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Abstract—Large real-world robot datasets hold great potential
to train generalist robot models, but scaling real-world human
data collection is time-consuming and resource-intensive. Sim-
ulation has great potential in supplementing large-scale data,
especially with recent advances in generative Al and automated
data generation tools that enable scalable creation of robot
behavior datasets. However, training a policy solely in simulation
and transferring it to the real world often demands substantial
human effort to bridge the reality gap. A compelling alternative
is to co-train the policy on a mixture of simulation and real-world
datasets. Preliminary studies have recently shown this strategy
to substantially improve the performance of a policy over one
trained on a limited amount of real-world data. Nonetheless, the
community lacks a systematic understanding of sim-and-real co-
training and what it takes to reap the benefits of simulation data
for real-robot learning. This work presents a simple yet effective
recipe for utilizing simulation data to solve vision-based robotic
manipulation tasks. We derive this recipe from comprehensive
experiments that validate the co-training strategy on various
simulation and real-world datasets. Using two domains—a robot
arm and a humanoid—across diverse tasks, we demonstrate that
simulation data can enhance real-world task performance by
an average of 38%, even with notable differences between the
simulation and real-world data. Videos and additional results
can be found at co-training.github.io.

1. INTRODUCTION

The ability to generalize across diverse environments and
tasks is a critical step toward realizing generalist robotic
systems. Recent advancements in robot foundation mod-
els [1]-[3]—trained on a mixture of web-scale vision-language
datasets and robot-specific datasets—have demonstrated sig-
nificant potential for cross-domain generalization. Large real-
world robot datasets [4], [S] embody this diversity and are a
crucial source of data. Despite this progress, challenges remain
in achieving reliable real-world deployment. To bridge this
gap, there have recently been multiple efforts on collecting
even larger-scale real-robot datasets [1], [6]. These works
have shown the potential of data-driven methods in acquiring
versatile robotic skills. However, they involve considerable
cost, time, and scalability challenges, and it remains unclear
whether simply scaling real-world data collection alone is
sufficient to train generalist robot models.

Simulation is a promising alternative to mitigate the data
hunger of large models. The recent proliferation of genera-
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Fig. 1: Sim-and-Real Co-Training. We show how co-training
policies on real-world and simulation data can attain superior per-
formance in the real-robot deployment, compared to training solely
on real-world data. We specifically study two forms of simulation
data: (1) task-aware data from digital cousins built with knowledge of
the real-world tasks, and (2) task-agnostic data from multi-task prior
simulations covering more diverse settings but with less alignment to
the target task.

tive Al tools allows for the automated generation of assets,
scenes, and tasks in simulation, all of which can be produced
with high-fidelity physics simulators and photorealistic ren-
derers [7], [8]. Furthermore, automated data generation tools
can be applied to these simulation environments to synthesize
large amounts of diverse, high-quality robot trajectories with



minimal human effort [9]-[12], offering massive training data
for generalist manipulation policies. However, approaches that
use simulation data must deal with the reality gap since the
visuals and physics in simulation do not align perfectly with
the real world. Prior approaches on sim-to-real policy transfer
typically rely on extensive tuning of simulation to match the
real world [13]-[17], or meticulously randomizing a specific
set of simulation parameters [18]-[22]. Such approaches can
require significant human effort.

A compelling alternative to sim-to-real transfer is to directly
co-train policies on a mixture of simulation and real-world
data. Preliminary findings in recent work [7], [23]-[25] sug-
gest that incorporating simulation data in this way can greatly
improve policy performance compared to using real-world
data alone. Moreover, sim-and-real co-training may not require
the high level of alignment between simulation and reality
typically needed for sim-to-real transfer, making it a promising
strategy to tap into the potential of large synthetic datasets with
minimal human effort. Despite its promise, the community
lacks a systematic understanding of this strategy and what it
takes to reap the benefits of simulation data for real-robot
learning. It remains unclear how different the simulation data
can be from the real-world data, and what kinds of dataset
mixtures and compositions are ideal.

This work presents a simple recipe for supplementing
real robot datasets with synthetic simulation datasets to
facilitate learning vision-based manipulation policies for
real robots. We derive this recipe by conducting a comprehen-
sive set of experiments that co-train robot policies on various
simulation and real-world datasets. As shown in Figure 1, we
focus on two concrete sources of simulation data — task-aware
simulation, in which the simulation environment is intention-
ally designed to align with the real world loosely, akin to the
“digital cousin” concept introduced in Dai et al. [26], and task-
agnostic simulation, which comprises prior simulation data
made independently of the particular target task. Our study
is carried out on two distinct robot embodiments (robot arm
and humanoid) across several diverse tasks, spanning pick-
and-place, articulated object manipulation, and non-prehensile
manipulation (e.g., pouring). We investigate a number of criti-
cal data composition factors to understand the degree to which
simulation and real-world data must be aligned for co-training
to be effective. For example, should the tasks, scenes, and
objects be the same between the sim and the real? How about
the location of workspace cameras and object placements? We
make use of synthetic data generation tools [9], [10] to test
different simulation dataset compositions with ease, resulting
in actionable insights for robotics practitioners.

We summarize our contributions as follows:

1) We establish a systematic study for co-training on real-
robot data and synthetically generated data from simu-
lation, resulting in a simple recipe to leverage synthetic
simulation data for real-world manipulation;

2) We demonstrate empirically how co-training on syn-
thetic simulation data can be broadly useful in facili-
tating policy learning for downstream real-world tasks,

improving policy performance across two domains by
an average of 38%;

3) We derive insight into what types of simulation data are
most effective for sim-and-real co-training. Surprisingly,
we find that simulation data provides substantial benefits
even with notable differences from the real-world data,
and that diverse simulation data can facilitate general-
ization to unseen scenarios in the real world.

II. RELATED WORK
A. Learning Manipulation from Demonstration Data

Behavior cloning [27] is a widely adopted approach for
learning robot policies from demonstration data [28]-[38]. In
this framework, policies are trained to predict actions based
on ground truth state-action pairs provided in a demonstration
dataset. This method has been extensively applied in robot
manipulation tasks [39]-[50]. However, its success in real-
world applications typically hinges on the availability of large
amounts of high-quality demonstration data, which can be
prohibitively expensive to collect. To address this limitation,
our work explores the use of simulation data to enhance real-
world robot manipulation through imitation learning, thereby
reducing the dependency on costly real-world data collection.

B. Sim-to-Real and Sim-Real Co-Training

Sim-to-real transfer has been a pivotal focus in robotics
research, aimed at enabling models trained in simulation to
perform effectively in the real world. One popular approach is
domain randomization [18]-[22], [51], [52], which introduces
variability into the simulation environment to train policies
that are robust to discrepancies between simulation and real-
ity. However, domain randomization approaches can require
careful tuning and a significant human burden to determine
proper randomization ranges for the parameters that enable the
policy to transfer to the real world. Another common approach
seeks to minimize the sim-to-real gap by improving simulation
fidelity to match the real world closely. Techniques such as
system identification [13]-[17], [53]-[55] and the creation
of digital twins [56], [57] aim to align simulated dynamics
more closely with real-world conditions. These methods often
require significant human effort, preventing their applicability
to diverse tasks and environments. Instead, recent research
has trained real-world manipulation policies using a mixture
of simulation and real-world data [3], [7], [23], [24], [58],
and demonstrated superior performance to solely using the
same quantity of real-world data. Furthermore, the simulation
data in these approaches does not necessarily need to be
perfectly aligned with the real world, making it a compelling
alternative to other approaches. Building on these findings, our
work systematically investigates sim-and-real co-training. We
examine the effectiveness of co-training real-world policies
using two sources of simulation data with varying levels of
alignment: task-aware digital cousins [26] and task-agnostic
prior simulation, as shown in Figure 1. Our study offers
practical insights and methodologies for practitioners aiming
to achieve robust performance in real-world scenarios.



