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Abstract—Communication is fundamental for multi-robot col-
laboration, with accurate radio mapping playing a crucial role
in predicting signal strength between robots. However, modeling
radio signal propagation in large and occluded environments
is challenging due to complex interactions between signals and
obstacles. Existing methods face two key limitations: they struggle
to predict signal strength for transmitter-receiver pairs not
present in the training set, while also requiring extensive manual
data collection for modeling, making them impractical for large,
obstacle-rich scenarios. To overcome these limitations, we propose
FERMLI, a flexible radio mapping framework. FERMI combines
physics-based modeling of direct signal paths with a neural
network to capture environmental interactions with radio signals.
This hybrid model learns radio signal propagation more effi-
ciently, requiring only sparse training data. Additionally, FERMI
introduces a scalable planning method for autonomous data
collection using a multi-robot team. By increasing parallelism in
data collection and minimizing robot travel costs between regions,
overall data collection efficiency is significantly improved. Exper-
iments in both simulation and real-world scenarios demonstrate
that FERMI enables accurate signal prediction and generalizes
well to unseen positions in complex environments. It also supports
fully autonomous data collection and scales to different team
sizes, offering a flexible solution for creating radio maps. Our
code is open-sourced at https://github.com/ymLuo1214/Flexible-
Radio-Mapping.

1. INTRODUCTION

Communication plays a critical role in multi-robot coop-
erative tasks such as exploration and environment inspection
[24, 49]. Stable communication is essential not only for infor-
mation sharing and task allocation within robot teams [7, 54]
but also for effective interaction between robots and human
operators [43]. This demand has driven the development of
adaptive communication strategies using robot routers [12, 48].
However, the effectiveness of such strategies is significantly
constrained by the current limitations in radio mapping.

Radio mapping, which aims to predict signal strength at a
receiver based on the positions of the transmitter (Tx) and
receiver (Rx), relies on accurately modeling wireless signal
propagation in the environment. In occlusion-rich and large-
scale scenarios, such as subterranean environments in the
DARPA SubT Challenge or complex indoor scenes, wireless
signals often experience severe attenuation and complex in-
teractions with obstacles (e.g. reflection, diffraction). These
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Fig. 1: Flexible Radio Mapping (FERMI) is a data-driven,
accurate, and efficient framework for signal data collection and
propagation modeling. The framework enables the prediction
of signal strength between any two positions using only sparse
data. We demonstrate radio mapping results in an indoor
corridor environment (94m x 64m x 3m), where (a) illustrates
the point cloud map of the scene, (b) shows a photograph
of the environment alongside our robotic platform, and below
compares signal data generated by different methods when a
Wi-Fi transmitter is placed at the marked position. Ground
truth data is collected through dense coverage by the robots.

factors result in a highly intricate and discontinuous signal
strength distribution, making accurate modeling significantly
challenging. Moreover, as wireless signals interact with var-
ious environmental surfaces, extensive data is required for



calibration to account for the complex and diverse surface
properties. These challenges make existing radio mapping
solutions limited to scenarios with simple obstructions.

To build a practical radio mapping framework for complex
real-world environments, the following two critical character-
istics are essential:

e Accurate and flexible modeling: With a reasonable
amount of calibration data, the radio map can precisely
determine signal strength for any given signal transmitter-
receiver pair within the scene.

« Autonomous construction: To achieve efficient radio
mapping, a team of mobile robots should autonomously
gather the necessary data in a coordinated and efficient
manner, eliminating the need for labor-intensive manual
deployment of transmitters (Txs) and receivers (Rxs).

However, previous methods still face significant challenges
in these two areas. In the following, we identify and analyze
critical issues.

Current radio mapping approaches struggle to balance ac-
curacy and data efficiency, largely due to the challenges
inherent in modeling signal propagation. Specifically, signal
propagation modeling methods can be broadly categorized into
physical models [2, 22] and data-driven methods [14, 53].
Physical models capture environment-signal interactions with
minimal data, enabling flexible predictions for any transmitter-
receiver (Tx-Rx) pairs. However, they sacrifice accuracy due
to oversimplifications, such as relying primarily on distance-
based attenuation and neglecting more complex effects. In
contrast, data-driven methods achieve higher accuracy by
learning signal distributions from collected data. However,
they require extensive data to cover the vast combinations of
Tx-Rx pairs in a continuous space for training. When faced
with unseen Tx-Rx pairs, these models struggle to generalize.

For autonomous data collection, it suffers from a lack of
efficient and scalable planning strategies. Some approaches
adopt a leader-follower paradigm, where a leader robot fits a
prior model for signal data online to guide follower robots
to nearby locations for data collection [3, 11]. However, this
strategy relies on a single robot acting as the central planner,
which restricts the team’s ability to disperse fully throughout
the environment. Additionally, fitting the prior model requires
extra computational time, further limiting the overall efficiency
of the task. Other methods, such as those proposed in [19],
frame this task as an optimal coverage problem using a col-
lection graph. While the problem formulation is well-defined,
these methods are not scalable, offering solutions only for two
robots and relying on a greedy strategy for three, which cannot
be effectively extended to larger robot teams.

