0). Next, the
dynamics are nonholonomic, meaning that its control towards
the lateral direction can be achieved only by changing its
direction. Finally, due to small acceleration or deceleration au-
thority, the vehicle often has to employ turning maneuvers for



deconfliction. This is common for fixed-wing and hybrid mode
vehicles like vertical takeoff-and-landing vehicles (VTOLs),
those envisioned for AAM operations [82, 83, 84].

Due to these challenges, the advantages of our method
for enhancing safety are particularly evident for the air taxi
dynamics (Section VI-D). In contrast, for the quadrotors
(Section VI-C), our safety filter design consistently ensures
safety across all evaluated methods; thus, we focus more on
how our approach achieves performance enhancement. The
safe sets, CBVFs, and the potential conflict range computed
using HJ reachability are visualized in Figure 3.

Task & Training environment. We modify Multi Particle
Environments (MPE) [41] to incorporate agents to follow
the dynamics as specified before and the safety filter. In our
navigation task setup, the drone must pass through a waypoint
with its state satisfying the threshold conditions specified in
Table I to proceed to the next waypoint. The main values
that define the training environments are the number of agents
N, the number of waypoints per agent M, and the size of
the environment L. At every episode, the initial positions of
the agents, the waypoints’ locations, and the headings are set
randomly. The episode is terminated if all agents reach their
goal, the last waypoint. After training the MARL policies,
we test them in various evaluation scenarios with values of
N, M, L different from those of the training environment. For
the quadrotor, we use N=4, M=2, L=4, and for the air taxi
dynamics, we use N=4, M=2, L=6 for the training.

B. Comparison Studies

We first conduct two sets of simulation experiments to
compare our method against: 1) approaches that do not employ
a safety filter or curriculum during training, and instead rely
on alternative reward designs for safety, and 2) methods from
prior works based on model-based CBF design and model-
free safe MARL for multi-agent coordination. Both studies
are conducted in the quadrotor simulation environment.

1) Ablation study for safety-informed training: First, we de-
signed our experiments to evaluate the value of (1) introducing
the safety filter during training, (2) using the curriculum, and
(3) the effectiveness of a potential conflict penalty term for
safety, as described in Section V-C. To evaluate the effect of
employing the safety filter during training, we compare the
results of those trained with and without the filter. To evaluate
the effect of the curriculum, we compare our method against a
policy trained without the curriculum update in Section V-C.
Finally, to evaluate the effectiveness of the potential conflict
penalty term, we compare it against three alternative penalty
terms for safety suggested in the literature:

« Hinge loss for constraint violation:
Cotain := max{0, Tsafery — dist(s@j))},

This is the most typical penalty term, introduced in the
safe RL literature [85].
« CBVF-based hinge loss:

Cebvs := max{0, —B(s"},

This penalizes the agent for entering the zero-sublevel set
of the CBVF, the unsafe set. The use of reachability value
functions as a safety penalty in RL has been explored in
previous works such as [86].
« Penalty occurring when safety filter intervenes:
Chorm diff := ||a§2e - a1(12ﬂ| l,

based on (12). This is the main penalty term used in the
method of [11] to inform MARL with safety.

When we introduce each penalty term, its weight is carefully
tuned to maximize task and safety metrics. In total, we test
nine variants of the training methods based on the activation
of the safety filter, curriculum, and choice of the reward term,
which are detailed in Appendix C.

We evaluate each method in three scenarios. In addition
to the random scenario same as the training environment, in
the second scenario, we test how the MARL policy interacts
with a larger number of agents and a more challenging
waypoint configuration by setting N=6, M =3, and L=6 while
also placing the first two waypoints at the same positions,
representing the air corridor. The third scenario reconstructs
our hardware experiment environment, which will be detailed
in Section VI-C, in simulation.

