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Abstract—We present a planning and control approach for col-
laborative transportation of objects in space by a team of robots.
Object and robots in microgravity environments are not subject
to friction but are instead free floating. This property is key to
how we approach the transportation problem: the passive objects
are controlled by impact interactions with the controlled robots.
In particular, given a high-level Signal Temporal Logic (STL)
specification of the transportation task, we synthesize motion
plans for the robots to maximize the specification satisfaction in
terms of spatial STL robustness. Given that the physical impact
interactions are complex and hard to model precisely, we also
present an alternative formulation maximizing the permissible
uncertainty in a simplified kinematic impact model. We define
the full planning and control stack required to solve the object
transportation problem; an offline planner, an online replanner,
and a low-level model-predictive control scheme for each of the
robots. We show the method in a high-fidelity simulator for a
variety of scenarios and present experimental validation of 2-
robot, 1-object scenarios on a freeflyer platform.

Code and Videos at https://joris997.github.io/impact_stl/

1. INTRODUCTION

The challenge of object transportation with autonomous
robots is both a relevant and a much-researched topic. This
problem appears in different settings and solutions take on a
myriad of different forms. In this work, we consider object
transportation in the context of space environments, with
robots such as the Astrobee [26] in the International Space
Station, or extra-vehicular robots with tasks such as in-orbit
construction [15] or deorbeting debris [12, 3]. While robots
and objects in land, sea, and air environments are subject to
friction and gravity, robots and objects in space do not locally
suffer from this. When collaborative transportation takes place,
this absence should be utilized to its fullest extent.

We propose a planning and control approach for collab-
orative transportation of free-floating objects where impacts
are the only robot-object interactions and the only way to
change an object’s velocity. An example of such scenario
in an experimental platform with freeflyers is illustrated in
Fig. 1. The advantage of transportation via impact interaction
is its modeling and computational simplicity and its scalability
(both computationally and in robot availability). Compared
to grasping and carrying, this approach also promotes lower
energy consumption as well as increased robot availability,
since the impacts are minimal, instantaneous, and occasional.
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Fig. 1.  An experimental platform with two controllable freeflyers and a
passive object. To transport the object from the top of the figure to the bottom
while avoiding the obstacle, Robot 1 impacts it to make it travel towards the
top left corner, where Robot 2 impacts it to travel towards the bottom left
corner, where it impacts it again to send it towards the right bottom corner
where Robot 2 impacts it to reach its desired final destination. Impact times
are shown as red stars.

Additionally, it prevents the need of a method of connecting
to the object (e.g. via a gripper) as these impacts can occur
between objects and robots of any size and shape.

Using the compact formulation of both kinematic impact
equations and forward reachability of undisturbed friction-
less systems, we are able to model this complex problem
as a Mixed-Integer Linear Programming problem (MILP),
providing global optimality guarantees even in the presence
of complex spatio-temporal goals and constraints. Although
the kinematic impact equations are compact, having them
be accurate is a challenge. To that end, we propose an
impact-robust planner that explicitly maximizes permissible
uncertainty in the impact equation.

Upon deployment, we consider the interplay between the
offline planner, an online replanner and a model predictive
controller. The offline planner synthesizes a motion plan with
simplified point-impact kinematics while the online replanner
locally adapts the motion plan around a pre-planned impact to
consider updated state information of the approaching object
and the physical shapes of the robot and object. Our planning
and control method is shown in a high-fidelity simulator for
a range of transportation scenarios and on an experimental
freeflyer space platform for 2-robot, 1-object scenarios.



Our contributions can be summarized as follows.

e We present an impact-aware planner for multi-agent
systems with spatio-temporal specifications on control-
lable freeflyer robots and passive free-floating objects.
The planner maximizes either model-agnostic robustness
metrics like STL spatial robustness or the uncertainty on
the post-impact state of objects.

e« We then present an impact-aware online planner that
relaxes simplifying assumptions on the impact kinematics
used in the offline planner and considers updated state
information of the free-floating objects.

« We present a model predictive control strategy to execute
the mission in real-time, which we show in a high-fidelity
simulator and on an experimental freeflyer platform.

A. Related Work

There is a significant body of work on collaborative trans-
portation of objects with robots. Examples include multi-robot
formation transport in dynamics scenarios [1] with parameter
and dynamics uncertainty [28]. A distributed control approach
has also been proposed for formation transportation in space
[4]. [9] proposes a game-theoretic approach using robots that
apply either force or torque to the transported object. Closest
to our approach on planning is [10] which considers a reach-
avoid planning problem of an object with rigidly attached
robots.

For scenarios where robots are not rigidly attached to
objects, a large body of work considers impact dynamics
for capturing targets with robotic manipulators [29, 33, 11].
Additionally, impact dynamics are considered in docking
scenarios [18, 21]. We refer to [5], a comprehensive, albeit
older, review paper on on-orbit servicing. In contrast, our
work utilizes simpler impact kinematics, due to our online
replanning strategy, and explicitly utilizes the free-floating
property of objects in space.

Close to our planning and control approach are works on
robot air hockey and billiards, where impacts are explicitly
used in generating desired behavior of passive objects that
float or roll passively. In [13], a hierarchical learning-based
planner and optimization based controller is utilized to play air
hockey against an unknown opponent. [14] and [19] consider
the game of billiards where a search-based planner is used
to pot balls. In contrast to these games, our scenario allows
the robots to replan during execution and to collaborate on
achieving a high-level specification. [32] considers minimal
pokes to place objects in desired location. The presence of
friction makes this problem challenging. We are instead able
to utilize kinematic impact models and forward reachability in
a globally optimal planner.

In the space of spatio-temporal planning and control, our
approach relies on the embedding of STL specifications in
mixed-integer optimization problems [23]. The complexity of
collaborative specifications ensure that conventional trajec-
tory formulations (via constant time discretization) become
intractable. We hence rely on generalizations of these embed-

dings to piecewise-linear curves [27] for objects and Bézier
curves [30] for robots.

II. PRELIMINARIES

Let R, N, and B be the set of real, natural (including
zero), and binary numbers respectively. R> denotes the set
of nonnegative real numbers.

A. System Modelling

The set of robots is denoted by R = {R1, ..., ||} and the
set of passive objects by O = {0y, ..., Ojp|} with § = RUO
the set of all systems, which are assumed to be rigid bodies.
Let zg be the state of system S € S with x5 = [ps, g5, Ds, 4s]
where p and ¢ indicate position and orientation of the system.

As we wish to plan for specific impact times, let
impact(S;,S;,t) € {T,L} be an indicator whether S; € S
impacts S; € S at time ¢. Note that impact(S;, Sj,t) <=
impact(S;,S;,t). With a slight abuse of notation, let
M(zs;,xg,,t) : R* x R” x R>o — R™ be an impact model
operator, capturing the physics of a collision by taking the
states of \5; and S; at impact time ¢ and responding with the
post-impact state of S; (its first argument).

B. Signal Temporal Logic

Signal Temporal Logic (STL) [16] is a formal specifica-
tion language for dynamical systems. An STL formula is
interpreted over real-valued signals qualitatively (the signal
satisfies or violates the formula) or quantitatively (the extent
to which the signal satisfies or violates the formula). Time-
bounded STL over n-dimensional continuous-time signals
x:Rsp — X C R" is defined as follows:

Definition 1 (Time-bounded STL). Let I = [t1,t2] be a closed
bounded time interval, where t1,t2 € R>q,t1 < to. Let p :
X — R be a real-valued function and p = pu(x) > 0 a
Boolean predicate. STL formulas are recursively defined as

pu=pl-o|oNne| U, D

where — and N are the Boolean negation and conjunction
operators and Uy is the time-bounded Until operator.

Formula ¢1U;¢s specifies that ¢ should hold until, within
I, ¢- holds. Additional useful temporal operators can be
defined as $;¢ = T Uy ¢ (¢ holds eventually, within 1), and
;¢ == —¢ (¢ holds at all times within ).