To address the aforementioned challenges, we propose flex-
ible radio mapping (FERMI), a framework for autonomous
radio mapping using a multi-robot system. The key contribu-
tions of our work are as follows:

Hybrid radio propagation modeling: To precisely deter-
mine the signal strength for arbitrary Tx-Rx pair, we propose a
hybrid approach to model signal propagation within complex
environments. The propagation process is divided into three

stages: direct path propagation from the Tx to its Line-of-Sight
(LOS) points, multipath propagation among the LOS points of
the Tx and Rx within the environment, and direct path prop-
agation from the Rx LOS points to the Rx. The first and last
stages are explicitly computed using physics-based models,
where we identify LOS points for the Tx and Rx and compute
their signal propagation efficiently using known physics-based
attenuation. The intermediate stage, which involves complex
multipath propagation, is modeled using a neural network. The
network is designed to be agnostic to the specific positions of
the Tx and Rx, enabling it to generalize and predict signal
strength contributions from multipath effects for Tx-Rx pairs
not included in the training data. We also introduce a carefully
designed training architecture to learn effectively from sparse
data.

Scalable autonomous data collection: We further propose
a scalable autonomous data collection strategy utilizing mul-
tiple robots to efficiently gather adequate data for training the
radio map. The core idea involves partitioning the scene into
mutually invisible regions, where radio signals are expected
to experience multipath propagation across different regions.
Given the scene partitioning, robots are deployed to ensure
that any pair of regions is occupied and traversed by two
robots, functioning as the transmitter (Tx) and receiver (Rx)
simultaneously for data collection. A formal problem formu-
lation is provided, along with a corresponding solution that
maximizes parallelism in data collection while minimizing
transition costs between team configurations. This approach
ensures both effective and efficient data collection.

Our proposed framework provides an efficient and flexible
solution to enhance collaborative multi-robot systems, en-
abling autonomous radio mapping without human intervention.
We validate the framework through both simulation and real-
world experiments. In environments with significant obstruc-
tions and complexity, the results demonstrate that sampling
at a sparse resolution (approximately 1-2 m grid spacing)
achieves low prediction errors, reducing errors by up to 40%
compared to benchmark methods. Furthermore, we deploy a
three-robot team in a real-world scenario for autonomous data
collection. The framework completes data collection in a large-
scale environment within 1 hour, achieving a mean prediction
error of within 7 dBm.

II. RELATED WORKS
A. Radio Propagation Modeling

Radio map construction has drawn increased attention in
both robotics and wireless communication communities. Many
multi-robot systems rely on radio signal models to maintain
communication and exchange information [12, 39, 41, 42, 50].
Despite this, these approaches often simplify the communica-
tion model into deterministic communication radius models
[10, 13, 36] or line-of-sight (LOS) models [4, 6, 40, 42, 46].
Such simplifications fail to capture interactions between sig-
nal waves and the environment, including attenuation and
multipath effects, resulting in overly optimistic or conserva-
tive predictions in obstructed environments. To account for



| e ! (a) Hybrid Radio Propagation Modeling
I

1 e \
I ==
1 ! ‘ l 6(PR s)
I AN sl A

| o o~9 o o XX
s JEre e i & A
: e : o
| Direct Path Propagation | - : e
! | - . N
! 1 @ Attenuation 5 "JL. 5
I 1 Network soe Rx
: ! () Encoded Input Radiance o-jt- Direct Path Propagation

1 Network ' -7
| C] FC Layer + Relu \ J x
: : s - ||— = RSSImeasuTedH%
! ; Rus) Neural Multipath Propagation .

T
\
(b) Scalable Autonomous Data Collection N

Start Configuration

Configuration 1

)

Task End

==
=1l
7
= 1

Configuration Transitions

Fig. 2: Overview of FERMI: (a) With the collected signal data, we first sample Line-of-Sight (LOS) points for both the
transmitter (Tx) and receiver (Rx). Based on a physical model, we compute the direct path propagation from the Tx to its
surrounding LOS points. Next, a neural network is employed to learn the signal strength generated by multipath propagation
between each pair of LOS points from the Tx to the Rx, as well as the attenuation parameters of direct path propagation from
the Rx LOS points to the Rx itself. Finally, the complex-valued signals from the Rx LOS points to the Rx are aggregated.
The resulting values are compared with the signal strength data collected by the robots to compute the loss, which is used
to train the multipath propagation network. (b) The autonomous data collection begins by dividing the scene into multiple
regions that are mutually non-visible. A team of robots equipped with Wi-Fi access nodes departs from their initial positions,
collaboratively planning to execute the most parallel and cost-effective transition sequences to traverse different regions and

collect signal data.

environmental influences on signals, some methods model
signal propagation loss and estimate parameters to capture
attenuation caused by obstacles [2, 38, 48]. Nevertheless, these
methods exhibit high errors in obstacle-rich environments due
to their neglect of multipath effects and the diverse attenuation
characteristics of obstacles with varying material properties.
Alternatively, ray tracing approaches simulate and estimate
multipath propagation, achieving realistic simulation results
[17, 18, 35]. However, these techniques require extensive ma-
terial parameter modeling and are computationally demanding.