Below is the summary of the key aspects of the result,
while more details and the table of the comparison for the
performance metrics are presented in Appendix C:

o Effect of using the safety filter in training: Methods that
incorporate the safety filter during training consistently
outperform their counterparts trained without the filter
across all metrics.

o Effect of curriculum learning: The curriculum learning
can significantly enhance performance by reducing the
conservativeness of the trained policy.

o Effect of potential conflict penalty Ceoniicv compared to
other penalty candidates: Our method achieves the best
performance in most cases. Importantly, our method
outperforms other methods especially when there is a
larger number of agents (the second scenario).

2) Comparison to other methods: Next, we compare our
method to (1) DG-PPO [19] and (2) a safety filter designed
based on the exponential CBF (ECBF) [16], used for multi-
agent collision avoidance in [15]. We use N=4, M=1, L=3
for the training of all three methods, which enables fair
comparison, especially with results we can obtain from the
DG-PPO source code. We run the training of both DG-PPO
and our MARL policy with the same number of environment
steps (1e7) and gradient steps (epoch_ppo=1), where the initial
and goal positions are randomly generated.

We evaluate the trained policies in two environments for 25
episodes each: (1) same random environment with world size
increased to L=6. (2) environment with an increased number
of agents N=8 and world size L=6, where initial and goal
positions are arranged in two parallel lines in random order.
The results are reported in Tables 11 and III. While all methods
perform well when the number of agents remains the same as



TABLE II: Simulation results for Crazyflie dynamics with
N=4, with time horizon 51.2s. We evaluate goal reach rate (%)
for performance and the percentage of near-collision events
(dist(5')) < rpery) in the timestamped trajectory data (Near

collision %) for safety.

Methods Goal reach(%)  Near collision(%)
DG-PPO 9 £ 11.8 0.04 £ 0.16
Exponential CBF 100 £ 0 0.0 £ 0.0
QOur Method 100 £ 0 0.0 + 0.0

TABLE III: Simulation results with N=8, and initial & goal
positions arranged in lines under random order. Videos are

available in the supplementary material.

Methods Goal reach(%)  Near collision(%)
DG-PPO 100 £ 0 9.1+£127
Exponential CBF 93 + 8.9 8.8 £ 10.7
QOur Method 100 £ 0 0.0 £ 0.0

in the training environment, our method is the only method
that guarantees 100% safety when N increases, whereas the
percentage of near-collision events increases significantly for
DG-PPO and ECBE. It must be noted that DG-PPO is a
model-free method that learns a neural CBF during its training,
where as our method uses the CBVF computed based on the
system dynamics model. As observed in [18], such model-free
methods are vulnerable to generalization in scenarios with a
large number of agents.

C. Hardware experiments with quadrotors

Next, as illustrated in Figure 4, we conduct hardware exper-
iments with three Crazyflie 2.0 drones using a Vicon system
for localization. Each drone is controlled by a hierarchical
framework: its high-level system is modeled with double
integrator dynamics, and the resulting high-level state is passed
to onboard PID tracking controllers. We define high-level
feedback control (acceleration in the x and y axes) based
on real-time (100 Hz) Vicon system data. To approximate
decentralized control, we run distinct decentralized policies
for each drone on a single ThinkPad laptop, transmitting high-
level control commands every 0.1 seconds.

In the experimental scenario, each drone is required to
pass through two shared waypoints—representing an air cor-
ridor—before reaching its designated landing location (/N=3,
M=3, L=3m). We compare the policy learned under our
method to the baseline, which is trained without a safety
filter in hardware experiments, with the recorded trajectories
shown in Figure 5. Under our approach, three drones smoothly
avoid conflicts and safely navigate their individual waypoints,
completing the task in 12.95 seconds. In contrast, the baseline
policy requires one drone to perform a second pass, after
missing its first waypoint due to the safety filter preventing
it from approaching other agents passing the waypoint, thus
extending the total completion time to 25.29 seconds. These
results demonstrate how our Layered Safe MARL framework
enhances task performance through efficient deconfliction.

D. Simulation of decentralized air taxi operations

Finally, we evaluate the application of our framework to
decentralized air taxi operations. Although there is no single

Fig. 4: Crazyflie hardware experiment with the MARL policy
learned by our method. The three drones have to pass through
two common waypoints to get to their landing location. The
trajectories corresponding to the video footage are visualized
in Fig. 5 (b).