C. Dataset Composition in Robot Learning

Recent research [59], [60] has highlighted the importance
of dataset composition in robot learning, particularly in un-
derstanding how variations in data quality and diversity influ-
ence policy generalization [61], [62]. Studies such as Mimi-
cLabs [63] have conducted large-scale analyses to identify the
types of data that maximize the utility of robotic datasets and
improve downstream policy performance. Inspired by this line
of work, we investigate the optimal composition of simulation
and real-world data specifically for real-world robotic manip-
ulation tasks. Our study aims to provide actionable guidelines
on how to strategically combine these data sources to achieve
superior policy learning outcomes in the real world.

III. PROBLEM STATEMENT AND PRELIMINARIES
A. Co-Training on Real-World and Simulation Data

We assume access to robot trajectory demonstrations col-
lected in real environments, Drea = {&;}Y . Instead of train-
ing a policy on demonstrations solely from the real world, we
have additional demonstrations from simulation environments,
Dim = {&}M,, where generally M > N. We train a
visuomotor policy my on these two data sources. We adopt
the co-training formulation following prior work [7], where
we minimize the behavioral cloning action loss

‘Ctotal (95 Dreal; Dsim) =« ,C(G, Dsim) + (1 - Oé) ,C(G, Dreal) (1)

where L£(0;D) = ﬁz(ohai)epflogw@(aﬂoi) and o €
[0,1] is the co-training ratio balancing the relative weight
of simulation and real-world data. In practice, we use an
equivalent formulation of o, which represents the probability
of sampling from simulation data in each training batch.
Specifically, we reweight each sample (o;,a;) such that the
probability of drawing it from the simulation dataset is
Pl(0i,a;) € Dgm] = «, while the probability of drawing
it from the real dataset is P[(0;,0;) € Dra] = 1 —
during training batch sampling. We further detail the relative
weighting procedure in Appendix VIII-G. As we will see in
experiments, the choice of « is crucial to policy performance.
Our end objective is to produce vision-based manipulation
policies that maximize task performance on one or multiple
downstream tasks in real-world environments.

B. Data Composition Factors

Dreal and Dy, can comprise demonstration trajectories from
either a single task or a diverse array of tasks, embodiments,
and environments. To reason about how the particular choices
in constructing these datasets can affect the success of co-
training, it is useful to decompose these datasets into a set of
data composition factors. We assume that each dataset follows
a distribution of factors {Z(1), Z2(2) ... ZUO1 borrowing
notation from recent work [63]. We do not assume that the
simulation dataset is perfectly aligned with the real-world
dataset, i.e., for some factors Z;fm + ngl Despite these
alignment gaps, we are interested in transferring knowledge
from simulation domains to learn a more effective policy w
for real-world tasks.

Common data composition factors include, but are not
limited to, the following:

o Task composition: Which tasks, and by extension, sub-
tasks and motions, are present in the simulation and real-
world data. Even if the real-world and simulation data
involve solving the same task, there may be multiple valid
ways to achieve the task. Different datasets may exhibit
different orderings of subtasks and different manipulation
skills;

« Scene composition: The number of scenes in simulation
and real-world data, in addition to the scope and diversity
of various components across these scenes. For example,
the number of fixtures, articulation properties of interac-
tive objects, range of lighting conditions, and range of
background textures;

« Object composition: Which object categories are present
in the simulation and real-world data, and the number of
unique object instances per object category;

« Initialization distribution: The initial state distribution
in the datasets, representing the distribution of states in
the initial state of each trajectory in the dataset. This
comprises the initial robot base pose and arm joints, in
addition to the initialization distribution of objects and
fixtures in the scene;

« Camera parameters: We assume that we have a set of
N cameras used to train each visuomotor agent. Each
camera has a range of values across several parameters.
The most prominent parameters are camera intrinsics and
camera extrinsics;

« Dynamics parameters: Key physical parameters such as
friction, mass of objects, and inertia. Other parameters
include robot controller variables such as the type of
controller and its gains.

We define these parameters in more detail and quantify them
in Section IV, when we introduce the domains and tasks, and
we study how important it is to align each factor between
simulation and the real world for co-training success.

C. Automated Synthetic Data Generation

A key advantage of simulation is ease of data collection—
we leverage automated synthetic data generation tools to
generate large, high-quality simulation datasets and use them
for co-training with smaller real-world datasets. For each
task in the simulation, we first collect dozens of source
human demonstrations. We then use MimicGen [9] to generate
large synthetic trajectory datasets at scale. For bimanual and
humanoid robots, we use DexMimicGen [10], a method that
builds on top of MimicGen. The process is as follows. First,
we segment these source demonstrations into a sequence of
object-centric segments. (Dex)MimicGen then generates new
demonstrations by applying linear transformations to selected
source demonstration segments and concatenating these trans-
formed segments to form novel trajectories. By leveraging
these methods, we can use physics simulations to multiply
the number of trajectories by orders of magnitude.
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Fig. 2: Method Overview. Our workflow consists of three components: (1) We start with a real-world target task in mind and some prior
simulation data; (2) Given real-world tasks and prior simulation data, we build simulated digital cousin environments that share semantic
similarities with their real-world counterparts but may still hold discrepancies in visual and physical aspects. We leverage synthetic data
generation methods to multiply trajectories in digital cousins, producing a large quantity of demonstrations in simulation. From here, we
consolidate prior simulation data, digital cousin data, and real-world data; (3) We co-train the policy on a mixture of real-world and simulation
data. We sample simulation data according to a sampling ratio of «, which is crucial for the method’s effectiveness. After training the policy,

we deploy the learned policy directly to the real robot.

IV. STUDY SETUP

Our goal is to develop a simple recipe for co-training
on real-robot and simulation data to significantly improve
real-world policy performance compared to training on real
data alone. We are broadly interested in two scenarios:

(1) Co-training with prior large-scale simulation data. Can
we use existing large prior simulation datasets as co-training
data? Note, these datasets often have significant discrepancies
with the real world in terms of visual features, task semantics,
and behaviors. We are interested in understanding the extent
to which these datasets can help out of the box in learning
downstream real-world tasks in spite of these domain gaps.

(2) Co-training with task-aware simulation data. Given
knowledge of the real-world tasks, we can create customized
simulation datasets that are better aligned with the real-world
tasks. However, tuning simulation environments to match
the real-world environments precisely is impractical. Which
data composition factors are most important to align between
simulation and the real-world setup, and can we forgo perfect
alignment, allowing us to reduce human effort?

See Figure 2 for an overview of our workflow, including
the real-world setup, simulation pipeline, and the co-training
procedure. We describe all of these components in detail in
the following sections.

A. Real-World Domains

We seek a co-training recipe that is broadly applicable to
a wide range of embodiments, tasks, and environments. To
this end, we conduct a comprehensive study featuring two

distinct domains, each with a unique robot embodiment and
diverse tasks (see Figure 3 for an illustration):

Panda Kitchen. A real-world kitchen environment with
the Franka Emika Panda robot. We adopt the DROID tabletop
hardware setup [6], with some minor modifications (see
Appendix VIII-C for details). We experiment with three
real-world tasks and collect 50 human demonstrations for
each task:

e CounterToSinkPnP: move an object from the counter
to the sink basin. This task features nine object categories
with diverse shapes: can, cup, coffee cup, water bottle,
lemon, garlic, bowl, granola bar, and pear.

e CounterToCabPnP: move an object from the counter
to the cabinet. This task features eight object categories.

e CloseDoor: close the door for an overhead cabinet.

Humanoid Tabletop. A real-world tabletop environment with
a Fourier GR-1 humanoid robot. We control the robot using
a mink-based [64] IK controller. We use a first-person view
RGB camera mounted to the head of the humanoid. We choose
three tasks and collect 20 human demonstrations for each task.
We describe more details in Appendix VIII-C.

e CupPnP: move a cup from the plate to the table.

e MilkPnP: move a box of milk from the table to the
second level of the shelf.

e« Pouring: pick up a cup with a ping-pong ball inside
and pour the ball into a bowl on the table.