In contrast, data-driven methods provide a promising al-
ternative by leveraging collected signal data to model sig-
nal strength distribution or propagation processes. Gaussian
processes, for instance, are frequently employed to fit and
predict signal field distributions [11, 14, 31, 37, 51]. Yet,
these methods struggle with highly discontinuous signal dis-
tributions caused by dense obstacles and face significant
challenges when scaling to large datasets. Neural networks,
by comparison, excel at fitting complex signal distributions
and handling large datasets [28, 33]. Some studies use neural

networks as encoders or decoders to model signal distributions
[8, 26, 27, 52]. These methods predict signals by encoding
and decoding images or point clouds of the scene. However,
the encoded features fail to effectively capture the complex
characteristics of the scene, resulting in large prediction errors.
Recent advancements in multi-view 3D reconstruction intro-
duce powerful tools for learning the radiance fields of scenes
[20, 21, 30]. In the communication research, these techniques
have been adapted for signal field modeling, yielding improved
prediction accuracy [25, 44, 53]. Nevertheless, these methods
typically assume that either the transmitter or receiver is
fixed and learn signal distribution for the other’s movement.
This assumption limits their ability to flexibly predict signal
strength between arbitrary positions in a scene, as the signal
field undergoes drastic changes when the fixed point shifts.
In contrast, our method decomposes the signal propagation
process into two explicit processes of direct paths and one
implicit multipath process represented by a neural network.
This approach enables flexible radio mapping with sparse data,
allowing accurate prediction of signal strength for any given



transmitter (Tx) and receiver (Rx) positions.

B. Autonomous Radio Mapping

Deploying mobile robots for autonomous environmental
data collection and mapping is a critical application area
[5, 7, 9, 23]. For constructing radio maps, some methods
rely on robots equipped with Wi-Fi access points to collect
signal strength data, which is then used to model signal
distribution. The simplest strategy, random sampling [8], is
straightforward to implement but suffers from inefficiency due
to redundant data collection in some regions and insufficient
coverage in others. To address these limitations, uncertainty-
driven sampling methods have been proposed [1, 3, 11, 34].
These approaches guide robots to areas with higher variance
by fitting online models, such as Gaussian Processes, to the
collected data. However, they rely on a single robot acting
as a central planner to coordinate the team, which limits
the efficiency of collaborative collection. Additionally, the
computational resources required for model fitting further
reduce the overall task efficiency. The authors of [19] address
the problem of radio map construction by formulating it as
an optimal graph coverage problem. However, their approach
requires a given communication graph and mainly focuses on
solutions for two robots and offers a greedy strategy for three
robots. In this paper, we first analyze the data requirements
for multipath propagation modeling and introduce a visibility-
based scene partitioning method to help meet these require-
ments. We then formulate the problem and propose a scalable
solution for efficient autonomous data collection using large
multi-robot teams. Our method enables efficient and flexible
radio map construction in complex environments without any
online fitted models, overcoming the limitations of existing
approaches.

III. FRAMEWORK OVERVIEW

The goal of this work is to develop an accurate and efficient
framework for radio mapping in complex environments. We
assume access to a 3D geometric map of the scene (e.g.,
a point cloud) and autonomous mobile robots capable of
localizing within the map and following planned trajectories.
The framework is designed to efficiently collect signal data
and predict the received signal strength for any Tx-Rx pair. It
consists of two core components: a hybrid radio propagation
model for precise signal strength prediction (Fig. 2(a)) and a
scalable autonomous data collection strategy utilizing a multi-
robot system (Fig. 2(b)).

In Sec. IV, we present our hybrid propagation modeling
approach, which decomposes signal propagation into direct
and multipath components, enabling effective generalization
with sparse data. Based on the characteristics of this model,
we define a data collection problem and propose a scalable
planning strategy for multiple robots to collaboratively gather
signal data (Sec. V). The collected data is then used to train the
hybrid model, enabling it to accurately predict signal strength
at novel Tx-Rx positions.

IV. HYBRID RADIO PROPAGATION MODELING

FERMI is designed to predict the signal strength for
arbitrary transmitter-receiver (Tx-Rx) pairs within a given
scene. The key to this capability lies in dividing the signal
propagation process into different stages: direct propagation
and multipath propagation. To model the multipath propa-
gation accurately, which is influenced by both the scene’s
geometric structure and the complex material properties, a
data-driven approach is used, with neural networks learning
the multipath propagation across the LOS points of Tx and
Rx. Fig. 2(a) shows how we compute the propagation stages.
We first calculate the signal from Tx to its LOS points through
distance-related attenuation [2], which are then used as weights
when summing their corresponding multipath propagation
signals generated at each Rx LOS point. The positions of
each LOS point of Tx and Rx are paired to form network
inputs for calculating the multipath propagation signal and the
attenuation coefficient for each Rx LOS point when its signal
is transmitted to the Rx. Finally, we use a model similar to
optical volume rendering [29] to render the signals from all
Rx LOS points into the signal received by the Rx and train
the model using the collected measurements.

Our hybrid architecture enables more effective learning
of multipath propagation, rather than simply overfitting to
the signal distribution of different Tx-Rx combinations. By
training on sparsely sampled data points, our method can
generalize to accurately predict signal strength for novel Tx-Rx
pairs not included in the training set. The following sections
detail how these modules are designed and trained.

A. Multipath Propagation Network

Given a geometric map of the scene (e.g., point clouds or
occupancy grids), learning the signal strength contributed by
multipath propagation presents two key problems:

¢ Generalization to unseen Tx-Rx pairs: How can the
multipath propagation network determine signal strength
for novel Tx-Rx pairs beyond the training data?

« Efficient training with sparse data: How can the
network effectively learn from limited, sparsely sampled
data points?