(a) safety-blind (b) safety-informed w/ conflict penalty
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Fig. 5: We compare the recorded Crazyflie hardware exper-
iment trajectories under our method and the baseline pol-
icy trained without the safety filter. With our approach, the
drones smoothly deconflict and efficiently complete the task.
In contrast, under the baseline policy, the yellow Crazyflie
misses a waypoint and must make a second pass. These re-
sults demonstrate that incorporating layered safety information
during training improves the performance of the MARL policy.

consensus on how the air traffic management (ATM) system
will function for advanced air mobility (AAM) operations,
each vehicle will likely be required to have fallback autonomy
systems in place, for instance, to ensure safety in case the
centralized system fails.

To conduct the study with a realistic traffic volume, we use
the results of the Urban Air Mobility (UAM) demand analysis
from [87, 88], which estimates how much ground traffic could
be replaced by AAM considering various factors including
different demographics of riders, socioeconomic factors, and
historical commuting patterns. By combining these insights,
our study derives a reasonable estimate of how traffic density
will evolve once UAM operations reach full implementation.
From their results, we consider a peak-density scenario in
which each vertiport serves 500 passengers per hour during



Fig. 6: Bay Area case scenarios. The left panel illustrates
routes where multiple air taxi vehicles would travel from
the North and East Bay toward San Francisco, merging into
a single air corridor. The right panel shows intersecting air
corridors: one where the vehicles would travel from Fremont
(southeast) to San Francisco and another from Qakland (north-
east) to Redwood City. The blue dots represent the waypoints
that UAVs follow, while the yellow dots indicate the departure
or an incoming waypoint of the corridor.

peak hours, equating to two operations (takeoffs and landings)
per minute, with each operation accommodating a 4-passenger
aircraft. This corresponds to about 125 trips per hour. We
chose vertiports from multiple locations in the Bay Area with
high travel demand and designed the air corridors with a lateral
separation of 1500 ft based on a preliminary analysis of the
separation standards for UAM [88]. Waypoints are created to
connect the trails of these corridors spaced 3-4 km apart. For
simplicity and clearer visualization, our simulations focus on
aerial vehicles traveling westward (from the East Bay to San
Francisco and to the South Bay); we assume outbound trips
use a separate fixed altitude, thus our study addresses only
horizontal deconfliction.

An important modeling assumption is the required sepa-
ration distance between vehicles. We base these restrictions
on industry standards that define the minimum safe distance
between the aircraft and potential hazards to maintain an
acceptable collision risk [81]. Although there is no single
global standard for the separation distance for AAM vehicles
yet, we adopt a set of parameters from a variety of literature:
the separation distance from dynamic obstacles, maximum
accelerations, and bank angle to ensure safety and passenger
comfort, [89, 81, 88], which guides the minimum horizontal
distances between UAVs to range from 500 to 2200 feet. In
our study, a horizontal separation of 1500 ft was used, as it
aligns with NASA’s UAM corridor design and provides a good
balance between collision risk and operational efficiency.

We evaluate three methods: MARL trained without the
safety filter and no safety penalty (Safety blind), MARL
trained with the safety filter under the proposed curriculum but
with no safety penalty (No penalty), and the proposed safety-
informed method employing the safety filter, curriculum, and
the potential conflict penalty (Proposed) in two high-density
air traffic scenarios. The two scenarios, illustrated in Figure
6, represent different commuting patterns in the Bay Area. In

TABLE IV: Simulation results of air taxi operations emulat-
ing potential peak traffic around the Bay Area—a scenario
in which all vehicles merge into the city-inbound corridor.
For performance, we evaluate the mean travel time (s). For
safety, we evaluate the percentage of near-collision events
(dist(s9)) < 7gpey) in the timestamped trajectory data
(Near collision %), and the percentage of instances having
multiple agents encountered within the potential conflict range
(dist(5'7)) < Teontiicr) (Conflict %).

