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Fig. 1: We propose CordViP, a correspondence-based visuomotor policy for dexterous manipulation in the real world. (a)
Left: We present the interaction-aware point clouds, which demonstrate robustness to different viewpoints while establishing
correspondences between the object and the hand. (b) Right: Our method achieves promising results across multiple real-world
dexterous manipulation tasks, showcasing exceptional generalization capabilities.

Abstract—A chieving human-level dexterity in robots is a key
objective in the field of robotic manipulation. Recent advance-
ments in 3D-based imitation learning have shown promising
results, providing an effective pathway to achieve this goal.
However, obtaining high-quality 3D representations presents two
key problems: (1) the quality of point clouds captured by a
single-view camera is significantly affected by factors such as
camera resolution, positioning, and occlusions caused by the
dexterous hand; (2) the global point clouds lack crucial contact
information and spatial correspondences, which are necessary
for fine-grained dexterous manipulation tasks. To eliminate
these limitations, we propose CordViP, a novel framework that
constructs and learns correspondences by leveraging the robust 6D
pose estimation of objects and robot proprioception. Specifically,
we first introduce the interaction-aware point clouds, which
establish correspondences between the object and the hand.
These point clouds are then used for our pre-training policy,
where we also incorporate object-centric contact maps and hand-
arm coordination information, effectively capturing both spatial

and temporal dynamics. Our method demonstrates exceptional
dexterous manipulation capabilities, achieving state-of-the-art
performance in six real-world tasks, surpassing other baselines by
a large margin. Experimental results also highlight the superior
generalization and robustness of CordViP to different objects,
viewpoints, and scenarios. Code and videos are available on
https://aureleopku.github.io/CordViP.

I. INTRODUCTION

Dexterous manipulation is a fundamental capability in human
daily life such as assembling small parts and opening boxes.
Achieving human-level dexterity in real-world scenarios is
crucial for integrating robots into everyday human activities.
Recent advancements in imitation learning have demonstrated
significant potential in various robotic manipulation tasks. Some
existing methods leverage 2D images as input to directly
predict actions [7, 70, 54, 63]. While these vision-based



imitation learning approaches are capable of handling a wide
range of tasks, they typically demand extensive demonstrations
[19, 7, 13, 57] and, at the same time, fail to capture intricate
spatial relationships and 3D structures essential for dexterous
manipulation [69, 23, 49, 11], limiting their ability to perform
complex, fine-grained tasks.

Recent research has increasingly focused on 3D imitation
learning, utilizing point clouds and voxels as representations,
to help robots perceive 3D environments and reason about
spatial relationships [69, 13, 56, 14, 64, 51]. For example,
3D diffusion-based policies, which aim to enhance robots’
ability to perform complex manipulation tasks by providing a
more accurate and holistic representation of the environment.
These methods for obtaining 3D representations in real-world
scenarios often depend on a single-view RGB-D camera to
generate point clouds, imposing significant demands on both
the camera’s quality and its position. However, the multi-
fingered nature of dexterous hands often leads to occlusions
during object manipulation, which not only loses the spatial
information of the object point clouds but also obscures critical
correspondence information for precise manipulation. Besides,
some works have explored the use of tactile sensors to enhance
contact information [17, 66, 18, 62, 2]. For instance, Wu et al.
[62] proposed a canonical representation of 3D tactile data,
which is concatenated with other visual information. Although
tactile sensors hold promise, their high cost and susceptibility
to interference from factors such as temperature fluctuations
and electromagnetic fields undermine their stability and limit
their practical applicability in real-world scenarios. Amidst all
the challenges, leveraging efficient and robust 3D imitation
learning to understand spatial information in complex, dynamic
environments is crucial for dexterous manipulation.

In this paper, we propose a correspondence-based visuo-
motor policy (CordViP), which focuses on the spatial and
temporal consistency between the manipulated object and the
dexterous hand, even under significant occlusions. CordViP
separately extracts the 3D representations of robotic hand’s
joint structure and the manipulated object, and utilizes the
contact map between them as well as arm-hand cooperative
motion information to pretrain the observation encoder. This
approach enhances the dexterous hand’s ability to understand
spatial interactions and better facilitate a range of downstream
tasks. Specifically, our framework operates in three phases: (1)
We leverage the robust 6D pose estimation of objects combined
with the robot’s proprioceptive state to construct interaction-
aware point clouds, providing ideal 3D observations that
facilitates effective learning and inference for the visuomotor
policy. (2) We pretrain the encoder network on the play data we
collected to predict the contact map between the dexterous hand
and the object, and reconstruct the cooperative relationship
between the hand and the arm for further understanding of
spatial and temporal correspondences. (3) We utilize the pre-
trained encoder to extract the semantic features of 3D point
clouds and robot state, which encapsulates spatial consistency,
contact dynamics and collaborative information, and then are
used as conditions for the diffusion policy to predict actions.