Our study is grounded in the real world—we compare the

efficacy of different co-training methods by directly evaluating

'We use the same object categories as CounterToSinkPnP but exclude the
water bottle due to difficulties in placing it stably into the cabinet.
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Fig. 3: Real-World and Simulation Tasks. We experiment with co-training on three data sources on the two robot domains of Kitchen
Panda and Humanoid Tabletop: (top) data collected for real-world tasks; (middle) data from task-aware digital cousin environments that
resemble the target tasks but are not perfectly aligned; (bottom) prior multi-task data from simulation that comprise a wide range of tasks

and environments but have larger discrepancies with real-world tasks.

policies on these real-world tasks.

B. Prior Task-Agnostic Simulation Data

We leverage synthetically generated data to supplement
real-robot datasets for policy training. One approach is to
directly co-train with existing large-scale simulation datasets,
or prior task-agnostic simulation datasets. We define a prior
task-agnostic simulation dataset as any simulation dataset
that existed before the creation of the downstream, real-world
task. For the purpose of direct co-training, we use prior task-
agnostic datasets that contain the same robot embodiment
and action space, but this is not a strict requirement. We
otherwise assume that these datasets cover a broad range of
tasks and environments. We are interested in co-training with
these datasets out of the box, without expending additional
efforts designing new tasks in simulation and collecting new
data. These datasets may have numerous discrepancies with
real-world data, but they present a simple and convenient
way to leverage simulation data. We use the following prior
simulation datasets:

Panda Kitchen. We use the multi-task RoboCasa dataset [7].
We choose RoboCasa, given its focus on kitchen environments,
a diverse range of scenes and tasks, and the availability of large
robot data. In addition, Nasiriany et al. [7] showed preliminary
findings that co-training with simulation data can aid transfer
in a real-world kitchen environment. The dataset comprises

72k demonstrations across 24 tasks and 100 scenes; for each
task, 3,000 demonstrations were generated from 50 source
human demonstrations using the MimicGen data generation
system [9]. Refer to Appendix VIII-D for in-depth details
about the tasks and datasets. Note that three of these tasks
semantically correspond to our real-world tasks but include
notable discrepancies with the real-world setup, including
initial robot joint positions, controller parameters, physical
parameters, object categories, and the robot base position. We
present a quantitative comparison of data composition for the
real-world and prior simulation datasets in Appendix VIII-F.

Camera alignment differences between simulation and
real-world data can be a major discrepancy. We address this
discrepancy by re-rendering the simulation demonstrations
to approximately match the camera poses of the real-world
setup.? Note that this does not represent perfect alignment, but,
as we demonstrate in our experiments, it can significantly help
nonetheless. Beyond this simple post-processing operation,
we do not make any further changes to the prior data.

Humanoid Tabletop. To mirror the setup for the kitchen
domain, we create a prior task-agnostic dataset comprising
10 tasks in RoboCasa involving a single kitchen countertop
and a GR-1 robot. Each task involves grasping a specified

2This operation introduces occlusions for the drawer and stove knob manip-
ulation tasks, so we opt to exclude these. In total, we use 60k demonstrations
across 20 tasks.



object from a source receptacle and placing it into a
target receptacle (e.g., from bowl to basket). Refer to
Appendix VIII-D for additional details about these tasks.
While semantically similar to the real-world setup, the prior
tasks and datasets were developed independently and involve
numerous discrepancies such as object categories, visual
textures, distractor objects, and physical parameters. None of
these 10 tasks is semantically equivalent to the real-world
tasks—they involve different source and/or target receptacles.
We use DexMimicGen [10], a data generation framework
built on top of MimicGen for humanoid and other bimanual
robots, to synthesize robot trajectories from dozens of human
demonstrations. We generate 1,000 demonstrations for each
task, resulting in 10k total demonstrations.

C. Building Task-Aware Simulation Datasets

The tasks and datasets presented in the previous section
may have a number of large discrepancies with the real-world
tasks, potentially limiting their utility. Alternatively, we can
expend additional effort in creating custom tasks in simulation
that are better aligned with the real-world tasks. Creating a
perfect digital twin [56], [57], [65] copy of the real-world
task is challenging, requiring extensive manual tuning, system
identification, and sourcing identical 3D assets. Instead, we opt
to create tasks in simulation that share the same task semantics,
namely the object categories in the environment and the same
behaviors. We refer to these as task-aware digital cousins.
The term “digital cousin™ was recently introduced by Dai et
al. [26] to describe simulation environments that are close to,
but not perfectly aligned with, their real-world counterparts.
We extend this notion with a more precise definition: a rask-
aware digital cousin is a simulation dataset that preserves four
key elements of the real-world task:

1) The same robot and action space;

2) The same task goal—specifically, the same success

check and, if applicable, the same language instructions;

3) The same object categories, though individual instances

may differ in geometry or texture;

4) The same environmental fixture categories (e.g., kitchen

counters, tabletops, cabinet doors).
We outline our efforts to create these tasks as follows:

Panda Kitchen. The real-world Panda Kitchen tasks
are already represented in the RoboCasa prior dataset, but
have several discrepancies as outlined in the prior section.
We outline the changes that we made to the task and dataset
as follows. First, we adjust the initial state distribution of the
robot joints and robot base position in simulation to match the
real environment. In addition, we restrict the objects in the
task to a curated list of 10 object categories, which includes
all of the nine object categories used in the real-world
CounterToSinkPnP task. This is in contrast to the prior
dataset, in which the authors feature a wider range of 66
possible object categories. For each task, we then collect 100
source human demonstrations. Finally, we generate 10,000
demonstrations for each task using MimicGen. This is in

contrast to the prior dataset, where the authors collected 50
source human demonstrations per task and generated 3,000
demonstrations per task with MimicGen. We provide a more
in-depth comparison between the real data, task-agnostic prior
simulation data, and task-aware digital cousin simulation data
in Appendix VIII-F.

Humanoid Tabletop. For each of the three tasks in
this domain, we construct a digital cousin of the real-world
environment in RoboCasa. In each of the real-world tasks,
we use a fixed set of objects for both data collection and
evaluation. In the digital cousin, however, we randomly
select objects from the same category as those in the
real-world task to increase the diversity of simulation
demonstrations. Additionally, we align the robot’s initial
pose and camera position to closely replicate the real-world
setup. We then collect 10 source demonstrations and generate
1,000 trajectories for each task using DexMimicGen [10].
A detailed analysis of the data composition is provided in
Appendix VIII-F.

D. Training and Evaluation Protocol

In our study, we compare the effect of co-training with
different forms of real-world and simulation data. For each
task, we have access to the following forms of data:

« Real-world data (Real): demonstrations collected for
the target task in the real-world. See Section IV-A for
the list of tasks.

« Prior simulation data (Prior): task-agnostic simula-
tion data outlined in Section IV-B.

« Task-aware digital cousin data (DC): synthetic simula-
tion data outlined in Section IV-C.

See Appendix Tables III and IV for an overview and
comparison of these datasets for the Panda Kitchen and
Humanoid Tabletop domains.

We compare various mixtures of these datasets by co-
training a policy on the data and evaluating the resulting policy
on our real-world tasks outlined in Section IV-A. We train
visuomotor policies with the Diffusion Policy implementation
from Chi et al. [38]. The policy takes RGB images and
robot proprioceptive information as input and produces a
sequence of actions to execute. We outline specific settings
and hyperparameters in detail in Appendix VIII-G. Following
training, we evaluate the policy across a number of trials and
record the success rate. See Appendix VIII-H for details on
our evaluation protocol.