Merging Scenario (N=8, M=5
Methods e s couision((%)@) Cc)mﬁict(%)@)
Safety-blind 675.6 0.055 24
No penalty 617.9 0.042 53
Proposed 450.5 0.021 32

TABLE V: Simulation results of air taxi operations—a sce-

nario in which two air corridors intersect with each other.

Methods Intersection Scenario (N=16, M=6)
Travel t(s)(])  Near collision(%)(]) Conflict(%)(])
Safety blind 987.4 0.058 2.1
No penalty 780.5 0.129 3.8
Proposed 660.8 0.056 1.6

the left scenario (Merge Scenario), multiple air routes (eight
in total) from the northern Bay merge into a single corridor
leading to San Francisco. The departure time of each vehicle
varies randomly within a 60-second range. In the scenario
shown to the right (Intersection Scenario), two westbound air
corridors intersect. Here, we set the UAVs to leave the origin
every 90 £ 15 seconds to intentionally induce congestion at
the intersection.

We evaluate 25 random episodes for each method and report
the results in Table IV and Table V for each scenario, respec-
tively. The results show that the proposed method achieves
both the highest performance, measured by the shortest mean
travel time, and the lowest percentage of near-collision events.

Examples of vehicle trajectories for each scenario and
method are visualized in Figure 7. In the merging scenario,
our method demonstrates the most efficient deconfliction of
trajectories when multiple vehicles merge into the air corridor.
In the intersection scenario, near the intersection, the region
occupied by vehicles as they maneuver to avoid collisions
is noticeably larger in our method compared to the second
method, trained with no penalty. This indicates that vehicles
using our approach proactively maintain greater separation to
mitigate the conflicting constraints.

While we expect that a fully operational ATM system for
AAM will be significantly more efficient, seamless, and safer
than our simulation study suggests, we present this study as an
initial guideline for resolving hypothetical emergency scenar-
ios. For instance, the situations we simulated can emerge when
the airspace congestion coincides with the loss of centralized
traffic control, requiring each agent to make independent, safe
decisions.
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Fig. 7: Comparison of air taxi trajectories in merging and crossing scenarios: The top row illustrates the single-lane merging
scenario, where UAVs converge into a shared inbound air corridor, while the bottom row depicts intersecting air corridors. In the
merging scenario, our method achieves the most efficient deconfliction of trajectories, minimizing congestion near the corridor.
In the crossing scenario, our method demonstrates a wider safety buffer around intersections, as UAVs actively maintain greater
separation to mitigate conflicts. Videos are available in the supplementary material.

VII. LIMITATIONS

While our framework shows significant improvements in
achieving safety and performance, there are limitations, which
we list below.

1) Scalability to higher dimensions: Our current framework
is designed for 2D scenarios, and needs extending it to
3D environments.

2) Guarantees for multiple engagements: Our safety guar-
antees are currently limited to pairwise interactions.
While our method is designed to significantly mitigate
collision risks in multi-agent interactions based on theo-
retical analysis, it does not provide formal guarantees
for scenarios involving multi-agent engagements. For
further details, see Remark 3.

3) Hardware experimentation constraints: In our hardware
experiments, local observations were emulated using
a motion capture (mocap) system rather than being
obtained through onboard sensing. This simplification
may not fully reflect real-world operational constraints
and should be addressed in future implementations.
Additionally, fixed-wing vehicles were not included in

our experiments.

4) Communication range constraints: The impact of com-
munication range limitations in our hardware experi-
ments was not analyzed.

VIII. CONCLUSIONS

In this work, we presented a layered architecture combining
a CBVF-based safety filtering mechanism with a MARL
policy, demonstrating its effectiveness in ensuring both safety
and efficiency. Our approach enables MARL to navigate con-
flicts proactively while benefiting from safety-informed reward
signals. Along with the safety filter introduced during training
using a curriculum learning approach, the Layered Safe MARL
framework achieved shorter travel times and reached more
waypoints with fewer conflicts. The key components of our
approach, curriculum learning, and cost terms that inform
potential conflict zones are agnostic to the choice of the
MARL algorithm. We validated our method by applying it
to two distinct dynamics—quadrotor and fixed-wing AAM
flight dynamics—and evaluated it in progressively complex
scenarios. We also conducted hardware experiments on three