To comprehensively evaluate our proposed CordViP, we
conduct extensive real-world experiments on six dexterous
tasks: PickPlace, FlipCup, Assembly, Artimanip, FlipCap and
LongHoriManip. Comparative results demonstrate that our
method not only exhibits superior effectiveness, but also
achieves remarkable performance with a minor number of
expert demonstrations, highlighting its capability to learn
efficiently from limited data. Furthermore, we find that Cord-
ViP generalizes well to various environmental perturbations,
including varying lighting conditions, unseen objects, diverse
scenarios, and different camera viewpoints, outperforming other
baselines by a large margin.

In summary, our contributions are as follows:

1) We develop a pipeline based on robust 6D pose estimation
of objects and robot proprioception. This pipeline enables
the real-time acquisition of complete 3D representations
and semantic flow in real-world environments, and can
effectively address the challenges posed by occlusions
during dexterous manipulation.

2) We propose CordViP, a correspondence-based visuomotor
policy that utilizes the contact map and hand-arm
coordination information to facilitate the understanding
of spatial and temporal consistency.

3) We demonstrate the effectiveness and generalization of
our method through a range of real-world experiments
using a dexterous hand.

II. RELATED WORK

A. Dexterous Manipulation

Dexterous Manipulation is a long-standing research topic in
robotics that aims to give robots the ability to perform delicate
operations like humans [5, 1, 45, 65]. Traditional methods often
rely on trajectory optimization based on dynamic models to
solve operational problems [26, 33, 58], but these methods have
limitations in complex tasks because they simplify the contact
dynamics and are difficult to deal with uncertainties in dynamic
environments. In contrast, Reinforcement Learning (RL) does
not rely on accurate physical models but learns operational
policies through interaction with the environment, which is
highly adaptable. RL has achieved remarkable results in many
dexterous manipulation tasks, such as object reorientation [3,
43, 39, 20] and sequential manipulation [6, 15]. However, RL
methods often suffer from several challenges, such as the need
for extensive reward engineering and system design, as well
as limited generalization to unseen scenarios. Additionally,
while Sim-to-Real is a common technique employed in RL,
the gap between simulations and the real world degrades the
performance of the policies once the models are transferred into
real robots [71]. Imitation learning (IL), as another effective
learning method, can quickly learn effective control policies
by imitating expert demonstrations [67, 54]. In this work, we
propose a correspondence-based visual imitation learning policy
that utilizes spatial information between various components,
enabling the acquisition of complex skills with a minimal
number of expert demonstrations.



B. Imitation Learning

Imitation learning (IL) allows a robot to directly learn
from experts. Behavioral Cloning (BC) is one of the simplest
imitation learning algorithms, which treats the problem of
learning behavior as a supervised learning task [40]. The
modeling methods commonly used in traditional BC, such as
MSE, discretization [29], and K-Means [16], have limitations
when modeling complex action distributions. They fail to
effectively capture the diversity and nuances of human behavior
[38]. Over the past few years, diffusion models have emerged as
a new modeling approach in BC, becoming powerful tools that
enable robots to learn from demonstrations, handle uncertainty,
and perform complex multi-step tasks with precision. From the
early applications of DDPMs to the recent innovations in BESO
[47], OCTO [52], and CrossFormers [10], these models have
continually pushed the boundaries of what’s possible in robotic
behavior generation. While traditional BC policies typically
rely on 2D image-based representations [7, 70, 54, 63, 28, 30],
recent advancements have extended imitation learning to 3D
visual representations [69, 4, 13, 55, 56, 31]. These 3D
approaches provide a more comprehensive understanding of
spatial relationships and 3D structures, further enhancing
robotic behavior learning.

C. Correspondence Learning

Correspondence refers to the relationship or alignment
between different entities or components, with the aim of
establishing meaningful connections. Correspondence learning
has been shown to improve performance in various robotic tasks,
including grasping [36, 9], perception [27, 4], pose estimation
[21] and garment manipulation [61]. In this paper, correspon-
dence specifically refers to the alignment between hand-object
spatial interaction and hand-arm temporal coordination. By
incorporating correspondence, we enhance feature extraction
capabilities, thereby enabling more accurate and coordinated
movements in downstream tasks.