V. EXPERIMENTS

In this section, we present a comprehensive empirical study
of co-training real-world policies using simulation data. We
begin by showcasing the benefits of co-training using our full-
fledged recipe, which has been informed by systematic exper-
imentation (Section V-A and Section V-B). Specifically, we
demonstrate how co-training with simulation data enhances the
real-world policy’s in-domain performance (Section V-A) and
improves its generalization to novel scenarios (Section V-B).
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| C2SPnP C2CPnP CloseDoor ‘ CupPnP MilkPnP Pouring |
Real 44% 38% 10% 65% 50% 65% 45.3%
Real + DC 67% 72% 100 % 95 % T0% 85% 81.1%
Real + Prior 58% 53% 100 % 80% 80% T0% 76.8%
Real + DC + Prior 72% 72% 100 % 85% 80% 90 % 83.2%

TABLE I: Effect of different simulation data in the co-training mix. We compare co-training with different simulation data on six tasks
across two robot platforms. Note that we abbreviate the CounterToSinkPnP task as C2SPnP and CounterToCabPnP as C2CPnP.
Co-training with Prior (third row) consistently boosts performance over policies trained on real data only (first row). On top of these
results, adding better aligned DC further improves the overall performance (last row).

Next, we delve into the systematic experiments that guided
the development of our recipe (Section V-D). These exper-
iments identify key elements for effective sim-and-real co-
training, providing insights into what factors matter most.
Finally, we conclude with a concise and actionable recipe
based on our findings (Section V-E), ensuring clarity for
practitioners.

A. Effectiveness of Sim-and-Real Co-Training

Co-training with task-aware digital cousin data sig-
nificantly enhances real-world performance beyond real-
only policies. Table I presents our main results. In the sec-
ond row, compared to policies trained only on Real, those
trained on Real and DC exhibit a 35.8% higher average suc-
cess rate. These results indicate that incorporating simulation
data more closely aligned with real-world tasks significantly
enhances real-world policy performance. It is important to
note that DC data is generated in task-aware digital cousin
simulation environments. These environments share the same
task definitions, similar scene setups, and comparable camera
views with the real world, though none are perfectly aligned.
Nevertheless, with minimal effort, we were able to construct
and approximately align these digital cousins with real-world
environments (see Section IV-C), demonstrating the feasibility
of leveraging such simulations for improved real-world policy
training.

Co-training with task-agnostic prior simulation data
also improves real-world performance. As shown in the
third row of Table I, policies trained on Real and Prior
consistently outperform those trained solely on Real across
all tasks, achieving an average success rate improvement
of 31.5%. This is a particularly surprising and encouraging
result, as the Prior data are generated without any prior
knowledge of real-world tasks. These results indicate that even
without manual alignment of the simulation environment, co-
training with simulation data yields substantial benefits. This
finding highlights the potential of leveraging readily available
simulation data to enhance real-world policy performance.

Finally, in the last row of Table I, policies trained on the
combination of Real, DC, and Prior data in general perform
the best, achieving an improvement of 37.9% over the real-
only policies on average.

We observe a dramatic performance gap between Real and
the other co-trained polices for the CloseDoor task. We

further investigate the robustness of this gap by training the
Real policy with more demos. See Section VIII-L for more
results.

B. Generalization Beyond Real Demonstrations

To understand how simulation data enhances real-world
policy performance, we investigate whether exposure to di-
verse situations in simulation—ones not explicitly covered
in real-world demonstrations—can improve a policy’s ability
to generalize to similar, unseen situations in the real world.
This question is particularly important because generating
broad-coverage data in simulation is relatively easy, whereas
collecting diverse real-world demonstrations is often expensive
and impractical. If simulation data can effectively bridge this
gap, it would provide a powerful and scalable way to improve
real-world policies with minimal real-world data.

To explore this, we evaluate the generalization capabil-
ities of co-trained policies beyond real-world demonstra-
tions. Specifically, we consider two key axes of varia-
tion: novel objects and novel initial positions. We use the
CounterToSinkPnP and CupPnP tasks as our testbed,
where, by default, these factors are randomized in simulation
to assess the policy’s ability to handle novel scenarios in the
real world (see Section IV-C).

Co-training with simulation data enhances policy robust-
ness to novel object entities. For the CounterToSinkPnP
task, we evaluate on eight new object categories (carrot, ladle,
lime, apple, orange, sponge, cucumber, and banana) and new
instances of the original object categories with differing size,
color, and shape. For the CupPnP task, we replace the red
cup with cups of different colors and introduce novel objects.
The settings of generalization experiments are detailed in
Appendix VIII-I. As shown in Table II, the policy trained
solely on Real achieves a success rate of only 33% and 10%
on novel objects, whereas the co-trained policy significantly
outperforms it with success rates of 50% and 80%. The diver-
sity in simulation data contributes to improved generalizability
in real-world policy performance.

Co-training with simulation data enhances policy robust-
ness to novel object positions. In this experiment, we exclude
real demonstrations where the object is placed in the middle
of the workspace, retaining only those where the object is po-
sitioned along borders or corners of the rectangular sampling



Data Composition | Unseen Objects | Unseen Positions

| Panda GR-1 | Panda  GR-1

Real 33% 10% 11% 43%

Real 4+ DC 50% 80% 28% 100%
TABLE II: Co-training with sim enhances policy general-

ization across novel objects and novel positions. We select the
CounterToSinkPnP task on Panda and the CupPnP task on the
humanoid and evaluate the policies’ performance when the object is
changed and when the object is placed at unseen positions.
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Fig. 4: Effect of the quantity of real demonstrations. We use
a total of 4,000 simulation DC demos and vary the total number of
real demos from 40 to 400 on task MultiTaskPnP. The results
show that our co-training recipe remains beneficial with larger real
datasets.

region. During evaluation, we place the objects in the center
of the sampling region, which are unseen positions in the real
demonstrations. The setups are visualized in Appendix VIII-L.
In simulation, we still include data with objects distributed
uniformly in the rectangular region. As shown in Table II,
policies co-trained with DC achieve a twice higher success rate
compared with the policies trained solely on Real for both
humanoid and Panda experiments. This result indicates that
diverse simulation data substantially improve policy robustness
to spatial variations.

C. Effectiveness of Co-Training in Data-Rich Settings

Our main results (Section V-A) examine the effectiveness of
sim-and-real co-training in single-task settings with different
embodiment and scene setups. Meanwhile, recent works [1],
[2], [66] have demonstrated incredible performance by training
policies on large-scale, multi-task real-world manipulation
datasets. This raises the question—can co-training with syn-
thetic data still be beneficial with larger real-robot datasets?
To evaluate the effectiveness of our co-training approach in a
scaled-up setting, we conduct experiments on a new humanoid
MultiTaskPnP task. In this task, the robot must pick an
object from one container and place it into another, with four
different source-target container combinations.

For each real-world task variation, we construct a corre-
sponding task-aware digital cousin. We train policies using a
fixed set of 4,000 DC demonstrations (1,000 per task) while
varying the number of real-world demonstrations. During
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Fig. 5: Effect of the different co-training ratios. The co-training
ratio, «, is the probability of sampling from simulation data in each
minibatch. We experiment on the CupPnP task with 20 real demos
and 1000 simulation demos from task-aware digital cousins. Tuning
the co-training ratio is important for the good performance of co-
trained policies.

testing, we evaluate the generalizability of the policy using
three unseen objects. The detailed task setup is provided in
Appendix VIII-J.

As shown in Figure 4, increasing the number of real-world
demonstrations improves the success rate for both real-only
and co-trained policies. Even with 400 real demonstrations,
the co-trained policy consistently outperforms the real-
only policy, demonstrating that sim-and-real co-training
remains beneficial even in data-rich settings.

D. Key Elements of Effective Co-Training

In the sections above, we demonstrated the effectiveness of
sim-and-real co-training with our full-fledged recipe. In this
section, we present systematic studies that help identify key
elements for successful co-training. These elements include the
quantity of real and simulation demonstrations, the co-training
ratio, and the importance of camera alignment in digital cousin
(DC) environments. Our findings highlight practical strategies
for optimizing co-training and improving real-world policy
performance.

A sufficient number of simulation demonstrations is
crucial for effective co-training. First, we analyze the im-
pact of varying the number of simulation demonstrations.
We reduce the number of DC demonstrations for the Panda
CounterToSinkPnP and GR-1 CupPnP tasks and train
policies using Real data combined with the reduced DC
data. In the Panda CounterToSinkPnP task, decreasing
the number of simulation demonstrations from 10k to 500
causes the success rate to drop from 67% to 53%. Similarly,
in the GR-1 CupPnP task, reducing the number of simulation
demonstrations from 1k to 100 lowers the success rate from
95% to 75%. Therefore, having sufficient simulation demon-
strations is essential for achieving strong performance in co-
trained policies.