To address the first challenge, we map each Tx-Rx pair to a
set of LOS points in the scene that are relevant to the multipath
propagation process. These LOS points are then used as inputs
to the network. This transformation ensures that the network
is agnostic to the specific positions of the Tx and Rx. As a
result, the network can generalize to predict signal strength
for unseen Tx-Rx pairs, provided their corresponding LOS
points are covered by those in the training data. To tackle the
second challenge, we design an efficient training architecture
that allows a single data point to contribute to the training
of multiple LOS points. This approach significantly reduces
the need on densely sampled training data while maintaining
prediction accuracy. The details of our method are presented
in the following.



1) Network inputs: To enable the prediction of signal
strength for Tx-Rx pairs beyond the training set, we design
a network with position-agnostic inputs. This design allows
the network to focus on capturing the multipath propagation
characteristics of the environment, rather than being tied to
specific Tx and Rx positions. Specifically, multipath propaga-
tion arises from the complex interactions of radio waves with
scene surfaces. According to the Huygens-Fresnel principle,
each point reached by a wave can be treated as a secondary
source that retransmits the signal. Building on this principle,
we decompose the multipath propagation process into three
sequential stages:

1) Direct path propagation from the transmitter to nearby

visible surfaces.

2) Signal propagation from the visible surfaces near Tx,

acting as retransmitters, to the visible surfaces near Rx.

3) Direct path propagation from visible surfaces near the

Rx to the Rx.

This decomposition is motivated by the observation that
visible surfaces near the transmitter (TX), which receive strong
signals through direct paths, act as critical secondary sources.
Similarly, visible surfaces near the receiver (Rx) significantly
contribute to the received signal via direct radiation. To model
the signal propagation, our approach explicitly computes the
first and third stages using physical models, specifically the
distance-related path attenuation model as introduced in [2]
and in [29]. Meanwhile, the second stage, which captures the
complex interactions between the signal and the environment,
is modeled using a neural network. To effectively train the
neural network for the second stage, it is crucial to construct
a representation that efficiently encodes the structure of the
scene. To achieve this, we map the Tx and Rx positions
to a set of sampled LOS points, which are then used as
inputs to the network. These points are generated by uniformly
sampling rays on a sphere centered at the Tx and Rx positions
and tracing their first hit points on the scene surfaces. The
sampling process ensures that the neural network’s input
captures essential geometric information, while the network
implicitly learns the material properties required to accurately
model multipath propagation.

By using the LOS points of the Tx and Rx as inputs, the
generalization capability of the multipath propagation module
is greatly enhanced. This is because, even for previously
unseen Tx-Rx pairs, their LOS points are largely present
in the training set. By explicitly modeling the direct path
propagation to these LOS points and implicitly modeling
multipath propagation across different LOS points, our method
effectively predicts signal strength even for unseen Tx-Rx
pairs.

2) Training Architecture: We address the challenge of
learning from sparse data by improving the utilization effi-
ciency of each data point. Specifically, each data point con-
tributes thousands of different network inputs during training.
To achieve this, we treat each Tx LOS point as an independent
retransmitter, where the received signal at an Rx LOS point
is calculated by integrating the complex signals from all Tx

LOS points. During the forward process, we iterate through
the LOS points of Tx and Rx, selecting one point from each
set at a time to form a single Tx-Rx LOS point pair as
network input. For each Rx LOS point, the complex signals
from all Tx LOS points are aggregated. These aggregated
signals are then rendered into the final received signal at the
Rx, which is then used for training with the collected data.
This method effectively transforms a single Tx-Rx data point
into thousands of sampled LOS points’ pairs, significantly
enhancing the utility of sparse data. Moreover, to address the
ray cast errors caused by map noise, we perform additional
sampling within a 0.5m range around the intersection of the
Rx sampling rays and scene surface. The learned attenuation
parameters implicitly account for the ray cast errors. The
resulting LOS points of Tx and Rx are denoted as {Tj}
and {R,,s, | rtespectively, where wj, denotes the sampling
direction and s; denotes the index of the additional sampled
points.

We adopt a network architecture inspired by [53], compris-
ing two MLPs: an attenuation network and a radiance network.
The attenuation network predicts the material-related attenu-
ation coefficient at each Rx LOS point. The Rx LOS point’s
position Pg,, ., = (z,y,%) is fed into this fully connected
network, producing an attenuation coefficient 5(Pkasi) and
a feature vector. This feature vector is then concatenated with
the position of a Tx LOS point Pr; and passed into the
radiance network. The radiance network predicts the amplitude
a(Pr;, Pr,, ., ) and phase 0(Pr;, Pr,, . ) of the complex
signal retransmitted by the Tx LOS point to the Rx LOS point.
The positions of both Tx and Rx LOS points are encoded
using hash features [32]. Formally, the multipath propagation
network F is represented as follows:

W Sg

Fo: (Pr,, Pr,..) (5(PR%SI_),S(PT].,PR%SI_)) 1)
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=a(Pr;, Pr

where © learnable and

S(Pr;, Pr
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B. Radio Strength Rendering
After computing the complex signal from each Tx LOS

point, we perform a weighted integration at each Rx LOS
point:

S(Pr,,..) =Y a;-S(Pr,, Pr, ), ¥))
J

where «; is the normalized energy of the direct path atten-
uation from the Tx to the Pr,. Once the integrated signal for
each Pp,, .. is obtained, we accumulate the signals along each
Rx ray sample. This process is similar to volume rendering for
light [29], where the network-predicted & (Pkasi) are used to
accumulate signal along the ray:

h(w)=>_Lg,., (1—exp(or,, . 8(Pr,.))S(Pr,,..)
' 3)
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Fig. 3: An illustration demonstrates the rendering process for
multipath propagation. Each LOS point of the Tx acts as a re-
transmitter. The energy propagated from the Tx to a LOS point
via direct path propagation determines the weight assigned
to that point when combining signals at the corresponding
LOS point of the Rx. After calculating the signals transmitted
through multipath propagation between each pair of Tx and Rx
LOS points via the network, the received signals at each Rx
LOS point are combined with the weights of the corresponding
Tx LOS points. The signal contribution of each ray is then
computed by integrating along its path. Finally, the signals
from all rays are summed to determine the total received signal
through multipath propagation.

where op, . equals the distance between Pg, . and
PR, .., and:
i—1
LkaSi - exp(i Z Ukasn 5(Pkasn)) (4)
n=1

The final received signal by the Rx is computed by inte-
grating the signal across all ray directions w, weighted by the
receiver’s gain pattern G(w):

Rpa = Y G(wg)h(wy) (5)
k

In our application, we use an omnidirectional antenna,
where the gain function G(w) is equal for all directions. Fig. 3
illustrates the computational process of rendering for multipath
propagation.

The previous part computes the signal contribution of
multipath propagation. However, under LOS conditions, the
direct path propagation from Tx to Rx often dominates over
multipath propagation. We calculate the weighted sum of the
direct path energy and multipath energy in these cases as
follows:

RRI‘ = Qps * Rref + (1 - alos) : |RR93| (6)

Here R,.; denotes the reference signal strength of the
Tx, while «y,, denotes the distance-related attenuation factor
associated with direct path loss under LOS conditions and is
equal to O under NLOS conditions.

C. Optimization
We supervise the network using measured signal strength
data RSSIR,:
ﬁenergy - |RR93 - RSSIRI|2 (7)

Additionally, to mitigate the abnormally large signal values
produced by Tx LOS points and prevent numerical instability
after integration, we introduce an energy decay loss:

Laccay = »_|S(Pr;, Pr,,, .l ®)
Our total loss is a linear combination of the above loss:
‘Ctotal - Alﬁenergy + >\2£decay 9

V. SCALABLE AUTONOMOUS DATA COLLECTION

Training the multipath propagation network requires consid-
erable data collection, which traditionally involves deploying
Wi-Fi access nodes across various positions in the environ-
ment. To address this challenge, we propose an autonomous
data collection strategy using a team of mobile robots equipped
with Wi-Fi access nodes. This approach eliminates the need for
labor-intensive manual deployment. Furthermore, since each
Wi-Fi node carried by the robots can function simultaneously
as both a transmitter and a receiver, the autonomous system
enables parallel data collection across multiple regions.

We first analyze the data requirements of the multipath prop-
agation network. Then, we propose a data collection method
that effectively meets these requirements. To autonomous
collect the data efficiently, we define and solve the problem
of cooperative data collection using multiple robots.

To comprehensively train the multipath propagation net-
work, the dataset must capture sufficient information about
multipath signals between mutually non-visible surface points.
To achieve this, every surface point should be paired with all of
its non-visible surface points as input for training. While this
requires a large amount of input data, our framework addresses
this challenge by leveraging each collected Tx-Rx pair to
generate multiple combinations of surface point pairs. This
enables sparse Tx-Rx signal data to effectively cover multiple
mutually non-visible points. As a result, if the LOS points from
all Tx-Rx pairs collectively cover all mutually non-visible
points, the dataset will provide the necessary information for
comprehensive network training.

To construct such a dataset, we propose a visibility-based
scene partitioning method that facilitates efficient data collec-
tion. Specifically, we cluster scene surfaces based on mutual
visibility, grouping mutually visible surface points into the
same region. Tx-Rx pairs are then deployed between every two
regions to collect data. This strategy ensures that each region’s
surface points are paired with those from other regions, cover-
ing possible propagation paths. Since the visibility-based par-
titioning ensures comprehensive coverage of the scene, every
possible interaction between surface points is captured through
these Tx-Rx pairs. This method guarantees that all necessary
multipath components are included in the dataset, ensuring the
network is trained on a wide variety of propagation scenarios.



Consequently, the dataset construction strategy is sufficient for
training a robust and generalized multipath propagation model.
The scene partitioning method is detailed in Sec. V-C.

Building on the scene partitioning method, the data col-
lection task is formalized as ensuring that Wi-Fi nodes are
deployed across all possible pairs of regions. To efficiently
manage this task, we translate it into a collection state matrix
and provide a formal problem definition in Sec. V-A. More-
over, efficient solutions tailored to various robot team sizes are
presented in Sec. V-B, ensuring scalability and practicality for
real-world deployments.

A. Problem Definition

The set of the regions after scene partitioning is represented
as V. A total of n robots equipped with Wi-Fi nodes are
deployed across n regions to collect pairwise data, including
Tx’s position, Rx’s position and signal strength. To monitor
the progress of data collection, we define a collection state
matrix M, where rows and columns correspond to the regions.
Initially, the diagonal elements of M are set to 1, indicating
that data collection within the same region is not required,
while all other elements are initialized to O, indicating that
data collection between those regions is incomplete. When Wi-
Fi nodes deployment between regions ¢ and j is completed,
the corresponding matrix element A (4,5) is updated to 1,
indicating that data collection between these two region is
complete. If communication coverage between ¢ and j is not
achievable, the element is updated to -1. Since robots in the
ad-hoc network function as both transmitters and receivers, the
collection state matrix M is symmetric, satisfying M (i,7) =
M(4,4).