III. METHOD

The overview of our framework is shown in Figure 2, which
operates in three phases: (1) Interaction-aware generation of
3D point clouds. We acquire relatively accurate and complete
3D observations during real-world dexterous manipulation
tasks even under significant occlusions, as described in III-B.
(2) Contact and coordination-enhanced feature extraction. By
leveraging large-scale play data and incorporating contact maps
and hand-arm coordination, we improve spatial interaction
perception and capture cooperative motion features, detailed
in III-C. (3) Correspondence-based diffusion policy. The pre-
trained encoder is used to extract 3D representations, which
guide the training of a visuomotor policy, as outlined in III-D.

A. Problem Formulation

We formulate our problem as learning a visuomotor policy
m : O — A from expert demonstrations of the form
of {(o1,a1), (02,02),...,(0n,as)}, where O represents the

robot’s observations and .A represents the corresponding actions,
allowing the robot to generalize beyond the training data
distribution. In our approach, each observation o; is composed
of the object’s point cloud P, the hand’s point cloud Pj,q54,
and the robot’s joint states, including a 6-Dof arm and 16-
Dof hand configuration. Unlike previous works that rely on
global point clouds for 3D feature extraction, our approach
prioritizes capturing the individual information of the arm,
hand, and object throughout the manipulation process. As
a result, CordViP not only effectively addresses occlusion
challenges during dexterous manipulation but also significantly
improves the model’s ability to comprehend spatial interactions
and collaborative dynamics. Furthermore, leveraging these
observations, we compute contact maps between the robotic
hand and the manipulated objects, as well as capture col-
laborative interaction information between the arm and hand.
These elements are critical for modeling spatial and temporal
relationships.

B. Interaction-aware Generation of 3D Point Clouds

Motivated by the superior generalization and efficiency of
the 3D-based diffusion policy[69, 56, 68, 4], the key intuition
behind our solution is to focus on the interactions between
the hand and the manipulated object in 3D space. Although
intuitively reasonable, achieving this goal is challenging in
practice. On the one hand, real-world point cloud data, typically
captured using stereo cameras or low-cost RGB-D scanners,
suffers from geometric and semantic loss due to factors such
as light reflection, material transparency, and limitations of
sensor resolution and viewing angle. On the other hand, during
dexterous manipulation with multi-fingered hands, occlusions
frequently occur, resulting in the loss of critical contact and
interaction information, which is vital for precise and effective
manipulation. To this end, we propose the interaction-aware
generation of 3D point clouds, enabling the reconstruction of
crucial spatial information.

Real-to-Sim for Digital Twin Generation. To achieve the
goal of obtaining a complete and accurate static point cloud of
the manipulated object, we aim to reconstruct the digital twin
from a single-view image [34, 35]. Referring to the approach
TripoSR [53], we implement a 3D generation technique, which
utilizes its strong priors and broad understanding of visual
concepts in the 3D world to generate 3D digital assets. To
ensure the accuracy of point cloud flow tracking, we maintain
consistency between the geometric and material properties
of the reconstructed assets and their real-world counterparts.
Subsequently, we uniformly sample points on the surface of
the generated digital twin to obtain the initial 3D point clouds,
providing a robust and accurate initial observation for both 3D
spatial perception and pose tracking.

Pose-Driven Point Cloud Tracking. We have successfully
obtained the initial point cloud of the object. However, tracking
the object’s point cloud in complex, real-world environments
poses a significant challenge, particularly in scenarios with
severe occlusions. To overcome this, we leverage foundation
models to ensure precise pose estimation of the manipulated
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Fig. 2: Overview Framework (a) We first employ TripoSR to generate the initial object point cloud and FoundationPose
to estimate the 6D pose of the object. In parallel, the hand point cloud is generated based on the robot’s state. They are
combined to construct interaction-aware point clouds, which demonstrate robustness to viewpoint variations. (b) During the
pre-training phase, the generated point cloud data, combined with the robot’s proprioceptive information, is utilized to enhance
spatial understanding and interaction modeling. (c) The pre-trained encoder is subsequently integrated into an imitation learning

framework to facilitate downstream tasks in dexterous manipulation.

object, thereby enhancing point cloud tracking. Specifically,
we first employ the Segment Anything model [25] to extract
the mask of the manipulated object. This is combined with
a digital twin generated via real-to-sim techniques, enabling

us to use FoundationPose [60] for accurate pose estimation.

Using the center of the acquired point cloud as the origin, we
then apply the estimated pose to transform the entire point
cloud, aligning it with the desired coordinate frame.

Robot Point Cloud Forward Kinematics Model. To obtain
the point cloud of the dexterous hand, we develop the robot
point cloud forward kinematics model .. We first parse the
URDF file to identify individual links of the robot system, and
uniformly sample point clouds on the surface for each link. The
robot system model is constructed with point clouds denoted as

{Ps, }ivzfl, where NNy is the number of links. Following Wei et al.