Tuning the co-training ratio is required for effective
co-training. We investigate the impact of the co-training
ratio—the proportion of simulation data used during train-
ing—on the CupPnP task (Section IV-A). As shown in
Figure 5, a 1:1 ratio (50%) is suboptimal. In our experiments,
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Fig. 6: Camera alignment visualization. We visualize the
default and aligned camera views of the GR-1 CupPnP task
and Panda CounterToSinkPnP task.

a co-training ratio of 99% yielded the best performance.
However, pushing the co-training ratio further to values like
99.5% and 99.9% resulted in drops in success rate, from 95%
to 60%. These findings highlight the importance of carefully
tuning the co-training ratio to achieve optimal performance.

Camera alignment is critical for successful co-training
with task-aware digital cousin data. In DC, we approximate
the alignment of the simulation environment’s camera with
the real-world camera view. To evaluate the importance of
this alignment, we render data using the default, unaligned
camera view and trained policies on the resulting misaligned
simulation data. The results indicate a significant drop in
performance compared to policies co-trained with properly
aligned DC data. On the Panda arm CounterToSinkPnP
task, the co-training success rate dropped from 67% to 56%,
while in the GR-1 humanoid CupPnP task, it declined from
95% to 70%. We visualize the default and aligned camera
views in Figure 6. Notably, the aligned camera is not strictly
identical to the real-world camera. For example, the camera
mounted on the real-world humanoid has a fisheye effect,
whereas our aligned simulation camera does not model this
distortion. This suggests that while alignment enhances perfor-
mance, perfect camera alignment is not necessary for effective
co-training.

E. A Simple Recipe for Sim-and-Real Co-Training

Based on our empirical findings, we provide a set of
recommendations to help practitioners reap the benefits of co-
training with synthetic simulation data.

o Task and scene composition. The greatest performance
gains are observed when co-training with simulation
data from task-aware digital cousins, where the task and
scene compositions closely mirror those of the real-world
setting. Nevertheless, co-training with large multi-task
prior simulation data—despite differences in task and
scene composition—still provides meaningful benefits.

« Object composition and initialization distribution. In-
corporating diverse objects and varying their placements

in simulation data helps real-world policies generalize to
unseen scenarios.

« Alignment between the task-aware digital cousin and
the real world. It is essential that the simulation task
shares the same definition and success criteria as its real-
world counterpart. Additionally, maintaining similar cam-
era viewpoints between simulation and real-world settings
can improve performance, though perfect alignment is not
required.

¢ Co-training hyperparameters. We recommend utilizing
a sufficiently large amount of simulation data (ideally,
orders of magnitude more than real-world data) and care-
fully tuning the co-training ratio to optimize performance.

V1. LIMITATIONS

Although we conduct systematic studies on several tasks
across both a tabletop manipulator and a humanoid robot,
most tasks are centered around pick-and-place. Extending our
approach to a broader set of manipulation tasks, such as
high-precision insertion, and longer-horizon tasks, is left for
future work. While our co-training recipe consistently im-
proves success rates compared to solely training on real-robot
data collection, the policy’s performance is still not perfect.
Future efforts could look into building on top of this recipe
to further boost real-world performance. Finally, certain real-
world tasks—particularly those involving deformable objects
and liquids—remain difficult to simulate accurately, inherently
limiting the applicability of simulation data. Applying this co-
training strategy to such tasks presents a challenge. Future
work could explore the use of co-training data produced by
video generation models and world models [67]-[69] as a way
to bridge this gap.

VII. CONCLUSION

In this work, we systematically investigate how to effec-
tively leverage synthetically generated data from physics sim-
ulations to solve real-world, vision-based manipulation tasks.
By analyzing key factors that impact the dataset distributions
and co-training strategies, we demonstrate that large-scale
simulation data can effectively complement real-world data—
even in the presence of significant discrepancies—leading to
policies that outperform those trained on real-world data alone.

Furthermore, we find that simulation data enhances policy
generalization to scenarios not covered in real-world datasets,
underscoring its potential for developing more robust and
adaptable robotic systems. Our findings highlight the promise
of leveraging diverse simulation data to advance generalist
robot autonomy.

In addition, we offer a set of practical recommendations for
practitioners to harness the benefits of synthetic simulation
data without requiring extensive manual effort in construct-
ing or aligning simulation environments. They reinforce the
importance of systematically integrating simulation and real-
world data. We hope our insights will inspire future research
to further unleash the potential of simulation in building
generalizable robot models in the real world.
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VIII. APPENDIX

A. Overview

The Appendix contains the following content:

¢ Author Contributions (Appendix VIII-B): list of each
author’s contributions to the paper

« Real-World Tasks (Appendix VIII-C): details about real-
world domains and tasks

o Task-Agnostic Simulation Datasets (Appendix VIII-D):
details about task-agnostic simulation environments and
datasets

e Task-Aware  Digital Cousin  Datasets (Ap-
pendix VIII-E): details about the tuning process for
digital cousin environments and generating large-scale
data

« Data Composition Analysis (Appendix VIII-F): compar-
ing data composition factors across real, digital cousin,
and prior datasets

¢ Training Details (Appendix VIII-G): training algorithm,
model architecture, and training protocols

« Policy Evaluation (Appendix VIII-H): experiment eval-
uation protocols

¢ Generalization Experiment Details (Appendix VIII-I):
details about the generalization experiments presented in
Section V-B

e MultiTaskPnP Task Setup (Appendix VIII-J): details
about the multi-task experiment setup presented in Sec-
tion V-C

o Improving Visual Realism with Vid2Vid (Ap-
pendix VIII-K): additional experiments on bridging the
visual gap between simulation and real-world data with
Vid2Vid techniques

e Training CloseDoor with More Demos
(Appendix VIII-L): additional experiments to improve
performance on real-world CloseDoor task

« FAQ (Appendix VIII-M): additional topics

B. Author Contributions

¢ Algorithm design: Soroush Nasiriany, Zhenyu Jiang,
Lawrence Yunliang Chen, Abhiram Maddukuri, Ajay
Mandlekar, Yuke Zhu

« Experiments (Panda Kitchen): Abhiram Maddukuri,
Soroush Nasiriany

« Experiments (Humanoid Tabletop): Zhenyu Jiang,
Lawrence Yunliang Chen, Yuqi Xie, Zu Wang

« Infrastructure support: Yu Fang, Wenqi Huang, Nikita
Chernyadev, Zhenjia Xu, Soroush Nasiriany

« Digital release: Lawrence Yunliang Chen, Zhenyu Jiang

o Technical advice: Ken Goldberg, Scott Reed

« Project leads: Yuke Zhu, Linxi Fan, Ajay Mandlekar

C. Real-World Tasks

Panda Kitchen. For our Panda Kitchen tasks, we use the
DROID [6] setup and make some modifications. We use the
controller from Deoxys [70], which supports OSC-based end

effector control [71], and opt to keep the original parallel-
jaw Panda gripper instead of the Robotiq gripper. We use two
side-view third-person cameras and an eye-in-hand camera.

For each task, we collect data via teleoperation using a
SpaceMouse. The robot starts from a fixed initial position
and joint configuration, with camera poses remaining
constant across each demo. For the CounterToSinkPnP
task, we uniformly sample object placements from the
rectangular counter region to the left of the sink. For the
CounterToCabPnP task, we uniformly sample object
placements from the rectangular counter region below the
cabinet. Finally, in the CloseDoor task, we uniformly
sample the initial angle of the open door from the interval
[85°, 115°]. Refer to Figure 7 for a visualization of the start
states and sampling regions for each task.