Spatial robustness is a quantitative way to evaluate satis-
faction or violation of a formula by considering the degree of
satisfaction via the value of the predicate function pu:

pp(t, @) = p(x(t)), (22)

p-o(t,x) = —py(t, ), (2b)

Poings (L, ) = min(pg, (¢, ), pg, (L, 7)), (2¢)
Poittrds (t, ) = max (min(p¢2 (r,x), Sren[ig] P (s,x)))

TEt+1
(2d)

The reader is referred to [16] for a thorough analysis of spatial
and also temporal robust semantics of STL.
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Fig. 2. (a) Ilustration of impact kinematics for point masses (according to
Eq. (5)). The dashed and solid line indicate a trajectory of the object and
robot respectively. Green and blue dots indicated endpoints of Bézier curves.
The impact occurs after the first Bézier curve. (b) Impact kinematics for non-
rotating cylindrical objects (according to Eq. (6)). The moving blue object
impacts a stationary green object. Both object’s direction is changed according
to the tangential and normal component of the impact on the boundaries of
the objects.

C. Zonotopes

A zonotope in R™ is a tuple Z =< ¢, G >, where c € R”
is the center, and G € R™** is a set of its k generators. We
use V' (Z) to denote the set of vertices of zonotope Z.

Zonotopes enjoy a range of advantageous properties which
make them excellent candidates for reachability analysis: they
are defined as Minkowski sums of their generators and they are
closed under Minkowski sums and linear transformation [7].
Additionally, it is straightforward to obtain its interval hull as

k

k
Z =< e, diag(>_ g}l Y _ lg7l) >, 3)
j=1

=1

which defines a hyperrectangle. For trajectory planning, these
hyperrectangles can be embedded for reach and avoid behavior
using integer variables in mixed-integer programming.

D. Impact Kinematics

Let ps(t) and pg(t) denote the position and velocity of a
robot or an object and let pg (t) and pZ(¢) denote the pre-
and post-impact velocity for an impact at time ¢. The general
impact model is

pg, (1) = M(pg, (1), b, (1), ). (4)

i

For point masses, impact kinematics can be approximated
by linear relations between pre- and post-impact velocities.
The post-impact velocities can then be obtained via

[mR mo] [I')E] _ [mRi)Reroi)o] )
L =1 |p —e(pr —Po) |’

with its recognizable solution

4+ mp—emg._  (1+eymo .

Pr — ma+ mo Pr mRJFmOpO,
=mPgr +mapy,

4+ (+eymr.  mo—empr.

Po = mpg +mo Rt mpg +mo Po

- m3p;{ + m4p5a
with e € [0, 1] being the constant of restitution relating the pre-
and post-impact velocities, which is a property of the materials
under impact. We use mq, ms, m3, my for short-hand notation
of the mass fractions.

An example of a robot trajectory (solid line) and an object
trajectory (dotted line) of the same mass can be seen in
Fig. 2(a). For e = 1 it is a perfectly elastic kinematic impact,
iLe. pf = P and P, = Pr.

For bodies of a physical size, the pre-impact velocities pp
and p, can be split into a tangent and normal component
under the assumption of non-rotating bodies or no transfer of
rotational momentum during impact. We can then write the
velocity jump as a system of linear equations in the local
frame

mgr Mo 0 0 me;ng/ + moljax/
0O 0 mp O B MRDR
1 —1 0 0 —e(pgyr/ — pax,)
0O 0 0 mo MOPG.

(6)

where ' and 3y’ denote the tangent and orthogonal axis w.r.t.
the plane of impact. The post-impact velocities in the global
frame can then be obtained via a rotation with 6, the angle
between global and local frame,

B

pg = R7(9) [i ] : (7)
Pg .y

A schematic example of point-mass and cylindrical body

impacts with its global and local axis is shown in Fig. 2(b).

E. Bézier Curves

Bézier curves are a popular tool in trajectory planning of
autonomous systems [22, 17, 20]. A Bézier curve is repre-
sented by a polynomial equation and parameterized by a finite
number of control points, its decision variables. Namely, a
Bézier curve r of degree d is constructed and evaluated using
the summation of its d Bernstein polynomials multiplied with
their respective d control points according to

d
r(s) = Z (g) (1—5)0 .+ 50,1, (8
b=0

where s is the phasing parameter, (1 — 5)?bs" is the

d
(s
b’th Bernstein polynomial, and r(*) is the b’th control point.
An example of a Bézier curve with its control points is shown

in Fig. 3.(a). Although Bézier curves are nonlinear in nature,
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Fig. 3. (a) a Bézier curve with its control points (red dots) and convex

hull (shaded blue), (b) a trajectory of robot R; with three Bézier curves.
Note the bounding-box used for collision avoidance, (c) the Bézier trajectory
formulation for objects (first degree Bézier curves) and robots (higher-degree
Bézier curves and continuity conditions). rr, (0) and rg, (1) are the pre-
and post-impact curves of impact 1. rg, (1) and rg, (2) are the pre- and
post-impact curves of impact 2.

the following properties allow us to reason over their convex
over-approximation:

1) Convex hull: the curve r(s) is entirely contained within
the convex hull generated by its control points (),
r(s) € hullf_(r®) Vs  [0,1]. A more conservative
but closed-form overapproximation is the bounding-box
property obtained by using the interval hull, r(s) €
[ming_q (r®)), max{_,(r(*))] which we use to embed
collision avoidance.
2) Endpoint values: the curve r(s) starts at the first control
point 7(%) as s = 0 and ends at the last control point
@) as s = 1.
3) Derivatives: the derivative 7(s) = is a linear
combination of the control points of 7(s) and is again
a Bézier curve of degree d — 1 with control points
) = . (P 0 for b€ Nyg,.._ g1,
Subsequently, the derivatives of the start- and end-point, ()
and 7~V are linear combinations of the control points
of r(s) and the interval hull of 7 is formed as a linear
combination of its control points. This means that smooth,
kinematically feasible, and collision-free trajectories can be
constructed through Mixed-Integer Linear Programming by
returning a finite set of control points of a Bézier curve as
illustrated in Fig. 3.(b).

dr(s)
ds

III. PROBLEM FORMULATION AND APPROACH

We wish to solve the problem of collaborative transportation
of passive objects in a weightless environments by a team of
robots. The transportation tasks as well as the goals for the
system, obstacle avoidance, and possible additional constraints
are specified via STL. The robots interact with the objects via
an instantaneous impact. Formally, let R, € R and O; € O be
controllable robots and uncontrollable objects. We aim to find
a controller up,, VR; € R, such that the robot and the object
trajectories are maximally robust. Furthermore, we require
STL satisfaction, kinematic constraints and smoothness, and
collision avoidance.

A. Problem formulation

We formulate the problem of collaborative transportation
via impact interactions as

min  J(xg,ur,x0), 9
IRi7uRi7IOj

S.L. [XR,XO] ': @, (9a)

X € Vg, X0 € Vo, (9b)

' T
. M(zg, (), 70, (£) 0} if impact(R;, O;, 1)
IR =N 7 . T

Pr, Or, UR, ] otherwise

_ ©9)

i T
. M(zo,(t), xR, (1)) 0] if impact(O;, R;, t)
TOi =\ r . T

po, Yo, 0} otherwise

(9d)
Vi,j € |S|,i # j,,Vt € [to, tf] : ~impact(S;, S;,t) <=
|lps. (£) — ps, (t)[|2 = rads, +radsg,, (%e)

where =5, = [p,0,p,0]7 € R?™ is the state of a system
S; € {O, R}, and x and x¢ denote the conjoined state of
all robots and objects respectively. V and V» denote the per-
missible velocity set of the robots and objects respectively and
radg, the bounding radius of S;. ur, € R™ denotes the control
input of R;. We assume workspace constraints and obstacle
avoidance are captured in ¢ (e.g. Oy, ¢, (zs, ¢ Obs)).