[59], we designed the robot point cloud forward kinematics
model that maps any joint configuration to the corresponding
pose of the point cloud. In order to focus on the interaction
between the hand and the object, we ignore the point cloud
of the robotic arm. Therefore, the 3D observation of the hand
Prona € RY? %3 ig defined as:

Phand = ]:pC(Qa {Pfq, }ivzel)’ (1)

where Np represents the downsampled size of the point
cloud, which is set to 1024 in practice. Through our practical
evaluations, the point cloud forward kinematics model operates

(a) RGB-D Synthesized Point Clouds

4

Raw RGB Image View-1

Fig. 3: Point Clouds Comparison. We present point clouds
of two methods under three different viewpoints. Notably, for
better visualization, we have applied color information to the
point clouds. However, color information is not used in the
policy learning.

at 8Hz, a frequency that is sufficiently high for our experimental
setup, where inference is conducted at SHz.

As shown in Figure 3, interaction-aware point clouds
significantly enhance the quality of 3D observations compared
to RGB-D synthesized point clouds, while demonstrating strong
robustness to different viewpoints.

C. Contact and Coordination-Enhanced Feature Extraction

Interaction-aware Generation of 3D Point Clouds provides
us with accurate and complete point cloud observation.
However, fine-grained dexterous manipulation often requires



more detailed information. pre-training based on contact and
coordination, in the context, can encourage the encoder to
learn the intrinsic structures, facilitating more effective feature
extraction, and promoting the learning of various downstream
tasks.

Contact Map Synthesis. A contact map serves as a critical
piece of information in dexterous manipulation tasks, which
captures the interaction between the hand and the object. Given
the complete point clouds, we first calculate object-centric
contact map C as the normalized distances from the object’s
surface point to the hand surface. Given the point clouds of
the object P,;; and the point cloud of the hand P4, the
aligned distance D 3 between each point v, on the object
surface and the surface of the dexterous hand is defined as
follows:

min 67<17|<vh7007n0>|)|‘vo —wpll2, (@)

vhEPRand

Doy =

where 7, is the surface normal of the object, which is computed
using the K-Nearest Neighbors methods [8] by considering the
local geometric properties of the point cloud. v is the scaling
factor, which is empirically set to 1.

Based on the aligned distance, we compute the contact map
following Jiang et al. [24]:

C =1 —2(Sigmod(0 - D(p,3y) — 0.5) 3)

where 6 is the scaling factor and each point’s contact value
¢; € C is bounded within the [0, 1] range.

Point Cloud Feature Extraction. We employ two encoders
with identical architecture to extract point cloud embeddings,
denoted as fg, (Poy;) and fo,, (Phara). for the object and hand,
respectively. In detail, we adopt PointNet [41] as the point
cloud encoder, which excels in capturing local structures and
integrating global information. To establish correspondences
between the hand and the object features, we apply two
multi-head cross-attention transformers gg,, gg,, to fuse their
respective embeddings, which maps the hand and object
features to two sets of aligned representations, denoted as
o™ and ¢:

¢H — 96y (fﬁH (Phand)5 f@o (Pobj)) + f@H (Phand)
¢ = 906 (foo (Pobs); for; (Phana)) + foo (Pobs)

To help the point cloud encoder leamn the intrinsic features,
we designed a contact map prediction task. Since 3D point
cloud observations implicitly contain contact information, we
utilize a three-layer MLP to predict the object-centric contact
map CP"? given the point cloud observations of both the hand
and the object. The MSE loss is calculated between C and
Crred, This pre-training approach enables the encoder to learn
the interactions and relationships within the environment.

Hand-Arm Coordination Enhancement. To help the robot
system learn the features of hand-arm coordination, we also

“)

propose a correspondence-based design for action prediction.

The arm and hand states are first projected into vectors of
identical dimensionality through a linear layer, after which the
same cross-attention transformers are employed to establish

correspondences between the hand and the arm. We predict
the action sequence of the robot arm based on the point clouds
and the state of the hand. Similarly, we also predict the action
sequence of the hand using point clouds and the arm state. We
use MSE loss to compute the loss between the reconstructed
and original action. By further predicting the action sequence
respectively, the encoder is able to learn intrinsic features of
motion and capture collaborative dynamics.

Given the aforementioned losses, our overall training objec-
tive during the pre-training phase is defined as:

mginﬁ - ‘Ccontact + )\‘Ccoordination; (5)

where £ represents the encoder of the observation, and A is
a hyperparameter that controls the relative strengths of the
losses.