Humanoid Tabletop. We use a Fourier GR-1 robot
with the default 6-DoF dexterous hands. The joints of the
robot’s lower body and waist are locked, while the two arms
and hands are activated. During data collection, a human
operator wears a pair of MANUS gloves with a VIVE tracker
positioned on the back of each hand to capture the finger
pose and wrist pose, respectively. We implement an inverse
kinematic (IK) controller based on the mink framework [64]
to control the robot during teleoperation, where the human
input consists of wrist pose and finger joint commands.
During policy learning and deployment, we use the joint
positions computed by the IK solver as the action space.
Additionally, an OAK-D camera mounted on the robot’s head
provides egocentric visual input for the system. Only one of
the stereo RGB images (and not the depth) is used for the
policy, and no additional third-person view is used.

For each of the three single tasks—CupPnP, Mi1kPnP,
and Pouring, we collect 20 demonstrations in the real world.
The initial pose of the robot varies around a standard reset
pose according to the human teleoperator’s pose. Only one set
of objects is used for each task, but the object positions are
randomized uniformly in the region as visualized in Figure 7.

For the multi-task setting (Cuttingboard2Basket,
Cuttingboard2Pan, Mat2Basket, and Plate2Bowl),
we additionally select multiple object instances during data
collection. See Appendix VIII-J for details.

D. Task-Agnostic Simulation Datasets

Panda Kitchen. We use a subset of the 72k trajectories
from the RoboCasa dataset [7]. Specifically, we exclude
the OpenDrawer, CloseDrawer, TurnOnStove, and
TurnOffStove tasks from the original dataset due to lack
of visibility introduced by camera pose alignment. This results
in 60k trajectories over the following 20 tasks. We cite the task
descriptions from RoboCasa here:

1) PickPlaceCounterToCabinet: Pick an object
from the counter and place it inside the cabinet.

2) PickPlaceCabinetToCounter: Pick an object
from the cabinet and place it on the counter.
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Fig. 7: Visualization of start states for our experiments.
We visualize the starting states of the Panda and GR-1 for our
experiments, including initialization regions for our pick-and-
place tasks.

3)

4)

5)
6)
7)
8)
9
10)
11)
12)
13)
14)

15)
16)

17)
18)
19)

20)

PickPlaceCounterToSink: Pick an object from
the counter and place it in the sink.
PickPlaceSinkToCounter: Pick an object from
the sink and place it on the counter area next to the
sink.

PickPlaceCounterToMicrowave: Pick an object
from the counter and place it inside the microwave.
PickPlaceMicrowaveToCounter: Pick an object
from inside the microwave and place it on the counter.
PickPlaceCounterToStove: Pick an object from
the counter and place it in a pan or pot on the stove
PickPlaceStoveToCounter: Pick an object from
the stove (via a pot or pan) and place it on the counter.
OpenSingleDoor: Open a microwave door or a cab-
inet with a single door.

OpenDoubleDoor: Open a cabinet with two opposite-
facing doors.

CloseSingleDoor: Close a microwave door or a
cabinet with a single door.
CloseDoubleDoor: Close a cabinet
opposite-facing doors.
TurnOnSinkFacuet: Turn on the sink faucet to begin
the flow of water.

TurnOffSinkFaucet: Turn off the sink faucet to
stop the flow of water.

TurnSinkSpout: Turn the sink spout.
CoffeePressButton: Press the button on the coffee
machine to pour coffee into the mug.
TurnOnMicrowave: Turn on the microwave by press-
ing the start button.

TurnOffMicrowave: Turn off the microwave by
pressing the stop button.

CoffeeSetupMug: Pick the mug from the counter and
insert it into the coffee machine mug holder area.
CoffeeServeMug: Remove the mug from the coffee

with two

machine mug holder and place it on the counter.

Humanoid Tabletop. The tabletop humanoid datasets com-
prise 10 tasks in the RoboCasa simulation framework:

1y
2)
3)
4)
5)
6)
7
8)
9

10)

CounterToPlate: Pick up an object from the table-
top and place it on the nearby plate.
PnPAppleToPlate: Pick up the apple from the table-
top and place it on the nearby plate.

PnPCanToBowl: Pick up the can from the tabletop and
place it in the nearby bowl.

PnPMugToPlate: Pick up the mug from the tabletop
and place it on the nearby plate.
PnPFruitPlacement: Pick up the fruit from the
tabletop and place it on the nearby plate.
PnPKettleToPlate: Pick up the kettle from the
tabletop and place it on the nearby plate.
PnPMilkPlateToPlate: Pick up the milk carton
located on a plate and transfer it to another plate.
PnPMilkToBasket: Pick up the milk carton from the
tabletop and place it in the nearby basket.
PnPPlateToPlate: Pick the object located on a plate
and transfer it to another plate.
PnPVegetableBowlToPlate: Pick the vegetable
located inside a bowl and transfer it to a plate.

E. Task-Aware Digital Cousin Datasets

Panda Kitchen. We design a digital cousin for each of the
three tasks in the Panda Kitchen. Among the set of data
composition factors outlined in Section V-D, we focus on ap-
proximately aligning the following factors: Task composition,
Object composition, and Initialization distribution. See Tables
IIT and V for a summary of the alignments.

Task composition: We align our digital cousin to contain
the same task semantics and motions as in the real world.
This involves using identical language instructions to
those in the real task and approximately matching the
initial joint configurations and positions to ensure similar
trajectory distributions.

Object composition: We design the digital cousin for
our Pick-and-Place tasks to predominantly include
object categories present in the real-world setting. Specif-
ically, in the CounterToSinkPnP DC, 9/10 object
categories overlap with those used in real-world tasks.
Similarly, in the CounterToCabPnP DC, 8/10 object
categories are shared with the real-world setting.
Initialization distribution: We approximately align start-
ing joint states, initial positions, and object initialization
regions for our digital cousins. Specifically, we update the
default starting position of the Panda to be farther away
from the counterspace and increase the starting height
to better match the starting position in the real world.
We also reduce the area of the default sampling region to
better match the sampling region in the real-world setting.

For our CounterToSinkPnP DC, CounterToCabPnP

BE,

and CloseDoor DC, we generate 10,000 synthetic

trajectories each from an initial source of 100 human



| Dataset Obj. Cat.  Obj. Ins.  Scenes  Demos | Dataset Obj. Cat.  Table Tex. Demos
Real CounterToSinkPnP 9 13 1 50 CupPnP 1 1 20
ea CounterToCabPoP 8 12 1 50 Real MilkPnP 1 1 20
CloseDoor N.A. N.A. 1 50 Pouring 1 1 20
be CounterToSinkPnP 10 67 100 10k be CupPnP 1 1 1k
CounterToCabPnP 10 67 100 10k MilkPnP 3 10 1k
CloseDoor N.A. N.A. 100 50 Pouring 2 10 1k
Prior | RoboCasa (20 tasks) 70 381 100 60k Prior | RoboCasa (10 tasks) 66 10 10k

TABLE III: Aggregate dataset statistics of the Panda Kitchen
domain. We outline the number of object categories, object instances,
scenes, and number of demonstrations for the real, digital cousin
(DC), and task-agnostic prior (Prior) datasets.

demonstrations using MimicGen [9]. We further diversify
these demonstrations by rendering them using combinations
of the 100 floor, 100 wall, 100 cabinet, and 100 counter
Al-generated textures provided by RoboCasa [7].

Humanoid Tabletop. Similarly, we design one digital
cousin (DC) for each of the three tasks in the Humanoid
Tabletop domain. We focus on the following factors when
designing the DC: Task composition, Object composition,
and Initialization distribution.

« Task composition: we set up the scene and the success
check to make the simulation task semantically similar to
the real-world task. During the simulation source demo
collection, we try to mimic the motion pattern of the
real-world demos. We add a small random offset (uni-
form distribution between [—0.2,0.2]) to the initial joint
distribution as real demos have different initial joints.

« Object composition: since we have a fixed set of objects
in the real-world, we use a smaller set of objects in DC
for the GR-1 humanoid, as noted in Table IV.

« Initialization distribution: we align object initialization
regions for our DC with the real-world counterparts.