Eq. (9a) ensures that the trajectories of the robots and
objects satisfy the high-level specification. Eq. (9b) are the
velocity constraints. Eq. (9¢) and (9d) ensure the conditional
smoothness and kinematics of the robot and object respec-
tively, dependent on the presence of an impact between a robot
and an object. Eq. (9e) ensures collision avoidance between
robots and objects, except at moments when impact is desired.

T

Example 1. Consider a 2-robot, I-object scenario; R =
{R1,R>}, O ={01}, § = {Ry, R, O1 }. We use a corridor
transportation scenario as a running example, as shown in
Fig. 4(a). The robots in the bottom and top of the figure,
both depicted as a black dots, aim to transport the object
depicted with white details to the green square area in the top
before time runs out, corresponding to an STL specification
o0, = Q[toytf](xol € Xy). Additionally, the robots and the
object should avoid collision with corridor walls, correspond-
ing to STL specification ¢5, = Oy 1 1(x5, € Whee), VS € S.
To transport the object from a static initial position to a static
final position, the plan requires at least two impacts; a throw
and a catch.

B. Approach

We take a hierarchical approach to address the problem.
We define an offline planner that, using simplified kinematic
impact models, can efficiently solve the multi-agent planning
problem with STL specifications via a Bézier curve trajectory
formulation. A part of this plan is when and where robots
impact objects. An online replanner that corrects the plans of



the two Bézier curves leading up to and following an impact.
The replanner considers a more complex impact model and
the updated states of the robots and objects during execution.
Finally, a Model Predictive Controller (MPC) that realizes
tracking of the planned Bézier curves and ensures the pre-
impact conditions to enable the desired post-impact behavior
of the robot.

We describe the offline planner in Sec IV with STL spatial
robustness as the optimization function in Sec. IV-B and an
impact-robust optimization metric in Sec. IV-C. In Sec. V
we describe how this planning problem is implemented as a
mixed-integer optimization problem. The online replanner is
detailed in Sec. VI and the impact-aware MPC in Sec. VIIL

IV. OFFLINE PLANNER

In the offline planner, we use a simplistic point-mass
kinematic impact model which ensures that all constraints
regarding impacts can be encoded linearly. Additionally, for
simplicity, we do not consider transfer of rotational momentum
between impacts. Instead, we abstract the planning aspect of
Eq. (9) to a kinematically constrained geometric optimization
problem. In summary, we make two additional assumptions:

Assumption 1 (Planner Impact Modeling). For the modeling
of the impact kinematics in the planner, the radii Tr, and
ro, of robots R; € R and objects O; € O respectively are
assumed zero, and hence R; and O; are considered points.

Assumption 2 (Planner State Modeling). The state xg, is
reduced to xg, = [ps,, Ds;| for the planner, meaning we ignore
rotation of the robots and objects.

Relaxing these assumptions in the offline planner would
introducing the nonlinear impact model of Eq. (6) which,
for planning, introduces non-convexities, making it difficult
to obtain global optimal solutions w.r.t. the specifications ¢g,.
Inaccuracies introduced by these assumptions will be treated
by the replanner and the controller.

For the robots, we consider integrator dynamics with uncon-
strained (but attenuated, see Sec. V) acceleration inputs and
the possibility of discrete jumps in velocities due to an impact
with an object. As such, we define the impact model operator
for the offline planner as

mSi - emSJ‘ .

(1+e)yms, ._
S P

S]‘ )
(10)
according to the point-mass impact equations in Eq. (5).

Mplanner(xsi 5 :CS]') -

mg, +mg; mg, +mg;

A. Trajectory Formulation

Finding a plan to satisfy Eq. (9) inadvertently includes a
decision on if, when, and with whom to impact according
to Egs. (9¢) (9d) and (9e). Fine-grained constant-time dis-
cretization of the problem would lead to a large number of
possible impact points to be considered; later on in the MILP
formulation of the planner this would project onto a large num-
ber of binary variables. In order to reduce the computational
complexity, we parametrize the trajectory of robots and objects

with Bézier curves. We define a curvature Bézier curve r(s)
and a temporal Bézier curve ¢ := h(s). We then couple these
curves to parameterize the physical trajectory over time. We
base our multi-agent Bézier formulation on the work in [17]
which has been explored for high-level specifications with STL
in [30]. In these works, the authors express a trajectory curve
p via the use of r(s) and h(s) as

(h(s)),

=p
i(s) = p(h(s))h(s), (11)

where p is the physical trajectory of interest, parameterized by
the two types of Bézier curves. The main advantage of this
formulation is that we may generate trajectories spanning long
distances and durations with a small number of Bézier curves
and hence a small number of variables. The computational
speedup in the context of STL was shown in [30].

For objects, r(s) and h(s) are limited to 1st degree Béziers
(straight line curves) as only impacts with robots may in-
stantaneously change their velocity. An indicative example of
the parametrization, in addition to requirements on collision
avoidance is shown in Fig. 3(c). Note that impacts may
only occur at endpoints of Bézier curves and that an impact
subsequently assigns a pre-impact label to that Bézier curve
and a post-impact label to the proceeding curve.

B. Spatially Robust Offline Planner

We will discuss two different options of integrating the im-
pact kinematics into the planner: without and with uncertainty
in the impact kinematics. This section focuses on the former
and the following section on the latter.

We embed the deterministic impact condition using Eq. (5)

-t - -
mr Mmo| [Pr| _ meR+mopo] - -
[1 1] [p‘é] [e(pRp'o) " Pr=Por

(12)
for each curve of the interacting robot and object. Additionally,

if no impact occurs, the Bézier curves of robots and objects
should be smooth via

ip(k+1) =ig(k) <= pr#po,, V0 €O,  (13)
ih(k+1) = ig(k) <= pg # 1o, VR €R,  (14)

Although we do not explicitly consider any uncertainty in
the robot dynamics or impact kinematics, a common choice in
trajectory planning with spatio-temporal specifications such as
STL, is to maximize its spatial robustness. As the Bézier curve
is a generalization of a piece-wise linear trajectory, we can rely
on [27] or [30] to embed STL spatial robustness according to
the definitions in Eq. (2). The spatially robust planner problem
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Fig. 4. An example corridor travel scenario with (a) the problem setup with 2 robots (R; and R9) and one object (O1). The objective is to transport O to
goal while all systems should avoid the red obstacles. (b) the spatially-robust plan from the offline planner in IV-B with two impacts denoted by I1 and I2.
(c) the vertical position over time. (d) the vertical velocity over time. Notice that the velocity (and therefore position) of O can only be changed via impacts
with R1 or Ra. The change in velocity is instantaneous, according to the impact kinematics in Eq. (5).

is formulated as

max

J(rr,,hr, ro;, ho,) = pe(xr,%x0),
T’Ri 7hRi ,T’oj ,hoj

(15)
S.L.
- T
_Mplanner (xRi (t)a TO; (t)) 0:|
TR, = if impact(zg,,vo,,t)
- T
DR, U Ri:| otherwise
) (15a)
- T
[ Myamer(0, (8, 25, (8)) 0]
To, = if impact(xzo,, R, 1)
- T
Po, 0} otherwise
) (15b)
(9a), (9b), (%), VR, € R, 0, € O, (15¢)
where we reiterate that for the planner, zs, = [ps,,Ds,]” and

ps, and pg, can be constructed from the Bézier curves rg,
and hg, according to Eq. (11).

The solution of Eq. (15) ensure that R and O satisfy ¢ with
maximal spatial robustness, adhering to velocity constraints,
avoiding collisions between objects and robots and resolving
the impact times and positions.