D. Correspondence-based Diffusion Policy

After obtaining the pre-trained encoder, we utilize an
imitation learning framework to learn visuomotor policy for
dexterous manipulation tasks. Specifically, we adopt conditional
denoising diffusion model [22, 7, 38] as our backbone, which
conditions on 3D visual features ¢*© and robot states features
14 H . Beginning with a Gaussian noise A¥, the denoising
network ey performs  iterations to gradually denoise A% into
the noise-free action AY:

AR — g (AR — ypep(@0 M AR B)) 4 0 N (0, 1),
(6)
where N(0, I) is Gaussian noise, ay, v and oy are functions
of k, determined by the noise scheduler. This formulation
allows the model to capture the distribution of action without
the cost of inferring future states.
We use the DDIM scheduler [50] to accelerate the inference
speed in real-world experiments. The training objective is to
predict the noise added to the original data:

L= MSE(Ek, Eg(Oé_kAO + Bffk; ¢H,O, ¢A7Ha k)) (7)

Unlike the original diffusion-based policy, we incorporate
consistency-related features as a condition for policy learning
using the pre-trained encoder and fine-tuning the encoder during
downstream tasks training. This encoder implicitly extracts
contact and coordination information, thereby enhancing the
policy’s understanding of spatial relationships.

IV. EXPERIMENTS

We conduct comprehensive real-world experiments to answer
the following questions:

« To what extent can our framework promote the learning of
the visuomotor policy for dexterous manipulation across
diverse real-world scenarios (Section IV-B)?

« How promising is CordViP in terms of sample efficiency
and generalization capability (Section IV-C, IV-D)?

« What role does each of the system components play in
enhancing its overall performance (Section IV-E, IV-F)?
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Fig. 4: Real robot system. Our system consists of a Leap
Hand and a UR5 Arm, with a fixed Realsense L.515 camera
employed to capture visual observation. The Realsense D435
camera is only used for data collection during teleoperation
and is not involved in the policy learning.

A. Experiment Setup

Robot System Setup. As shown in Figure 4, our system
consists of a 6-Dof URS robot arm and a 16-Dof Leap Hand
[48] with four fingers. A single Intel Realsense L515 RGBD
camera is mounted on the side of the robot to capture visual
observation.

Tasks. We evaluate our approach on four base dexterous
manipulation tasks, along with two advanced contact-rich and
fine-grained tasks, as shown in Figure 5. The episode length
of each task will be limited to a maximum of 500 steps and
each task is evaluated with 20 trials by default. We now briefly
describe our tasks:

1) PickPlace. The Leaphand picks up a toy chicken and

places it into a blue bowl.

2) FlipCup. The Leaphand reaches a cup lying on the table,
lifts it up, and then rotates the wrist to position the cup
upright on the table.

3) Assembly. The Leaphand reaches and grasps a cylindrical
cup, and insert it into a kettle.

4) ArtiManip. The Leaphand lifts the lid of a box using
its thumb and gently opens it, which involves the
manipulation of the articulated objects.

5) FlipCap. This task requires four-finger coordination: the
thumb and middle finger lift and rotate the cap slightly,
while the index finger pushes it from the opposite side
to complete the flip.

6) LongHoriManip. This task involves four sequential
steps: pull, pick, place, and push, requiring precise and
continuous control across a long horizon.

For each task, we incorporate a certain level of randomization

to ensure that the policy learns the task-specific features rather
than fitting the trajectory. As shown in Figure 6, the objects

are randomly placed within the red rectangular region. More
details are provided in Appendix A.

Expert demonstrations. Our training demonstrations are
collected by human teleoperation. Since our tasks place
significant emphasis on coordination and coherence between
the hand and the arm, we employ a vision-based approach to
teleoperate the robot. Specifically, we use HaMeR [37] to track
human hand pose with a single Realsense D435 camera and
use Anyteleop [46] framework to retarget the robot system.
The robotic arm is controlled through the 6-Dof end-effector’s
pose while the robotic hand is controlled through the retargeted
hand joint positions. We collect 50 demonstrations for each
task, with all expert demonstrations recorded at a frequency
of 5Hz.

Baselines. We first compare our method with six state-of-
the-art imitation learning algorithms, i.e., three vision-based
policiestBCRNN [32], ACT [70], DP [7]) and three 3D-based
policies(tBCRNN+3D, ACT+3D, DP3 [69]). BCRNN+3D and
ACT+3D are variants of BCRNN and ACT, respectively, in
which the image input is substituted with point clouds, encoded
using PointNet.We emphasize that the resolution of both the
image and depth for all 2D and 3D baseline methods is kept
consistent, and the point clouds are synthesized from the RGBD
camera.