For our CupPnP, M1 1kPnP, and Pouring digital cousins,

we generate 1000 synthetic demonstrations each from an initial
source of 10 human demonstrations using DexMimicGen [10].
We instantiate the Mi1kPnP and Pouring digital cousins in
RoboCasa, and we render them with 10 table textures.

F Data Composition Analysis

We provide a detailed comparison of the real-world, task-
aware digital cousin and task-agnostic prior datasets in Ta-
ble IIT for the Panda Kitchen domain and Table IV for the
Humanoid Tabletop domain.

We also add a detailed comparison of additional factors
such as camera positions and initialization parameters for the
CounterToSinkPnP task in Table V.

G. Training Details

Panda Kitchen. We adopt the open-source Diffusion Policy
implementation from Chi et al. [38]. We use the transformer-
based variant with ResNet visual encoders. The policy takes
three 128 x 170 image views and robot proprioception in-
formation (end effector position and rotation, gripper joint
values), and outputs a 7-DoF action for delta end-effector

TABLE IV: Aggregate dataset statistics of the Humanoid Table-
top domain. We outline the number of object categories, table
textures, and number of demonstrations for the real, digital cousin
(DC), and task-agnostic prior (Prior) datasets. Note that for CupPnP,
we randomize the color of the object, although we are using a single
object category.

control and gripper action. We modify the hyperparameters
to use a larger transformer network and a larger batch size of
256. We also add language conditioning to facilitate training
on diverse multi-task data; we encode language using the CLIP
sentence encoder, and we add FILM conditioning layers [72]
to the vision encoder. We set a default co-training ratio of
0.10 for real-world data and 0.90 for simulation data. We do
this as we have a significantly higher quantity of simulation
demonstrations than real-world demonstrations.

As mentioned in Section III-A, with a training batch of size
B, on average, o - B samples are drawn from the simulation
dataset Dy, and (1 — ) - B samples are drawn from the real-
world dataset D;e,. To enforce this, we reweight each data
sample such that P[(0;,a;) € Dsm] = « and P[(0;,a;) €
Dreal] = 1 — «, where (0;, a;) denotes an observation-action
pair within the batch. We achieve this by first normalizing the
weight of each sample according to the size of its dataset, and
then multiplying the normalized weight by « if the sample
belongs to Dsimy and by 1 — « if it belongs to Dieqi.
Humanoid Tabletop. Since there is no ambiguity in terms of
objects to manipulate, we use Diffusion Policy (DP) without
language conditioning and train one policy for each task.
We use the DP implementation from UMI [73] with Vision
Transformers [74] as vision encoders and UNet [75] as the
diffusion backbone. The input observation contains an RGB
image from a first-person-view camera and joint position
observations. The output action is the target joint positions
of the arms and the dexterous hands. Figure 5 shows that co-
training ratios o of 0.9 and 0.99 are optimal, and we use 0.99
for all other experiments.

H. Policy Evaluation

We use similar evaluation protocols for the Franka Panda
arm and the GR-1 humanoid. We evaluate the model at three
checkpoints during training, spaced at equal intervals. At each
checkpoint, we assess the model’s success rate and use the
highest success rate among these evaluations as the final result.
Panda Kitchen. For both the CounterToSink and
CounterToCab tasks, we perform four random placements
on the counter per object and record the overall average
success rate for all object categories. For the CloseDoor
task we sample 10 random joint angles between [85°, 115°]



\ Left Cam Pos. Right Cam Pos. Wrist Cam Pos. Init. Robot Joints Init. Robot Base Pos.  Obj. Init. Reg.
Real [-0.35, 0.49, 0.70]  [-0.35, -0.42, 0.72]  [-0.029, 0, 0.05]  (0.09, -0.20, -0.02, -2.47, -0.01, 2.30, 0.85) [-18, -26, 0] 27x23
DC [-0.35, 0.49, 0.70]  [-0.35, -0.42, 0.72]  [-0.029, 0, 0.05]  (0.09, -0.20, -0.02, -2.47, -0.01, 2.30, 0.85) [0, -32, -4] 27x27
Prior | [-0.35, 049, 0.70] [-0.35, -0.42, 0.72]  [-0.029, 0, 0.05]  (-0.02, -1.03, -0.02, -2.28, 0.04, 1.52, 0.70) [0, -20, -22] 30x40

TABLE V: Additional dataset statistics for CounterToSinkPnP task. All units except for initial robot joints are in centimeters. Camera
positions are (X,y,z) coordinates relative to the robot base. Initial robot base positions are (X, y, z) coordinates relative to the middle edge of

the sink. Object initialization region is (depth x width)

Panda CounterToSinkPnP GR-1 CupPnP
- T e D !

Train objects

Test objects Train objects

Test objects

Fig. 8: Visualization of novel object experiment set-
tings. We show the picture of train objects and test ob-
jects of the generalization experiment conducted on Panda
CounterToSinkPnP and GR-1 CupPnP tasks.

and average the success rate across all sampled joint values;
this results in 36, 32, and 10 total rollouts per checkpoint for
the CounterToSink, CounterToCab, and CloseDoor
respectively. For the CounterToSink, we record a success
if the policy picks up the object and places it in the left or
right basin of the sink, and record a failure otherwise. For the
CounterToCab, we record a success if the policy picks up
the object and securely places it in the cabinet, and record a
failure otherwise. Finally, for the CloseDoor task, we record
a success if the door’s joint angle is less than 5° and record
a failure otherwise.

The initialization regions and starting conditions (robot joint

states, robot positions, object sampling regions) at test time are
the same as during training. See Figure 7 for a visualization
of the starting state and initialization regions for the tasks.
For CounterToCabPnP and CounterToSinkPnP, we
evaluate on seen objects, and for CloseDoor, we evaluate
on the same door and use the same range of joint angles, [85°,
115°], from the training data.
Humanoid Tabletop. For each task, we evaluate the policy
performance using the same objects and position distributions.
For each checkpoint, we evaluate 20 different initial positions
for the CupPnP task and 10 for the Mi1kPnP and Pouring
tasks. We report the highest success rates among the three
checkpoints for each training run. We consider partial suc-
cesses, where a successful pick is counted as 0.5.

1. Generalization Experiment Details

This section visualizes the settings of the generaliza-
tion experiments described in Section V-B. Figure 8 illus-
trates the training and testing objects used in the gener-
alization experiments for the Panda CounterToSinkPnP
and GR-1 CupPnP tasks. The default setup for the Panda
CounterToSinkPnP task involves manipulating a diverse
set of objects, whereas the GR-1 CupPnP task primarily

GR-1 CupPrP

Train data object initial distributions Train data object initial distributions

Test data object initial distributions Test data object initial distributions

Fig. 9: Visualization of novel position experiment set-
tings. We visualize the train and test object initialization
range of the generalization experiment conducted on Panda
CounterToSinkPnP and GR-1 CupPnP tasks.

uses the same red cup. Consequently, we observe a much
greater performance improvement in the CupPnP task when
employing sim-and-real co-training, as in Table II.

Figure 9 visualizes the training and testing object initializa-
tion ranges for the generalization experiments conducted on
the Panda CounterToSinkPnP and GR-1 CupPnP tasks.
In the training data, objects are always initialized at the borders
of the workspace, while testing is performed with objects
placed at the center of the workspace.

J. MultiTaskPnP Task Setup

In the multi-task experiment on the humanoid, we consider
the following four tasks:

1) Cuttingboard2Basket: Pick up an object from the
cutting board and place it into the nearby basket.

2) Cuttingboard2Pan: Pick up an object from the
cutting board and place it into the nearby pan.

3) Mat2Basket: Pick up an object from the mat and place
it into the nearby basket.

4) Plate2Bowl: Pick up an object from the plate and
place it into the nearby bowl.

The tasks are visualized in Figure 10. The train and test
objects we used are visualized in Figure 11. We collect 100
demonstrations for each task in the real world, where we
randomly select an object and an initial location for each
trajectory. At test time, we choose unseen instances of the
same object category as the test objects, but the positions are
within the demonstration distribution.