Example 2. Consider again the corridor scenario in Fig. 4(a).
The initial and final static positions for Ry and Rs are [1,0]
and [8, 0] respectively. As we maximize the spatial robustness
of ¢ = /\Si ¢s,, O1 is pushed by Ry to move towards
the goal, maximizing the distance the walls and the goal’s
boundaries (py = 0.4m). Ra catches Oy and brings it to
a standstill. Fig. 4(b), (c) and (d) show how smooth Bézier
curves and piecewise linear curves construct the robot and
object trajectories. At collision, the velocity of the robot and
object is changed instantaneously.

C. Impact-Robust Offline Planner

The spatially robust planner can accommodate uncertainties
arising in the execution of the planned trajectory in terms of
STL spatial robustness. This model-free robustness metric is
not explicitly related to the most significant contributor of un-
certainty; the impact kinematics. To address inaccurate track-
ing of the pre-impact trajectory (in position or velocity), the
kinematic model assumptions, or inaccurate model constants,
we introduce the impact-robustness term &, which captures
the permissible uncertainty in the post-impact velocity of the
objects.

First, consider uncertainty in the initial position of an
object O, represented as an initial set Xy contained by the
zonotope Zp,x, C R™. By ensuring kinematically feasible
robot trajectories leading up to the desired impact with O upon
execution we ensure that the robot can generate the desired
post-impact state on O for all possible states xo € Zp x,.
If we consider an interval-hull overapproximation 207 x, (via
Eq. (3)), this amounts to doing so only for extremal vertices
according to the following Lemma.

Lemma 1. Let Z be a interval hull zonotope of zonotope Z.
If for all v € V(Z) there exists a trajectory T g, (to : tf) that
intersects v at t¢, then for all Vx € Z there exist a trajectory
that interests x at t;.

Considering an impact on all extremal vertices v € V(Z)
requires the creation of 2 Bézier trajectories, as this is the
number of vertices of an n-dimensional interval hull.

Let p,, denote the position at an outer vertex v € V(Z ) of
the interval hull zonotope of Z, we then obtain the kinematic
impact equation Vo € V(%)

g = PR P00 < Pug = Puo g
wR Do r> otherwise,

P mgp;Rerm;O +4, <= Pur =Puo (17
.0 Dy.os otherwise.



The uncertainty term § represents a deviation from the nominal
post-impact velocity of the object. The remainder of this
section is devoted to formulating the planning problem so that
the optimization metric in Eq. (9) is to maximize &, i.e. the
optimal plan is the most robust with respect to post-impact
velocity uncertainty.

For the uncertainty propagation of the uncertain set 207 Xa
after impact, we use zonotope propagation on each vertex v €
Z0o,x, with the uncertainty § in the post-impact velocity

Pv,0

< 5 ,diag(0,0,6,8) >, <= p, g =P, 0
+ v,0
Zv,O - p
< |79 zerosnxk >, otherwise,
Pv,0

(18)
which ensures that uncertainty in the post-impact velocity
translates to velocity and spatial uncertainty in the state
propagation

- _ JAAt o+ AAt ANt
Zyo=€""Z, o=<e""ce"7G >,

where ¢ and G are from Eq. (18), dependent on the impact
condition. Since the system under consideration is a double
integrator without friction, as it is a floating object in space,
we can define the matrix exponential as e42t = (I 4+ AAL).

Zyo=U+AAYZS 5 =< (I + AAt)e, (I + AAHG > .

19)
Note that in the trajectory formulation in Eq. (11), At is
the duration of the temporal Bézier curve, h(s), which is
a continuous variable. This means that as At, p, o, Py,0,
and ¢ are continuous variables, Eq. (19) introduces bilinear
constraints. We remedy this by choosing a constant time-
discretization for the objects.

We continue this forward reachability process for all trajec-
tory curves by obtaining the pre-impact interval hull 25 B
Z;O,Vv € 207X0 using Eq. (3). Then, the forward reacha-
bility procedure repeats itself for all impacts and non-impacts
according to Eqs. (17) and (18). An example of this procedure
is schematically shown in Fig. 5.

The impact-robust planner problem is then formulated as

max  J(rg,, hr,,70,) =6, (20)
rRi 7hRi ,T’oi
s.t.
" T
. [Mplanner(xv,Ri (t)a (RS ZO]‘ (t)) 0:|
LTy,R; — T
|:p’U,Ri u’U,Ri:|
(20a)
[Mplanner(v € Zoj (t)a Ty, R; (t)) 0:| '
o, — 4 LTt E 00
[Up S Zoj 0}
(9a), (9b), (9e), (20c)

where vy, refers to the velocity states of the vertex v ¢ Zoj.
Notice that the impact-robust planning problem in Eq. (20)

does not optimize for the duration of the object curve (ho,) but
does face the challenge of increased overall curves compared
to the spatially robust planning problem in Eq. (15).

Example 3. Consider again the corridor transportation sce-
nario. The initial state of the object is now defined as a
bounded set, Zp, x, = ZAOLXD. As we maximize the iAmpact-
robustness, 6, we consider how, from each v € Zo, x,,
uncertainty in the post-impact velocity translates to spatial
and velocity uncertainty in the next pre-impact zonotope.
The increase from ZAOIVXD to 251 is shown in Fig. 5. This
also highlights that we consider 2™ trajectories of the robots
for the feasibility Vx & ZOI,XD according to Lemma. 1.
A second impact with Ry, while also introducing a post-
impact uncertainty, allows redirecting the object. This kind
of behavior is implicitly embedded via the impact-robustness
metric § and not apparent when maximizing a model-free
robustness metric.

V. MILP ENCODING OF THE OFFLINE PLANNER

Given the planner from Sec. IV, we present its MILP
encoding. We detail how the constraints in Eq. (9a)-(9e) are
embedded in the offline MILP planner and how accelerations
of the robots can be attenuated using quadratic cost terms.

1) Specification ¢: For the satisfaction of ¢ for xp and
X0 in Eq. (9a), we refer for details to [27] and [30]. The key-
takeaway is that each Bézier curve is assigned a robustness
value w.r.t. space- or time-robustness, p,(xs;) or O,(xs;).
Using the recursive definitions in Eq. (2), the robustness
of trajectory zg, can be determined. The propagation of
robustness through ¢ is reliant on min and max operators
over relevant time intervals I, which can be encoded exactly
in MILP optimization problems. Stay-in behavior for a convex
polytope Rol can be encoded as

nfaces d
zs € Rol <— (N N\ Hr(H <bh),
f=1j4=0
VieNgn-1y), 2D

where nf# denotes the number of faces of the Rol polytope
in the linear inequality form, Hx < b and d denotes the degree
of the Bézier curve. Additionally, collision avoidance with
Rol can be encoded by ensuring that all control points of
a Bézier curve are outside at least one surface of Rol

nfaces d
zs ¢ Rol <— (\/ N\Hr(H > bF),
f=137=0
Vi€ Non-1), (22)

where the disjunctions over the faces of the objects are
encoded via the well-known big-M method.

2) Dynamics and Impacts: The integrator constraint in
Eq. (9¢) and (9d) is apparent via the construction of the
trajectories in Eq. (11). For modeling of the impact kinematics,
we keep track of variables zr o) € B(NrxNo) indicating
whether curve N; of robot R has an impact with N; of
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Fig. 5. An example corridor travel scenario with (a) the problem setup with 2 robots (R1 and R2) and one object (O1). The objective is to transport O1 to
goal while all systems should avoid the red obstacles. (b) the impact-robust plan from the offline planner in IV-C. Three planned impacts are indicated by I,
I> and I3. Instead of a deterministic state for Oy as in Fig. 4, the post-impact states are now represented by zonotopes and the robot trajectories consider the
traversal to all extremal vertices. (c) the vertical position over time. Impact I3 at ¢ & 45s creates a decreasing funnel indicating that the overall uncertainty
in the system can be reduced by additional impacts (as all v € Zp have a unique impact). (d) the vertical velocity over time. Notice that the velocity (and
therefore position) of O can only be changed via impacts with Ry or Ry and that any impact between O and R; introduces the propagation of a funnel
due to the uncertain post-impact term §. Note the constant time duration of of the zonotope segments of the object in (c) and (d).

object O. We can use these variables to embed conditional
smoothness and impact conditions

b= ify = (b + 1) =h D@
O3+ 1) = 970 (3), Vi € Nio v—_g,

<= zro)li,j] = L,VO € O,Vj € No), (23)

indicating that this smoothness constraint is only enforced if
this robot’s curve does not intersect with any curves of any
object. In a similar conditional manner, we embed the impact
conditions

=miPg +Mapy <

(WG4 1) = my b @)+ mahly ™ ()

(45 G+ 1) =m0+ marg V().
Vi € Ny n_2], <= zroli,j] = 1),

Pr(7)

(24)

where, for the Impact-Robust planner, this is performed Vv €
V(Zo.x,) and the robustness term & is added.