To further assess the performance under the same privileged
setting as CordViP, we also introduce three additional baselines:
(1) State-based MLP, a simple behavior cloning policy that takes
the robot’s proprioception and the object pose as input; (2) State-
based Diffusion Policy, which conditions a diffusion model on
the concatenated proprioceptive and object pose features; and
(3) G3Flow [4], a recent method that dynamically computes
semantic flow based on pose information and integrates it with
raw 3D point clouds in the Diffusion Policy framework.

B. Effectiveness

The results of the effectiveness experiments are given in
Table I and Table II. Our proposed CordViP maintains a
completion rate of over 85% across four base tasks, significantly
outperforming the other baselines, and also demonstrates
superior performance on the two advanced tasks. BCRNN
and its 3D variant perform poorly in all base tasks. While the
dexterous hand can locate and reach the object, a substantial
finger jitter is observed during the grasping and contact-rich
manipulation phases. The image-based policies, ACT and DP,
achieve good performance in the flipcup and pickplace tasks.
However, they struggle with the assembly task. This is mainly
due to the significant occlusions during manipulation, where
these image-based policies fail to effectively leverage spatial
information. state-based DP matches and even outperforms
vision-based baselines on simpler tasks. However, due to the
lack of geometric information, it struggles with more dexterous
tasks. Compared to ACT, ACT+3D shows superior results
in all tasks, highlighting the crucial importance of geometric
structure and spatial information in policy learning. G3Flow,
which benefits from both 3D visual and state information, is
the strongest baseline overall. However, its performance on
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(c) Assembly

(d) ArtiManip

Fig. 6: Randomization of Object Positions. The red rectangles
mark the range of positions of manipulated objects. For
PickPlace and FlipCup, both the toy chicken and the cup
are randomly rotated within a certain range.

tasks such as FlipCap is limited due to the impact of 3D noise
and the lack of correspondence modeling.

Interestingly, we discover that the recently proposed DP3
underperforms relative to DP in most of our tasks, which aligns
with the findings of Wang et al. [56]. Although several studies
have demonstrated the effectiveness of DP3 in simulation and
relatively ideal real-world scenarios, such as those with multiple

Task Progress

TABLE I: Main results of four base real-world tasks. Each
experiment is evaluated with 20 trials.

Method ‘ PickPlace FlipCup Assembly ArtiManip | Avg
State-based MLP 0% 0% 0% 0% 0%
BCRNN 0% 0% 0% 5% 1%
BCRNN+3D 0% 5% 0% 10% 4%
ACT 45% 70% 25% 65% 51%
ACT+3D 70% 80% 35% 70% 64%
DP 55% 65% 20% 35% 44%
DP3 30% 20% 0% 40% 23%
State-based DP 40% 35% 40% 40% 39%
G3Flow 65% 65% 80% 85% 74%
Cord ViP(Ours) 85% 90% 90 % 95 % 90 %

viewpoints, we observe that the quality of the point clouds
has a significant impact on DP3’s performance. Further details
will be discussed in Section IV-E. In contrast, our method
exhibits remarkable robustness to the quality of point clouds.
By establishing correspondences between the dexterous hand
and objects, CordViP facilitates more effective perception of
spatial and interaction information.

Inference Efficiency. CordViP also attains an efficient
inference speed, as it eliminates the need for the farthest
point sampling of point clouds while utilizing compact 3D
representations. We evaluate the inference speed of CordViP
compared with DP3 on an Intel i7-14700KF CPU and RTX
4090D GPU, CordViP reaches a maximum of 12.84 FPS,
surpassing DP3’s 11.79 FPS. This highlights that our approach
not only achieves enhanced performance but also maintains
low computational overhead during inference.



TABLE II: Main results of advanced tasks. Each experiment
is evaluated with 10 trials.

. LongHoriManip
Method FipCap i Pick  Place Push
ACT 30% 100% 40% 40% 30%
ACT+3D 40% 100% 40% 20% 20%
DP 30% 70% 30% 10% 10%
State-based DP 20% 80% 30% 10% 0%
G3Flow 60% 100% 80% 50% 30%
CordViP(Ours) 80% 100% 100% 70% 60 %
. Pick and Place 3 Flip Cup
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Fig. 7: Experimental results of efficiency. We train ACT, DP,
DP3, and CordViP on the PickPlace and FlipCup tasks with
an increasing number of demonstrations.