For parallel data collection with 7 robots, the set of regions
occupied by the robots is denoted as C = {v, | v, € V,p =
0,...,n — 1}, referred to as the team configuration. Region
pairs S¢ = {(vp,vq) | pog = 0,....n — 1,p # ¢} are
mapped to elements in the collection state matrix M. Once
all robots complete the deployment, data collection for this
configuration is considered complete, and the corresponding
matrix elements are updated to 1. A schematic illustrating
the relationship between collection state matrix updates and
robot configurations is shown in Fig. 4. After completing
data collection for the current configuration, the robot team
transitions to the next configuration, continues data collection,
and updates the corresponding elements in M. The process
repeats until all elements of M are either 1, indicating com-
pletion, or —1, indicating infeasibility. At this point, the data
collection process is considered complete. Our objective is
to find a sequence of configurations to maximize parallelism
in data collection and minimize transition costs between the
configuration sequence, as detailed in the next subsection.

B. Scalable Solution

To efficiently complete the data collection process defined
above, the deployment strategy focuses on two key aspects:

« Parallelism: To maximize the parallelism capacity of
the n-robot configuration, each transitioned configuration

Team Configuration
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Fig. 4: An illustration showing the robot team configuration
and how the corresponding collection state matrix elements
are updated.

should ideally correspond to elements in M that are O,
avoiding deployment in previously collected region pairs.
« Minimal transition cost: To minimize time wasted dur-
ing transitions between configurations, the total transition
cost of the team should be minimized. The transition cost
between any two configurations is defined as the cost of
the optimal bipartite matching of their robot positions.

We discuss two cases to satisfy the above objectives:

Case 1: n = 2 In this case, each configuration occupies two
regions, corresponding directly to two symmetric elements in
M. The set of all configurations corresponds to all elements
in M except those on the diagonal. Starting from an initial
configuration, the configuration sequence minimizing transi-
tion costs can be solved as a Traveling Salesman Problem
(TSP) on the configuration set [15].

Case 2: n > 2 Here, each n-robot configuration covers
@ elements of M, making the optimal configuration
sequence a combinatorial optimization problem which is NP-
hard. To address this, we use a two-step hierarchical approach:

1) Parallelism Maximization: We formulate the problem
as a set coverage problem. Given a universal set U:

U = {(w) | w0 € Vyu# v} (10)
representing uncollected region pairs, and NV subsets S¢,
we find the minimal subset collection {S¢} that covers
U. This ensures maximum parallelism and minimizes
the number of transitions. Since the size of {Sc} grows
factorially with n, we adopt a greedy algorithm for
practical implementation.
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Fig. 5: A schematic for our visibility-based scene partitioning
method. (a) After segmenting the scene’s surface and obtaining
representative points, we cluster each representative surface
point. A point is added to a cluster if it has visibility to all
surface points already in that cluster. If it lacks visibility to
any point in the cluster, it will not be added. (b) Illustration
of the final partitioning results.

2) Transition Cost Minimization: After identifying the
minimal configuration set, we solve a TSP on the set,
starting from the initial configuration, to obtain the
sequence with the lowest transition cost.

This strategy allows robot teams of various sizes to maxi-
mize parallel data collection while minimizing transition costs.
For the case where n > 2, the solution to the set coverage
problem may not be unique, potentially leading to suboptimal
results. However, practical experiments demonstrate that the
obtained solutions are acceptable for real-world applications.
In real-world data collection scenarios, if two regions do not
exist communication coverage, the robot team reverts to the
previous configuration and re-solves the problem using the
remaining uncollected region pairs as U. This ensures that the
data collection process can continue despite communication
limitations.

C. Visibility-based Scene Partitioning

We divide the scene so that all surface points within each
region are mutually visible. To reduce computation costs prior
to partitioning, the 3D scene is first voxelized to discretize
the space into a uniform grid of voxels. Surface voxels are
then grouped based on euclidean distance to form connected
components. To prevent any single group from becoming
excessively large, PCA-based segmentation is applied: for
large surface regions, the covariance matrix of the 3D positions
of the voxels is computed, followed by eigenvalue decompo-
sition, and the surface is split along the direction of the largest
eigenvalue (principal component). After segmentation, the
average center point of each segmented surface is computed
and selected as its representative point. These representative
points are used in the subsequent scene partitioning process,
reducing computational complexity while retaining essential
structural information.

Using these representative points, we perform clustering.
The process begins with a randomly chosen representative
point. For each cluster, an unclustered point is added if it
is mutually visible with all points in the current cluster and

Train Tx Position

Test Tx Position

Duplex Room

Cave (32m*21m*10m) (16m*24m*8m)

-\

—

)

Maze (50m*30m*2m) Subterranean (78m*51m*2m)

Fig. 6: The simulation experiment scenarios and a schematic
of the training and testing Tx in the room scene.

its distance to the cluster center is less than a threshold D.
Otherwise, the algorithm moves to the next unclustered point
closest to the current cluster center, repeating the process until
no valid unclustered points remain. Once a cluster is complete,
the next clustering iteration begins from the unclustered point
closest to the last cluster center. An illustration of the cluster-
ing process is provided in Fig. 5.