3) Velocity Bounds: Velocity constraints in Eq. (9b) can
be encoded due to the bounding-box property of the control
points of Bézier curve ¢ of system S

FgEV = (il(i)<j)is <F(i )(J) < h( )(J)

Vi € Njg,n-1),VJ € Ny, ..,dfl])a (25)

where ig and g are the velocity lower- and upper-bound
given by the user or physical properties of the robot.

4) Collision Avoidance: As trajectories are parametrized
by Bézier curves or Zonotopes, collision checks between a
robot at time ¢ and an object at time ¢ relies on checking the
intersection of the entire curve for which ¢ € [hg), hg)] and

€ [hgj), hgl)]. This is in sharp contrast with the requirement

that robots and objects should impact in order to generate mo-
tion of the objects!. A heuristic best-effort collision avoidance
approach is to indicate pre- and post-impact Béziers and not
constrain collisions on these curves.

We found however that this led to significant additional
complexity in the MILP as well as requiring additional
heuristics. To this end, we only ensure collision avoidance
between robots and between objects and defer any collision
avoidance between robots and objects to safety constraints in
the controller. If the trajectories of S; and S; are parametrized
by Bézier curves (e.g. objects and robots in the best-case
planner or robots in the impact-robust planner), we can ensure
collision avoidance with

||p5i(t) 7p5j(t)||2 <rad5i +rad5].,Vt <—
(box(rs, (k) & B nbox(rs, (1)) & Bas ' = &,
Vk, 1 € Non-1), <= h(k)Nh(l) # @), (26)

where B¢ denotes the infinity-norm ball with radius rad. If
S; and S; are parametrized by zonotopes (e.g. objects in the
impact-robust planner), we can ensure collision avoidance with

llps (t)
(box(Z4 (), Z3, (k) @ Bas ™ Nbox(Zg, (1), Z5 (1)) @ Ba
Vk,l € Nig 1], <= Bk O (D) 7 @), @N

7p5.(t)||2 Zrs, +Ts;, Vi <—

rad, s;

with the zonotope interval hull overapproximation ZASI. B
Zy,s; via Eq. (3). All collision avoidance equations are there-
fore sound but conservative.

!'Specifically, unless either the robot or object velocity is zero and the
restitution coefficient, ¢, is 1, post-impact bounding boxes are guaranteed
to intersect, regardless if the physical systems do.



5) Acceleration Attenuation: As mentioned in Sec.III,
while the Bézier trajectories can be arbitrarily smooth and
adhere to position and velocity constraints, any constraint
on higher-order derivatives leads to non-convex equations
(according to the derivative of Eq. (11)). As such, we add
the potential to attenuate acceleration by the quadratic cost

N—-1
J(Tsiahsi) - Z 7:S«;(lf)TC?NISi (k) + h51 (k)Tth51 (k)a

= (28)
as described in [17]. The introduction of this cost term makes
what was a Mixed-Integer Linear Program into a Mixed-
Integer Quadratic Program, adding computational complexity.

VI. ONLINE TWO-BODY IMPACT PLANNER

A significant assumption in the offline Mixed-Integer Prob-
lem (MIP) planner in Sec. V is that collisions happen between
point masses. The reason for this assumption is that for
point masses, all impact conditions are linear, enabling glob-
ally optimal solutions with spatio-temporal tasks via mixed-
integer programming. However, upon execution of the plan,
the physical sizes of the robots and objects need to be taken
into account via Eq. (6). Additionally, changes in the object
position and velocity require careful replanning in order to
generate the desirable post-impact velocities obtained from the
MILP planner.

To that end, we consider an online planner that, given the
currently observed position and velocity of an object, and
the desired post-impact velocity of the object, recomputes the
Bézier curves before and after impact. We enable the replanner
when the robot is on a pre-impact Bézier curve and the object
is on a free floating segment towards that impact. We formulate
the replanning via a Quadratic Program (QP)

min ir(5)TQir(s) + hr(s)TQihr(s) + 8, + 65, (29)

st [zr(te), #r(to)] = [2"F (to), £ (o)), (29a)
[zr(ts), 2r(ty)] = [ (t5), 2 (2], (29b)
||z & (timpact) — T (timpact) |3 = Gp, (29¢)
|14 & (Fimpact) — £55° (timpac) I3 = 3 (29d)
Eqgs. (9b), (29e)

where %o, t5, timpact are the start of the pre-impact Bézier, the
end of the post-impact Bézier and the planned impact time
respectively, precomputed by the offline planner. We obtain
x%’s and :'c%’s from solving Eq. (7) (see Appendix. A) using

predicted pre-impact states of the object

o (timpact,i) - ZEO (t) + 'EEO (t) (timpact,i - t);

des =~ . ]
cdes xO,iJrl - xO(tlmpact,z)
.CCOJ' - + . t o

impact,2+1 ~ limpact,?

where #(t) and % (t) are estimated positions and velocities
of the object at the current time of replanning ¢, o (timpmyi
denotes the estimated position of the object at the impact time,

x%’fi 1 denotes the desired position of the object at the next

impact from the offline planner, and g'ca ; s the desired position
of object O at impact ¢ to ensure this behavior. It is g'cg , which
is one the left-hand side of Eq. (7). Cost terms (29¢) and (29d)
then ensure that at time fjypact, the robot impacts to ensure
minimal deviation from the solution of Eq. (7).

Although the problem in Eq. (7) is non-convex, the offline
MIP planner provides excellent initial guesses on 6 and pg In
contrast to the offline MIP planner, this recomputed online plan
considers the physical sizes of objects and robots as shown in
Fig. 2. For validation, we include workspace constraints in
Eq. (29) via Eq. (21).

Remark 1. Not considering ¢ in Eq. (29) means that STL
satisfaction is not guaranteed upon execution. Based on the
reference trajectories from the offline planner, the execution
realizes desired pre-impact positions and velocities of the
objects at the next impact, at the cost of accurate tracking
of the Bézier curves of the robots, whether or not satisfaction
of ¢ is dependent on bounded-error tracking of the original
planned trajectories.

VII. IMPACT-AWARE MPC

We now consider the real-time control of the robots such
that Eq. (9) may be solved on physical free-flying platforms.
First, we consider the following rigid body force and rate
model of a free-flyer

p=u, (30a)
o= “R(g)TF, (30b)
m
1
q = 5=, (300)

where the control input vector u, for the planar case, is defined
as u = [FT,77]T ¢ U C R® where F € R? and 7 C R?!
are applied forces and torques in the body frame. We refer
to App. A for more details on the robot properties. For the
object, we consider Eq. (30) without actuation, e.g., p = v,
¢ = 1Z(¢)w with equivalent model properties.