TABLE VI: Results of policies trained under various methods for Crazyflie dynamics: We evaluate mean travel time (s)
and number of reached waypoints (Waypoint #) for performance, and the percentage of the events involving multiple agents
encountered within the potential conflict range in the trajectory data (Conflict %) for safety risk. Note that in these simulations,
the agent never violated safety for all methods due to our safety filter, except in the training scenario when the agent is
initialized at the safety-violating states. (N=number of agents, M =number of waypoints, L=world size)

Methods Scenario 1 (Training) (N=4, M=2, L = 4) Scenario 2 (N=6, M=3, L = 6) Scenario 3 (N=3, M=3, L = 3)
Travel time(s)(])  Waypoint#(1) Conflict(%)(]) | Travelt  Waypoint # Conflict | Travelt  Waypoint # Conflict
1 (safety-blind) 18.33 1.62 +0.25 8.7 29.18 2.11+0.24 21.9 19.08 2.14+0.53 16.2
2 18.21 1.67 +0.19 7.1 29.77 2.06 +0.24 19.7 18.92 2.40 + 0.47 16.0
3 17.73 1.76 £ 0.16 6.6 28.59 2.26 +£0.21 19.7 18.44 2.41 +0.46 14.9
4 18.73 1.58 +£0.23 72 29.11 2.20+0.21 17.1 18.79 2.17+0.47 134
5 (no penalty) 17.56 1.75 +£0.17 53 28.46 2.33+0.20 16.9 16.09 2.78 £0.28 11.8
6 18.31 1.67 +£0.17 5.9 28.92 2.27+0.21 17.0 17.69 2.42 +0.42 15.0
7 17.90 1.71 +£0.18 53 28.98 2.32+0.18 15.8 17.59 2.54+0.34 11.2
8 20.52 1.26 +£0.21 2.7 31.25 1.74 £ 0.27 6.9 18.36 2.20£0.36 8.6
9 (proposed) 17.81 1.78 + 0.18 54 28.59 242 + 0.20 15.1 16.91 271 + 0.24 10.8

Crazyflie drones, highlighting the applicability of our method
in real-world systems.

Our method integrates model-based safety tools from con-
trol theory (CBVFs) with learning-based methods (MARL),
together forming a framework that addresses two major chal-
lenges in multi-agent problems—safety and efficient coordina-
tion. While deep reinforcement learning has faced skepticism
in safety-critical applications such as air traffic management,
recent advances—including our work—demonstrate the via-
bility of hybrid approaches that combine learning and control,
and illustrate how RL can be responsibly applied in safety-
critical settings.

Future research could investigate decomposition techniques
and learning-based reachability analysis (e.g., DeepReach
[22]) to extend safety verification to higher-dimensional set-
tings. Adapting to other methods, including other MARL
algorithms (e.g., MAPPO or even further refining DG-PPO),
MPC, or game-theoretic solutions, by treating the poten-
tial conflict zone as a soft constraint, is an exciting future
work direction. Further investigation is needed to assess how
communication constraints affect coordination and safety in
decentralized multi-agent systems. Finally, an important future
direction is testing the proposed approach’s applicability in
various robotics domains, ranging from higher-order dynamics
to complex environments and sensing constraints, such as
ground robots, underwater autonomous vehicles, and space
robots.
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APPENDIX