VI. EXPERIMENTS

In our experiment, we first evaluate the performance of the
proposed FERMI framework from two aspects, comparing it
with state-of-the-art (SOTA) methods:

¢ Generalization: We assess the model’s ability to predict
signal strength for unseen Tx-Rx pairs, verifying its
generalization capability across arbitrary Tx-Rx positions.

« Data utilization efficiency: We evaluate the model’s

performance when trained on increasingly sparse datasets,
demonstrating its ability to achieve accurate radio map-
ping with limited training data.

To validate generalization, the model is trained on sparsely
sampled data and evaluated on comprehensively sampled Tx-
Rx pairs from the entire environment. To assess data utilization
efficiency, we progressively reduce the size of the training
data and measure the prediction error on the same test dataset.
Additionally, to evaluate the efficiency of autonomous data
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Fig. 7: Visualization of spatial signal data generated by different methods in each simulation scenario. Ground truth data is

produced by a fixed testing Tx.

collection, we compare our method with existing approaches
under varying numbers of robots, using metrics including the
number of transitions, overall transition costs and computation
time. Finally, we deploy a team of three robots in a real-world
environment to autonomously collect data and train the model,
further validating its practical applicability.

A. Simulation Results

1) Quantitative Results for Signal Strength Prediction: We
compare our methods with existing radio mapping methods
for signal strength prediction on simulation datasets across
multiple scenarios. Specifically, we use Blender software to
create five 3D maps of environments with complex occlusions
and generate signal data using the Sionna ray tracing engine
[16] with default texture and material parameters. To ensure
sufficient training data coverage, each scene is divided into
several regions using our partitioning method (Sec. V-C), and
a random point within each region is selected as the transmitter
(Tx) position. For each Tx, we generate signal strength data
at a resolution of 1 meters. The data from all Txs are then
combined to construct the training dataset.

To evaluate the generalization capability of each method for
predicting signal strength at unseen positions, we randomly

sample multiple Tx positions across the entire scene that are
not included in the training set and generate signal strength
data at the same resolution to construct the test dataset. Fig.
6 illustrates the 3D models of all five scenes and shows the
sampled training and testing Tx positions in one specific scene.

We compare the performance of the following three existing
methods:

1) PropEM-L [8]: This method encodes scene information
using a geometric map of the environment and decodes
the signal strength of Tx-Rx pairs at different locations
through a neural network.

2) Gaussian Processes (GP) [11]: This method uses Gaus-
sian Processes to fit and predict the signal strength of
Tx-Rx pairs at different locations.

3) NeRF2 [53]: A neural radiance field (NeRF) based
method to model the radio radiance field.

In the comparisons, we evaluate the performance of each
method using the mean absolute error (MAE) between the
predicted signal strength and the ground truth. The results are
summarized in Table. I, which shows that our proposed method
consistently achieves the lowest MAE across all scenarios,
with improvements of up to 40%. Furthermore, we visualize
the predicted signal distributions for a specific test Tx position.



TABLE I: MAE of Predicted Signal Strength (dBm)

Room  Cave Maze  Subterranean Duplex
Room
FERMI (Ours) 5.59 5.49 10.52 6.98 11.29
PropEM-L [8] 9.12 9.73 16.32 16.49 18.79
GP [11] 18.18 17.52  25.03 19.14 25.88
NeRF2 [53] 10.09 9.27 17.10 11.61 14.30
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Fig. 8: The mean absolute errors for signal prediction corre-
sponding to different percentages of reduction in the training
set.

The visualization results in Fig. 7 demonstrate that our method
accurately captures the spatial discontinuities in signal strength
distribution, especially in cases of rapid signal attenuation
caused by occlusions and multipath effects resulting from
multiple interactions between the signal and the environment.

2) Ablation Studies: To validate the data utilization effi-
ciency of our method and assess the effectiveness of its module
designs, we conduct the following ablation experiments:

Training with Datasets of Different Sizes Our method
achieves significantly lower errors than benchmark approaches
on the original training set. To further assess its data utilization
efficiency, we evaluate its performance when the training data
is reduced. We evaluate two scenarios and progressively reduce
the percentage of training data to sparsify the dataset. The
model is retrained on each sparsified dataset and evaluated
using the corresponding test data. The results are shown in
Fig. 8.

The experimental results demonstrate that even with ex-
tremely sparse training data, our method shows only minor
degradation in prediction accuracy, and continues to outper-
form baseline methods that use more data. This highlights the
data utilization efficiency of our approach, indicating that it
can achieve satisfactory prediction results even when trained
on highly sparse datasets.

Strength Compensation under LOS Condition In line-
of-sight (LOS) scenarios, the direct path attenuation of the
signal dominates the total received signal strength. Therefore,
we propose a compensation technique to adjust the predicted
strength. The effectiveness of this technique is validated in two
scenarios, with results shown in Fig. 9. The results indicate
that without this compensation, our method tends to under-
estimate the total signal strength in LOS conditions, as the
multipath signals account for only part of the total strength. By
applying the compensation, the prediction accuracy improves
significantly, demonstrating the necessity of this technique.