The low-level MPC that controls the robots ensures control
actuation minimization, accurate tracking, collision avoidance
constraints, and the desired post-impact velocities of objects.
We define the low-level Nonlinear MPC problem as

JH(E(R)) = min J(z(n|k), u(n|k)), €29
st. x(m+ 1k) = g(z(mlk),u(mlk)), (31a)
z(mlk) € X, (31b)
u(m|k) e U, Ym € N[gy]\[,l], (31c)
2(0)k) = z(k).¥n € Njg 1, (31d)

where the discrete-time dynamics, g(xz(m|k), u(m|k)), con-
sider the impact according to

e 7]

T
RKA4( [Eq. 30} ), otherwise

if ¢, =

timpact

g(z(mlk), u(m|k)) =
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Fig. 6. Simulation results of the corridor travel scenario. The initial setup and planned trajectory are shown in Fig. 4 and 5 respectively. On the left is the
spatially robust- and on the right the impact-robust planner result. (a) the executed trajectory. (b) snapshots of the simulation where the robots have moved
from low to high opacity instances. The impacts are highlighted by the red stars. (c) the vertical position over time with the red dotted line indicating the
preplanned object position. (d) the vertical velocity over time. Note that the velocity change of O is instantaneous due to the impact with Ry and R».

where RK4 denotes the integration of the continuous dy-
namics in Eq. (30) with the Runge-Kutta 4 scheme. The cost
function, J(z(n|k),u(n|k)) for Bézier tracking is detailed in
Appendix. B. The MPC scheme ensures accurate tracking
of the (re)planned Bézier curves under the planned impact
occurrence. An impact detector is used to ensure that the pre-
or post-impact stage of a robot w.r.t. the object is accurately
considered in the controller and online planner. We change the
weights in ¢} and ) based on whether the impact is in the
MPC horizon and whether the state & is before or after the
impact. Details are shown in Appendix. B.

VIII. SIMULATIONS AND EXPERIMENTS

In this section, we present high-fidelity simulator results and
real-world experiments on the ATMOS freeflyer platform [24].
Due to the fact that in our simulator experiments we run
the entire software stack existing on the robot (Software-
In-The-Loop, or SITL), we use the MPC weights in Sec.B
for both simulations and experiments. Position and attitude
measurements from either Gazebo or a motion capture system
are fused with IMU data using an EKF onboard the low-level
PX4 flight controller. After solving the MIP with Gurobi [8],
all replans and MPCs are solved using Casadi [2] run centrally
on a laptop with an Intel Core i7-14700HX CPU and 32Gb of
RAM. The MPC sends force and rate commands to the low-
level PX4 flight controller, either physically on the robot over
a Wifi6 network or on a simulated PX4 on the laptop. For all
scenarios we introduce the quadratic acceleration attenuation
cost term in Eq. (28).

Code and Videos at https://joris997.github.io/impact_stl/.

A. Simulator Results

We perform simulations in the high-fidelity Gazebo sim-
ulator. We simulate the entire software stack of the freeflyer
robots used later in the experimental results. For two scenarios,
we qualitatively compare the model-free spatially robust plan
and the impact-robust plan. From the impact-robust plan,

which has Bézier curves for all outer vertices of the zonotope
representing the state of the object, we interpolate these Bézier
curves to obtain a nominal motion plan.

1) Corridor Scenario: First, we consider the running corri-
dor example where object O; is to be transported between two
robots. The planned trajectories for this transportation scenario
have already been presented in Fig. 4 and 5 for the spatially
robust and impact-robust optimization metrics respectively. We
define Ry, R, and O; as the two robots and object with
initial and final conditions: R4 (0) = [1,1], R1(100) = [1,1],
R5(0) = [1,9], R2(100) = [1,9] and O1(0) = [1,2]. The
overall specification is for the object to reach a goal region at
100 sec. and for all systems to avoid obstacles.

@ = Opnoo,100) (Po, € goal) /\ Ojo,100](Ps; € Wrree),
268

where the goal region is shown in Fig. 4 and 5.

For the Spatially Robust Planner the simulation results of
Fig. 4 are shown on the left in Fig. 6. Note the replanned
trajectory, especially apparent for R; at ¢ ~ 5. The point-
mass assumption from the offline planner has to be relaxed
and generating the desired pre-impact velocity of R; requires
moving backwards to get more distance between R; and O;.
Notice that R, also replans and, as shown on the most-left
sub-figure, counteracts the horizontal deviation of (O; by a
horizontal deviation in the impact.

For the Impact Robust Planner the simulation results of
Fig. 5 are shown on the right in Fig. 6. Notice that after the
second impact, O; reaches the goal with a non-zero velocity.
In contrast to the spatially robust planner, where the non-
zero velocity was not planned, here this post-impact velocity
is specifically taken into account w.r.t. the satisfaction of ¢
(indicated by the solid red line being between the dashed red
lines). The maximal uncertainty in the post-impact velocity
is 6 = 0.019" denoting that after any impact that occurs, a
positive or negative deviation of 0.019 meters per second may
occur (both in the x and y direction).
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Obstacle avoidance scenario where object O needs to be moved from the top of the red obstacle to its bottom. (a) the preplanned trajectory with

the impact-robust MILP planner, § = 0.0055%. Three impacts are planned. The post-impact uncertainty over the first impact makes the deterministic initial

state an uncertain state for the next impact, denoted by a zonotope interval hull Zol (b) snapshots from the simulator. The impacts are highlighted by the red
stars. (c) the executed trajectories, indicating the replanned trajectories to accommodate the physical sizes of the robots and object and their updated state.

2) Obstacle Avoidance Scenario: We now consider the
specification to bring an object from an initial state to a final
state via impacts with two other robots. The environment
is shown in Fig. 7. Consider again R;, R, and O; with
initial and final condition: R;(0) = [9, 5], Ry(150) = [9,1],
R5(0) = [1,7], R2(150) = [1,1], and O1(0) = [5.5,5]. The
overall specification is

¢ = 0[0,150] (pol € goal) /\ D[o,lso] (psi ¢ Obs),
S5; €S

where the goal and obstacle are shown in Fig. 7 and 8.

For the Spatially Robust Planner in Fig. 7, notice that both
the robot and the objects try to maximize the distance to the
wall and that the object proceeds towards the center of the goal
region. Notice however, that the distance to the wall is larger
than at the initial position of the object as the [}, 150) considers
the minimal distance in the time-horizon. Upon execution, a
significant replan w.r.t. the offline plan is necessary to steer
the object from top left to bottom left. This is due to the fact
that for point masses with e = 1, the velocities will simply
swap (according to Fig. 3). However, for the physical bodies
and the real restitution coefficient on the robot, a significant
stopping force is required to remove the horizontal velocity
of Ol.

For the Impact Robust Planner in Fig. 8, notice that the
offline planner plans three impacts. It is apparent that the addi-
tional fourth impact in the goal region for the spatially robust

planner will not affect the overall robustness 6 = 0.00557" as
the limiting factor is the vertical traversal. Note in the executed
trajectory that Rs needs to overtake (O, with which it has
impacted. A Control Barrier Function ensures safety during
these kind of maneuvers.

B. Experimental Results

We now perform hardware validation on the freeflyer plat-
form. The platform floats via three passive air-bearings located
beneath the robot and is (ignoring air friction) weightless in
the plane. It is actuated by 8 solenoid air valves, actuated at
a frequency of 10Hz. For details on the entire experimental
setup, we refer to [24].

Although the platforms are not subject to any significant
friction due to its floating and low velocities, any unevenness
in the floor will significantly alter a free-floating object’s
trajectory. To that end, we run a velocity-keeping MPC on
the object, detailed in Appendix. C.