C. Efficiency

The number of expert demonstrations plays a crucial role
in the performance of imitation learning. To access the
learning efficiency, we train ACT, DP, DP3 and our proposed
CordViP on dexterous tasks using varying quantities of expert
demonstrations. As illustrated in Figure 7, CordViP exhibits
superior performance, achieving higher accuracy with fewer
demonstrations. Remarkably, even with just 10 demonstrations,
CordViP effectively establishes correspondences, extracts spa-
tial and geometric features, and maintains a high success rate.
Furthermore, when provided with a sufficient number of demon-
strations, CordViP also demonstrates excellent manipulation
capabilities.

D. Generalization

Besides the remarkable effectiveness and efficiency, Cord-
ViP also showcases excellent generalization capabilities in
real-world dexterous manipulation tasks. In this section, we
comprehensively investigate its generalization abilities across
four aspects, as detailed below.

Generalize to different lighting conditions.

We established three distinct lighting conditions. As shown
in Table III, the 3D representation of our proposed CordViP
is dynamically maintained through FoundationPose tracking.
FoundationPose, which integrates multimodal information
(RGB images, depth data, and prior 3D model knowledge
of the target object), demonstrated significant robustness to
lighting variations in our empirical tests. In contrast, diffusion
policies failed to complete tasks under most conditions. These
image-based policies typically rely on data augmentation to
improve generalization, which may introduce instability during

TABLE III: Generalization results on different lighting con-
ditions. We evaluate the policy under three lighting scenarios:
dim light(dim), white light(white) and colored lighting(colored).

~ )

Original Colored
PickPlace FlipCup
Method ‘ Dim White Colored ‘ Dim  White Colored
DP 0%  25% 0% | 0% 50% 0%
ACT+3D 65%  55% 0% | 5%  80%  75%
CordViP(Ours) | 80% 85%  80% | 80% 85%  90%

TABLE 1V: Generalization results in diverse scenarios,
including varying visual appearances and challenging cluttered
environments.

Original Scene-1 Cluttered
PickPlace FlipCup
Method ‘ Scene-1  Scene-2  Cluttered ‘ Scene-1  Scene-2  Cluttered
Dp 0% 0% 0% 0% 0% 5%
ACT+3D 50% 70% 5% 80% 70% 20%
CordViP(Ours) 70% 80% 75% 75% 80% 85%
training.

Generalize to different scenarios. CordViP relies on a
robust 6D pose estimator to track objects and build interaction-
aware 3D point clouds, which enables our method to generalize
to different scenarios. The results presented in Table IV show
that DP is highly sensitive to visual variations, while ACT+3D
performs well in scenarios with different visual appearances due
to its reliance on 3D geometric inputs. However, we observe
3D-based policy struggles in more challenging, cluttered
scenes, as randomly placed objects can lead to noisy or
incomplete point cloud representations. In contrast, our method
effectively focuses on the manipulation of subjects and objects,
establishing spatial correspondences, and has demonstrated
strong generalization to different scenarios.

Generalize to unseen objects. To validate policies’ gener-
alization to different objects, we test them on the PickPlace
and FlipCup tasks using three unseen objects, each varying in
color, shape, and dynamics. As shown in Table V, DP shows
poor generalization to unseen objects, while ACT+3D shows
a certain level of generalization ability. However, ACT+3D
struggles to adjust effectively and promptly when confronted
with objects that exhibit significant differences. CordViP
demonstrates strong generalization ability when handling
unseen objects, making fine-grained adjustments by establishing
spatial and temporal correspondences.

Generalize to different viewpoints. Achieving general-
ization to different viewpoints presents a more significant
challenge, as the expert demonstrations are all captured using a



TABLE V: Generalization results on unseen objects. For
PickPlace and FlipCup tasks, we chose three previously unseen
objects, varying in color, shape, and dynamics.

Pick and Place Flip Cup
3 y - o
| R %ﬁ%«v m G \a
origin object] object2 object3 origin objectl object2 object3
PickPlace FlipCup
Method
etho ‘ Object-1 ~ Object-2  Object-3 ’ Object-1  Object-2  Object-3
DP 0% 5% 0% 15% 35% 0%
ACT+3D 55% 85% 75% 55% 40% 75%
CordViPOurs) | 75% 85% 90% 60% 45% 75%

TABLE VI: Generalization results to different viewpoints.