A. Reward function design for goal reaching

We assume that, from the agent’s local observation, it can
evaluate its state, including the position and heading relative
to the current target waypoint, denoted as sile)f The additional
reward Riracking 1S designed to guide agents to efficiently
navigate to the target waypoint. It uses a distance-like measure
relative to the waypoint position, and can incorporate addi-
tional information like the errors from the desired heading
angle and speed. The vehicle dynamics also inform the reward
design. We design a specific reward for each quadrotor and
air taxi dynamics. For the quadrotor, although the vehicle
dynamics are holonomic, we want the vehicle to approach
the waypoint from a specific target heading direction. To
achieve this, we design a reference velocity field, vref(sfe)f),
around the waypoint, shaping it like the magnetic field around
a solenoid. Then, the reward for the waypoint tracking is
given as Rtracking(og),ag)) = || — vpet]|. For the air
taxi dynamics, shaping the reference velocity field is not
straightforward, as the vehicle is nonholonomic and is mainly
limited by its maximum turning radius, determined by its
speed and yaw rate. Thus, we compute the time-to-reach
function [91], which is the minimum time required to reach the
target waypoint (satisfying the threshold conditions) subject to
the vehicle dynamics. This time-to-reach reward is also used
in [92] for RL-based navigation of mobile robots. The use of
the time-to-reach reward guides the vehicle to learn how to
perform a 360-degree turn when it misses its waypoint.



B. Air taxi dynamics: additional information

The relationship between s\*/) and (s, s\9)) for the air
taxi dynamics in (10) is given by

209) = cos 009 (1) — £ 4 gin U () — 40y,
Y = —sin 09 (249) — 2 4 cos 00 (y7) — 4 D) (20)
9la) — p&) _ gl

The relative dynamics (3) can be derived from (10) and (20),
and are express as

#9) = ) 40 cog 009) 4 40D
%) = U gin 909) — 09,0 21

409) — @) _ (0

C. Ablation Study: Details

We conduct comparison studies among the following nine
methods:

1) Policy trained without the safety filter and no safety
penalty (Safety blind)

2) Policy trained without safety filter and with Cpain

3) Policy trained without safety filter and with Ceopgict

4) Policy trained with the safety filter and without curricu-
lum learning (with no penalty)

5) Policy trained with the safety filter and no safety penalty
(No penalty)

6) Policy trained with the safety filter and with Cpain

7) Policy trained with the safety filter and with Cepyt

8) Policy trained with the safety filter and with Cpomy gise

9) Policy trained with the safety filter and with Cgonfiict
(Proposed)

Note that methods 5-9 are trained with curriculum learning on
Tsafety> a8 described in Section V-C. Every policy we compared
has been trained for the same number of environment steps.
Methods 1, 5, and 9 correspond to the methods we also
evaluate in the air taxi operation simulation.

Table VI summarizes the results of the simulation study, and
Figure 8 visualizes example trajectories in Scenario 2 under
the policies of methods 1, 5, and 9. Each method is evaluated
using four random seeds, with 25 episodes per seed, totaling
100 random episodes. Note that in these simulations, the agent
never violated safety for all methods due to our safety filter,
except in the training scenario when the agent is initialized
at the safety-violating states. Thus, the percentage of near-
collision events (safety violation) is not reported, and only the
rate of potential conflict (for instance, when more than two
agents enter the potential conflict range 7confiicr) 1S calculated.

The key aspects of the result in Table VI are:

o Effect of using the safety filter in training (1-3 vs 5-6, 9):
Methods that incorporate the safety filter during training
consistently outperform their counterparts trained without
the filter across all metrics.

o Effect of curriculum learning (4 vs 5): The curriculum
learning can significantly enhance performance by reduc-
ing the conservativeness of the policy.

(a) safety-blind
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Fig. 8: Simulation results of (a) safety-blind (method 1), (b)
safety-informed with no penalty (method 5), and (c) safety-
informed with potential conflict penalty (method 9) under
Scenario 2 in Table VI, trained for double integrator dynamics.
Agents are initialized at random positions and have to merge
into a line formed by two waypoints before reaching their final
waypoints. While our safety filter ensures safety for all cases,
the MARL method trained with a potential conflict penalty
shows the most efficient behavior for reaching waypoints.
Videos are available in the supplementary material.

o Effect of potential conflict penalty Ceonpicv compared to
other penalty candidates (6, 7, 8 vs 9): Although method
8 that uses Cpomgir consistently shows the lowest rate
of potential conflict, and its performance is significantly
impaired by the penalty. Our method achieves the best
performance in most cases. Importantly, our method
outperforms other methods, especially when there is a
larger number of agents (Scenario 2).
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