1) Throw-and-Catch Scenario: We perform a simple throw-
and-catch scenario, not unlike the corridor scenario we per-
formed in simulation. For clarity, we consider an initial state
of the robots that is different from the object in both directions.
Consider again Rq, Rs, and O; with initial and final condition:
R1(0) = 1[0,0.5], R1(30) = [0,0.5], R2(0) = [0,3.25],
R2(30) = [0,3.25], and O1(0) = [0.5,1.5]. The overall
specification is

¢ = Ojz0,30 (Po, € goal),
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Fig. 10. Experimental results of the simple object transportation scenario
in Fig. 9. (a) the executed replanned trajectories from the online replanner
in Sec. VL (b) the vertical position over time, notice the deviation from the
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The Spatially Robust Planner results are shown in Fig. 9
and the experimental results in Fig. 10. Notice that, similar
to the corridor scenario with the spatially robust planner,
two impacts are planned that throw and catch the object.
Again, replanned trajectories take a different approach that the
nominal plan to account for the physical sizes of the robot.
Notice in the velocity plot in Fig. 10 that the post-impact
velocity of O; is less noisy but deviates slightly. This is due
to the velocity-keeping MPC on O;. To ensure an accurate
replan for the catch by Ra, we estimate O1’s velocity over a
pre-specified duration (4 seconds in this experiment).

2) Pong Scenario: We consider a more complex scenario
where an object should visit multiple areas of interest consecu-
tively. The initial and final condition are: Ry (0) = [0.5, —1.0],
R1(100) = [0.5,1.0], R2(0) = [3.5,—1], R2(100) = [3.5,1]
and O1(0) = [1.25, —0.75]. The overall specification is

¢ =10,100(Po, € B) A <0100 (Po, € CIN
100,100 (Po, € D),

The Spatially Robust Planner results are shown in Fig. 11.
Note that the offline motion planner resolves the ambiguity in
which order to satisfy $ro 100 (Po, € C) and $ro.190)(Po, €
D) based on the location of the areas and the robots. As
we maximize the spatial robustness of ¢, O plans to visit

each region in its center. The execution shows the significant
alterations to the preplanned motion plan, highlighting the
necessity of the replanner.

We notice a significant deviation in the planned trajectory
for O1. We hypothesize that this is caused by using a constant
restitution coefficient and that preplanned impact times are
held constant. Extending the impact time after the first impact
could ensure that O; achieves a greater spatial robustness.

IX. LIMITATIONS

Our impact-aware planner, replanner, and MPC is plan-
ning robust trajectories while considering online adaptation
to changing circumstances. However, it is not without its
limitations, and we highlight several here.

First, while the online replanner could take on different
forms to consider different robot and object shapes, the current
implementation is limited to 2D circular robots and objects.

Additionally, while the MILP planner is robust to uncer-
tainty in the post-impact velocity of objects, this is only
with respect to the idealized kinematic impact model. The
model-based robustness metric § therefore only relates to an
abstraction of the true model-based robustness. In reality, there
are complex impact dynamics at play that we do not consider
in the MILP planner or in the replanner. The effect of this is
apparent in the Pong scenario in Fig. 11.

Thirdly, the replanner does not consider the specification
¢ in its replanning strategy. Doing this could ensure that
the updated plan is minimally violating [25] but it would
reintroduce binary variables (or non-convexities [6]) leading to
a centralized formulation that is too computationally expensive
to reliably update on the fly. Now, robots may unnecessarily
violate their specification, ¢, , to accommodate a post-impact
velocity for an object, determined by the offline planner.

Lastly, the Bézier parametrization for the robots is unable
to provide dynamically feasible trajectories as acceleration
constraints would be non-convex [31]. Instead we indirectly
penalize accelerations via the cost term in Eq. (29). We further
limit dynamic feasibility concerns via lower-bounding h R, and
conservative velocity constraints V5.
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from the spatially robust planner (with an additional cost term for acceleration attenuation) (b) snapshots from the hardware experiment. The impacts 4 planned
impacts are denoted by red stars. (c) the realized positions w.r.t. the specification ¢. The spatial deviations make the specification difficult to satisfy, motivating

the robustness metrics.

X. CONCLUSION

In this paper, we have proposed a solution to the complex
problem of collaborative transportation of passive objects
in space. We have shown how the lack of gravity can be
effectively utilized for synthesizing minimal interaction trans-
portation by instantaneously changing an object’s velocity
via impacts with controllable robots. The absence of gravity
then allows for passive floating through space, until another
impact changes its velocity. We have also shown how an
impact-robustness metric is able to implicitly generate de-
sirable behavior when uncertainty in impact dynamics are
considered. We have validated the conjoined offline planning,
online planning, and low-level control approach in high-
fidelity simulation examples and on hardware.

Future work will involve generalizations to objects and
robots of different shapes, replanning with velocity matching
instead of impacts (for fragile objects) and replanning while
considering minimally violating the high-level specification.
Additionally, we wish to address the scenario of on-orbit
servicing by considering orbital dynamics in our approach.
An additional avenue is the use of online impact parameter
estimation to iteratively refine the kinematic impact model.

XI. ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. The authors
are also affiliated with Digital Futures. The authors would like
to thank Pedro Roque, Elias Krantz, and Tafarrel Firhannoza
Pramono for their help with the experimental validation.

REFERENCES

[1] Javier Alonso-Mora, Stuart Baker, and Daniela Rus.
Multi-robot formation control and object transport in
dynamic environments via constrained optimization. The
International Journal of Robotics Research, 36(9):1000—
1021, 2017.

[2] Joel AE Andersson, Joris Gillis, Greg Horn, James B
Rawlings, and Moritz Diehl.  CasADi: a software

framework for nonlinear optimization and optimal con-
trol. Mathematical Programming Computation, 11:1-36,
2019.

[3] Vincent Dubanchet, David Saussié, Daniel Alazard, Car-
oline Bérard, and Catherine Le Peuvédic. Modeling and
control of a space robot for active debris removal. CEAS
Space Journal, 7(2):203-218, 2015.

[4] Hamed Farivarnejad, Amir Salimi Lafmejani, and Spring
Berman. Fully decentralized controller for multi-robot
collective transport in space applications. In 2021 IEEE
Aerospace Conference (50100), pages 1-9. IEEE, 2021.

[5] Angel Flores-Abad, Ou Ma, Khanh Pham, and Steve
Ulrich. A review of space robotics technologies for on-
orbit servicing. Progress in aerospace sciences, 68:1-26,
2014.

[6] Yann Gilpin, Vince Kurtz, and Hai Lin. A smooth
robustness measure of signal temporal logic for symbolic
control. IEEE Control Systems Letters, 5(1):241-246,
2020.

[7]1 Antoine Girard. Reachability of uncertain linear sys-
tems using zonotopes. In International workshop on
hybrid systems: Computation and control, pages 291—
305. Springer, 2005.

[8] Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

[9] Nan Han, Jianjun Luo, and Lijun Zong. Cooperative
game method for on-orbit substructure transportation
using modular robots. IEEE Transactions on Aerospace
and Electronic Systems, 58(2):1161-1175, 2021.

[10] Yunhao Hu, Wei Zhang, Hao Wen, and Haiyan Hu.
On-orbit transportation with non-conserved momenta by
cooperative space robots. Advances in Space Research,
74(10):5179-5191, 2024.

[11] Panfeng Huang, Dongke Wang, Zhongjie Meng, Fan

Zhang, and Zhengxiong Liu. Impact dynamic modeling

and adaptive target capturing control for tethered space

robots with uncertainties. IEEE/ASME Transactions on

Mechatronics, 21(5):2260-2271, 2016.

Steffen Jaekel, Roberto Lampariello, Wolfgang Rackl,

Marco De Stefano, Nassir OQumer, Alessandro M Gior-

[12]



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

dano, Oliver Porges, Markus Pietras, Bernhard Brunner,
John Ratti, et al. Design and operational elements of
the robotic subsystem for the e. deorbit debris removal
mission. Frontiers in Robotics and Al, 5:100, 2018.
Julius Jankowski, Ante Mari¢, and Sylvain Calinon. AiR-
LIHockey: Highly Reactive Contact Control and Stochas-
tic Optimal Shooting. arXiv preprint arXiv:2401.14964,
2024.

Jean-Francois Landry, Jean-Pierre Dussault, and Philippe
Mahey. A heuristic-based planner and improved con-
troller for a two-layered approach for the game of bil-
liards. IEEE Transactions on Computational Intelligence
and Al in Games, 5(4):325-336, 2013.