3) Quantitative Results for Autonomous Data Collection
Planning: To evaluate the efficiency of our planning strategy

Ground Truth

W/ LOS Compensate

W/o LOS Compensate

Fig. 9: A comparison of prediction results with and with-
out Line-of-Sight (LOS) signal strength compensation in our
method.

TABLE II: Quantitative Results of Autonomous Data Collec-
tion

Transition Number  Transition Cost (meter) ~ Computation Time (second)

Ours-3 Robots 88 1464.73 0.07

Ours-9 Robots 10 356.34 5.59

Ours-15 Robots 3 148.57 1.44
Greedy[19]-3 Robots 208 2228.53 1.12
Greedy[19]-9 Robots 105 1125.26 721.24
Greedy[19]-15 Robots 36 449.28 205.38

for autonomous signal data collection, we compare it with a
previous method [19]. This method employs a greedy strategy
for three robots, selecting the configuration that increases
new measurements while minimizing transition cost at each
step. Additionally, it requires a given communication graph,
where the edges and vertices indicate which areas in the
scene need Wi-Fi node deployment for signal collection. For a
comprehensive comparison, we convert our collection matrix
into the communication graph required by this method and
extend its greedy strategy to accommodate multiple robots.
Experiments are conducted in the maze scene, which is divided
into 22 regions. As a result, the data collection matrix contains
231 elements that need to be updated.

Table II presents the number of configuration transitions,
the corresponding transition costs, and the total computation
time for both our method and the benchmark method [19]
under varying numbers of robots. The results indicate that
our planning strategy is highly scalable, maintaining planning
times within a few seconds as the number of robots increases.
In contrast, the benchmark method requires searching through
numerous configurations at each step to identify the transition
that minimizes cost while increasing measurements. As the
number of robots grows, this leads to a significant computation
burden. Additionally, our method effectively reduces unneces-
sary configuration transitions and transition costs by leveraging
parallel cooperation between robots, thereby optimizing task
performance.

B. Real-World Experiments

1) Platform Setup: We use three Agile X Scout Mini robots
as our experimental platform. Each robot is equipped with
a Livox Mid-360 Lidar for perception and uses the method
proposed in [47] to construct point cloud maps and occupancy
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Fig. 10: The scene partitioning result and the configuration
sequence of the three robots.

grid maps. For onboard computation, each robot is equipped
with an NUC i7 computer, while ad-hoc network cards are
used as Wi-Fi access nodes.

Given a set of target region points, each robot employs the
trajectory optimization method and MPC controller described
in [45]. Communication between robots is implemented using
a TCP-based system [55], enabling the sharing of each robot’s
odometry and signal strength data.

2) Results: We deploy three robots in an indoor corridor
environment bounded by 94m x 64m X 3m to perform signal
data collection. The point clouds and a photograph of the
environment are provided in Fig. 1. The scene partitioning
result and the configuration sequence is shown as Fig. 10.
Our method collect comprehensive signal data without human
intervention within 1 hour, resulting in a dataset containing
around 40,000 valid data. Fig. 11 shows signal data collected
when the Txs are deployed in two region respectively. To
address noisy fluctuations of the signal during collection, we
apply median filtering to nearby data points. For regions with
no signal measurements, we perform data augmentation using
the methods described in [8, 31], filling the signal strength with
the minimum measured value (-80 dBm in our experiment).

The collected data is randomly split into 50% for training
and 50% for testing, with the training data ensuring coverage
between every pair of regions. The training data is used to train
our method alongside PropEM-L [8] and NeRF2 [53], and the
mean absolute error (MAE) of predictions is computed on the
test set. The results, presented in Table. 111, indicate that our
method achieves the lowest MAE.
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Fig. 11: Examples for collected signal data.
TABLE III: Results of Real-world Signal Prediction

| Test Set MAE (dBm)

Ours 6.24
PropEM-L [8] 8.52
NeRF2 [53] 9.15

Additionally, we collect dense signal data generated from a
fixed Tx point to perform qualitative analysis. As shown in Fig.
1, the visualization demonstrates that our method effectively
captures the discontinuous distribution of the signal, whereas
the predictions from other methods appear overly smooth.

VII. LIMITATIONS AND FUTURE WORKS

Although FERMI provides a flexible and accurate frame-
work for radio mapping, a few limitations remain. First, our
method assumes a static environment, limiting its applicability
in dynamic scenes. Future work could explore the impact of
scene layout changes on signal propagation.

Second, the approach requires training for each individual
scene. Future efforts could focus on encoding scene informa-
tion to enable generalization across unseen environments.

Third, our method requires a point cloud map of the scene
for scene partitioning and subsequent data collection planning.
Future work could consider planning methods that integrate
data collection with exploration task, enabling simultaneous
execution.

VIII. CONCLUSION

In this work, we propose FERMI, a flexible radio mapping
framework capable of accurately predicting signal strength
in large-scale environments with complex occlusions. Our
proposed hybrid propagation model divides signal propagation
into two explicit physical processes and one implicit process
represented by a neural network that captures multipath propa-
gation. This design enables signal prediction between any two
points in the scene using sparse signal data. Additionally, our
scalable planning method can be deployed on robot teams of
varying sizes, enabling autonomous signal data collection. This
reduces the need for extensive human labor while improving
parallel efficiency through robot collaboration. We hope that
our radio mapping framework provides an effective tool for
communication-aware robot team collaboration.
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