We create a digital cousin for each of the four tasks, using
target objects and containers of the same category in simula-
tion. Additionally, we align the initial distribution of object
positions to approximate the distribution observed in real-
world demonstrations. Once the simulation environments are
set up, we collect 10 human demonstrations and generate 1000
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Fig. 10: MultiTaskPnP visualization. We show the real-
world scene setup of the four tasks in MultiTaskPnP.

GR-1 MultiTaskPnP
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Fig. 11: MultiTaskPnP train and test objects. We show
the real-world train and test objects we used for GR-1
MultiTaskPnP.

simulation demonstrations per task using DexMimicGen [10],
resulting in a total of 4000 DC demonstrations.

We train a single policy across all four tasks, where the
policy implicitly conditions on the image observation to
determine the current task. For evaluation, we select three
unseen objects—can, lemon, and cucumber (see Figure 11
right)—and assess performance across three different initial
positions for each object in each task, yielding a total of
36 evaluations across the four tasks. We report the average
performance across all tasks, considering partial successes,
where a successful pick is counted as 0.5.

In Figure 4, we compare policies trained on Real + DC,
where we use 4,000 total DC demonstrations and vary the
number of real-world demonstrations, with 10, 25, 50, 75, and
100 real demonstrations per task. Results show that the co-
trained policies consistently outperform the real-only policies.

We also compare co-training with different simulation data
in this multi-task setting, similar to the single-task setting
we show in Section V-A. We use 200 real demonstrations
(50 per task), 4000 DC demos (1,000 per task), and 10,000
Prior demos (1,000 per task). Similar to Table I, we see
that the policy trained on the combination of Real, DC,
and Prior data performs the best, getting a success rate
of 75.7%, followed by Real + DC (70.8%) and Real +
Prior (68.8), both of which significantly outperform the
Real policy (30.6%).

K. Improving Visual Realism with Vid2Vid

Given our observation that incorporating task-aware digi-
tal cousins, such as camera viewpoint alignment, enhances
performance, we pose a follow-up question: Would improving
visual realism by making simulation rendering closer to reality
enhance co-training?

Several studies [23], [76]—[79] have suggested that training
generative models (such as CycleGAN) on real and simulated
images, and applying them to simulation images to make them
visually more realistic, improves sim-to-real policy transfer.
Inspired by this, we conduct experiments to assess the extent
to which improving the visual realism of simulation data
enhances policy performance.

Specifically, we fine-tune CogVideo-X [80], a state-of-the-
art video diffusion model, on CupPnP real demonstration
videos in the Text2Video modality. This enables the model
to generate realistic-looking videos of a robot performing the
task from pure Gaussian noise.

To adapt the model for style transfer on simulation
videos—preserving object positions while enhancing visual
realism—we adopt a simple strategy: instead of generating
videos from pure noise, we introduce noise into reference
simulation videos and use them as initialization for video dif-
fusion. By adjusting the noise strength parameter, we control
the extent of noise added and the diffusion starting timestep
(see Figure 12 for examples). Lower noise levels retain more
of the original simulation textures, producing outputs closer
to the inputs, while higher noise levels result in more realistic
appearances but may distort object poses.

We set the noise strength to 0.6, as lower values yield out-
puts too similar to simulation textures, whereas higher values
cause excessive deviations from object positions, rendering the
original action labels from simulation data inapplicable.

We then conduct co-training experiments in the Real +
DC setup on the CupPnP task, comparing policy performance
with and without Vid2Vid augmentations on DC data under
different numbers of sim and real demos similar to Figure 4.

We find that improved visual realism is particularly
beneficial in low-data regimes and provides a modest
improvement in overall policy performance. Experiment
results, reported in Table VI, show that Vid2Vid-enhanced
visual realism leads to a 5—10% average improvement in policy
performance, with the most significant benefits occurring
when the number of simulation or real-world trajectories is
low. When sufficient real-world demonstrations are available,
simulation data plays a minor role. Conversely, when a large
and diverse set of simulation data is available, the importance
of visual realism diminishes.

These findings highlight the potential of the role of genera-
tive models as part of the synthetic data. While our approach
utilizes a renderer to provide reference videos for the video
diffusion model, future work could explore synthetic genera-
tion without reliance on the graphics renderer.
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Fig. 12: Examples of the Video2Video model outputs with different noise strength. Left: An example video frame from the simulation
data. Right: The corresponding frames generated by the trained video diffusion model by initializing the noises with the simulation video
with different noise strengths. By setting different values for the noise strength parameter, we can control how much noise is added and

from which timestep the model starts diffusion.

Real 20 + | Sim 20  Sim 100  Sim 200  Sim 500  Sim 1000
Real + DC 48% 73% 85% 88% 95%
Real + DC w/ V2V 70% 80% 88% 93% 95%
Sim 1000 + | Real 1 Real 5 Real 10 Real 20 Real 50
Real + DC 8% 40% 73% 95% 95%
Real + DC w/ V2V 13% 53% 83% 95% 95%

TABLE VI: Effects of improved visual realism with Vid2Vid
models on policy performance in various numbers of simulation
and real demonstrations. We compare the policy co-trained on
Real + DC for the CupPnP task where DC is augmented to be
visually more realistic using the Vid2Vid model (DC w/ V2V)
compared to using the OpenGL-based simulation renderings (DC).

Fig. 13: Visualization of BimanualPnP task. We show one
rollout of our co-trained policy on BimanualPnP task. This
task involves bimanual and long-horizon manipulation.

L. Training CloseDoor with More Demos

Due to the large performance gap between real and
all other co-trained policies for the CloseDoor task, we
investigate whether this gap can be easily closed by training
the real policy on more demonstrations. Specifically, we
train the real policy on 100 demos instead of 50. We find that
the policy still does not achieve 100% success, only getting
an 80% success rate despite training with double demos.

M. FAQs

Is dynamic alignment investigated? We have attempted
to align dynamics by tuning physics parameters to reduce the
gap between open-loop rollout results in simulation and the
real world. However, our experiments on GR-1 CupPnP show

no difference in success rate (95%) with or without dynamic
alignment, suggesting that such alignment is unnecessary for
our tasks.

How misaligned is the default camera? Since perfect
camera alignment between simulation and the real world is
infeasible, quantifying the exact camera pose error is challeng-
ing. Instead, we compute the delta pose between the default
camera and the “aligned” camera. In Panda, the position and
orientation deltas for the third-person cameras are 37 cm and
20°, respectively, while for the wrist camera, the deltas are 9
cm and 180°. In GR-1, the position delta is 36 cm, and the
orientation delta is 60°. A visualization of the camera views
is provided in Figure 6.

How does co-training compare to domain randomization
and domain adaptation? We find that domain randomization
and domain adaptation are complementary to co-training but
not strictly necessary to reap the benefits of co-training with
simulation. For instance, in the Panda Kitchen domain, we
observe that adding generative texture randomization to the
digital cousin data further improves performance, but
even without it, co-training alone still leads to performance
gains. Similarly, in the Humanoid Tabletop domain, enhancing
visual realism via a Video2Video model can boost co-training
results, but the gains are marginal in some cases.

Are there plans for bimanual tasks? We introduce a GR-
1 BimanualPnP task, where the humanoid must use its left
hand to pick up a Rubik’s cube and place it at the center of
the table, then use its right hand to pick up the cube and
place it into a basket, as shown in Figure 13. Our results
show that with 50 real demonstrations, the policy achieves a
15% success rate. When co-trained with 1,000 DC simulation
demonstrations and 50 real demonstrations, the success rate
improves to 50%. In contrast, a policy trained only with 100
real demonstrations achieves a 30% success rate. We also
briefly tested co-training with our current task-agnostic prior
datasets. As discussed in Section VIII-D, all our humanoid
prior datasets consist of single-arm pick-and-place data. When
co-trained with these datasets using a 99% co-training ratio,
the policy exhibits single-arm pick-and-place behavior instead
of the expected bimanual behavior, resulting in a near-zero
success rate. This suggests that for task-agnostic prior datasets
to effectively support real-world manipulation, the behavior
patterns in simulation and the real-world need to be consistent.