Delun Li, Lou Zhong, Wei Zhu, Zhipeng Xu, Qirong
Tang, and Wenhao Zhan. A survey of space robotic
technologies for on-orbit assembly. Space: Science &
Technology, 2022.

Oded Maler and Dejan Nickovic. Monitoring temporal
properties of continuous signals. In International sympo-
sium on formal techniques in real-time and fault-tolerant
systems, pages 152-166. Springer, 2004.

Tobia Marcucci, Mark Petersen, David von Wrangel, and
Russ Tedrake. Motion planning around obstacles with
convex optimization. Science robotics, 8(84):eadf7843,
2023.

Dragomir N Nenchev and Kazuya Yoshida. Impact
analysis and post-impact motion control issues of a free-
floating space robot subject to a force impulse. IEEE
Transactions on Robotics and Automation, 15(3):548—
557, 1999.

Thomas Nierhoff, Konrad Leibrandt, Tamara Lorenz,
and Sandra Hirche. Robotic billiards: understanding
humans in order to counter them. IEEE transactions on
cybernetics, 46(8):1889-1899, 2015.

Yash Vardhan Pant, Houssam Abbas, Rhudii A Quaye,
and Rahul Mangharam. Fly-by-logic: Control of multi-
drone fleets with temporal logic objectives. In 2018
ACM/IEEE 9th International Conference on Cyber-
Physical Systems (ICCPS), pages 186-197. IEEE, 2018.
I Paraskevas, Zisos Mitros, and Evangelos Papadopoulos.
On Inertia and Stiffness Effects During Impact Docking.
In 13th Symp. on Advanced Space Technology in Robotics
and Automation,(ASTRA ‘15), 2015.

Xiangjun Qian, Ihaki Navarro, Arnaud de La Fortelle,
and Fabien Moutarde. Motion planning for urban au-
tonomous driving using Bézier curves and MPC. In 2016
IEEE 19th international conference on intelligent trans-
portation systems (ITSC), pages 826-833. Ieee, 2016.
Vasumathi Raman, Mehdi Maasoumy, and Alexandre
Donzé. Model predictive control from signal temporal
logic specifications: A case study. In Proceedings of the
4th ACM SIGBED International Workshop on Design,
Modeling, and Evaluation of Cyber-Physical Systems,
pages 52-55, 2014.

Pedro Roque, Sujet Phodapol, Elias Krantz, Jaeyoung
Lim, Joris Verhagen, Frank J Jiang, David Dorner, Huina

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

Mao, Gunnar Tibert, Roland Siegwart, et al. Towards
Open-Source and Modular Space Systems with ATMOS.
arXiv preprint arXiv:2501.16973, 2025.

Sadra Sadraddini and Calin Belta. Robust temporal logic
model predictive control. In 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing
(Allerton), pages 772-779. IEEE, 2015.

Trey Smith, Jonathan Barlow, Maria Bualat, Terrence
Fong, Christopher Provencher, Hugo Sanchez, and Ernest
Smith. Astrobee: A new platform for free-flying robotics
on the international space station. In International
Symposium on Artificial Intelligence, Robotics, and Au-
tomation in Space (i-SAIRAS), number ARC-E-DAA-
TN31584, 2016.

Dawei Sun, Jingkai Chen, Sayan Mitra, and Chuchu Fan.
Multi-agent motion planning from signal temporal logic
specifications. IEEE Robotics and Automation Letters, 7
(2):3451-3458, 2022.

Andrea Tagliabue, Mina Kamel, Roland Siegwart, and
Juan Nieto. Robust collaborative object transportation
using multiple MAVs. The International Journal of
Robotics Research, 38(9):1020-1044, 2019.

N Uyama, Y Fujii, K Nagaoka, and K Yoshida. Exper-
imental evaluation of contact-impact dynamics between
a space robot with a compliant wrist and a free-flying
object. In International symposium on artificial intelli-
gence, robotics and automation in space, 2012.

Joris Verhagen, Lars Lindemann, and Jana Tumova.
Temporally robust multi-agent stl motion planning in
continuous time. In 2024 American Control Conference
(ACC), pages 251-258. IEEE, 2024.

David von Wrangel and Russ Tedrake. Using Graphs
of Convex Sets to Guide Nonconvex Trajectory Opti-
mization. In 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 9863—
9870. 1IEEE, 2024.

Ahmed Zermane, Léo Moussafir, Youcan Yan, and Ab-
derrahmane Kheddar. Minimal Impact Pokes to Place
Objects on Planar Surfaces. IEEE Robotics and Automa-
tion Letters, 2024.

Long Zhang, Qingxuan Jia, Gang Chen, and Hanxu
Sun. Pre-impact trajectory planning for minimizing base
attitude disturbance in space manipulator systems for a
capture task. Chinese Journal of Aeronautics, 28(4):
1199-1208, 2015.



APPENDIX
A. Two-body Impact Problem

During replanning, we wish to consider the physical sizes
and updated positions of the robots and objects. To that end,
we first solve the the two-body impact problem from Eq. (6)
to obtain the desired pre-impact position and velocity of the
robot, posed the minimum-norm optimization problem

_min |lpb e~ #Sclla + IPre — Prarplle. (32
Pr.¢Prc>
Probhr
Po.aPo.c
Po.LPo L

s.t. (6) (32a)

Pro = RO)pra (32b)

PR = R(G)]K)RG (32¢)

Phe =R 0P, (32d)

Pha =R 00k, (32¢)

B. Impact-Aware MPC Details

The cost function J(z(n|k),
MPC is given as

u(n|k)) in the impact-aware

N—-1
J(@,x,u) = Y UE(n|k), z(nlk), u(n|k))
n=0
+V(2(nlk), z(nlk)), (33)
U(E,z,u) = [le(nlm)G + lulnlk)] %, (33a)
V(z,x) = [le(N[E)|[3) (33b)
~JZ(n|k) — z(nlk),z < {p,v,w}
6%+m“{1@mmFMMMﬂxe{@ (3%

where z € R*, x € R”, and v € R™ are the reference
trajectory by evaluating the robot’s Béziers Eq. (8), the state
and the control input of R;. @, R, and v are positive definite
weight matrices. For all scenarios, we run the MPC with a
horizon of 1 second and 10 sampling intervals.

1) Weight-Scheduling: While an impact traverses through
the horizon of the MPC, we adapt the weights ), (v and
R. As we are mainly interested in creating the desired post-
impact vector of the object (at the cost of potentially having
the robot deviate from its post-impact pre-planned trajectory),
we schedule the weights as follows

diag([le-3, le-3, le-3,

8e3, 8e3, 8e3, 8e3])
diag([5, 5, 5,

8e-1,8e-1, 8e-1, 8e3])

if timpact C [tO; tN]

otherwise
R = diag([le-3, le-3,1e-3,2,2,2])
Qn = 10Q

with the =z = [pa:apyapzaprapyapzaQ] and u =

Fo By By Ty, Ty, T2
Yy Yy

C. Velocity-Keeping MPC Details

As the floor on the experimental setup is not completely
flat, any object is not able to truly float freely between
impacts. For online planning, deviations in the straight-line
travel can be alleviated by using a height-map of the floor and
forward integrating the observed state of the object. However,
for simplicity and a to make a true experimental version of
the high-fidelity simulator, we instead opt to run a velocity-
keeping MPC on the object.

This MPC keeps position, detects an impact, turns off the
controller for a pre-specified duration to estimate the post-
impact velocity vector (1 second), and then draws a linear
segment from the current state to a future state using this
vector.

1 i
Pres(t) =+ (o A (34)

At

where At >> 0 is a duration that far exceeds the time to
the next interval, p is the position after the 1 second duration,
and p is the averaged velocity over the 1 second duration.
Afterwards, the MPC in Eq. (31) tracks this linear segment.