Original View-1 View-3
PickPlace FlipCup
Method ‘ View-1  View-2  View-3 ‘ View-1  View-2  View-3
DP 0% 0% 0% 0% 0% 0%
ACT+3D 20% 45% 60% 0% 40% 30%
CordViP(Ours) 80% 75% 65% 60 % 70% 80%

fixed camera. We evaluate DP, ACT+3D, and our method with
three different camera viewpoints. For 3D-based methods, since
the point clouds are represented in the world coordinate system,
the camera is recalibrated for each viewpoint. As shown in
Table VI, the image-based diffusion policy is highly sensitive to
camera viewpoints and completely fails across all three camera
views. ACT+3D, which leverages 3D information, demonstrates
a certain level of generalization to minor viewpoint changes.
However, due to the limitations of the camera viewpoint,
the synthesized point clouds can only capture partial spatial
information, making it hard to handle significant changes
in camera views. By leveraging comprehensive 3D priors
of manipulated objects, our method achieves view-agnostic
generation of interaction-aware point clouds with full spatial
coverage, demonstrating robust performance under significant
variations in camera perspectives.

E. Ablations

Effectiveness of components. We conduct a series of
ablation experiments on four base real-world tasks to evaluate
the effectiveness of different components in our method. As
shown in Table VII, our results reveal the critical importance
of contact and coordination information for learning dexterous
manipulation policy. Specifically, for contact-rich tasks such as
Flip-Cup, the absence of pre-training on contact information
significantly reduces success rates. This highlights the essential
role of contact in understanding physical interactions between
the robotic hand and objects. On the other hand, for tasks
that require continuous motion of both the arm and hand,
such as Assembly and ArtiManip, incorporating coordination
information notably enhances the policy’s ability to execute

complex movement patterns. These findings emphasize the
necessity of both contact and coordination information to
achieve robust manipulation.

We further observe that merging the Interaction-aware point
clouds into a unified representation and providing it as the
3D input to DP3 leads to a noticeable improvement in the
success rates across all tasks. This also suggests that, compared
to ACT+3D, DP3 places higher demands on the quality of
the point clouds, and is less robust to noise and occlusion
in real-world scenarios. In our settings, we do not carefully
position the camera to minimize occlusion of the dexterous
hand, which demonstrates the robustness of our method to
different viewpoints.

Choice of point cloud encoders. We use PointNet [41],
PointNet++ [42], and PointNeXt [44] as point cloud encoders.
As shown in Table VIII, PointNet outperforms the other
encoders in success rates. We also freeze the point cloud
encoder during the training phase of the correspondence-based
diffusion policy. The results indicate that fine-tuning further
enhances the learning of downstream tasks.

TABLE VIII: Ablation experiments on point cloud encoders.
* indicates that the encoder is frozen during the training phase
of the correspondence-based diffusion policy.

Encoders | PickPlace FlipCup Assembly ArtiManip | Avg
PointNet 85% 90% 90% 95% 90%
PointNet++ 5% 30% 30% 40% 26%
PointNeXt 0% 0% 0% 0% 0%
PointNet* 70% 90% 75% 80% 79%
PointNet++* 5% 15% 5% 30% 14%

F. Transferability

Our proposed CordViP can be easily transferred to different
backbones. Following the design of Zhao et al. [70], we choose
a Transformer-based CVAE as one of the decision-making
backbones for the policy, which outputs a sequence of actions.
We replace the 2D image input with our Interaction-aware
point clouds and use the pre-trained encoder to establish corre-
spondences between various components. Table IX illustrates
that CordViP achieves excellent performance on both diffusion-
based and transformer-based backbones, showcasing strong
transferability.

TABLE IX: Transferability to different backbone.

Method | PickPlace  FlipCup Assembly  ArtiManip
Diffusion-based 85% 90% 90% 95%
Transformer-based 90% 75% 90% 80%

G. Failure Case Analysis

In this section, we analyze some failure cases of CordViP.
We take the flipcup task as an example and visualize the
results in Figure 8a. We observe that while CordViP generally
achieves good localization and grasping, the hand occasionally
hovers in place after wrist rotation. One possible reason is that,



i Insert (Fail)'
(b) Case2: Assembly.

Reach Grasp Insert (Recover)

Fig. 8: Failure case. (a) Case 1 is a failure case from the Flip Cup task; (b) Case2 is an example from the Assembly task,
where after a failure to insert the cup, the policy made adjustments, corrected the orientation of the cup, and successfully
completed the task.

TABLE VII: Ablation experiments on the Effectiveness of different components. DP3 + Interaction-aware PC refers to
using the Interaction-aware point clouds as the visual input for DP3. W/o. contact and coordination pretrain means that the

encoder was not pre-trained with contact and coordination data.

Ablation ’ PickPlace  FlipCup Assembly ArtiManip ‘ Avg

DP3 + Interaction-aware PC 65% 75% 60% 85% 1%

CordViP w/o. contact and coordination pretrain 75% 80% 75% 85% 9%
CordViP w/o. contact pretrain 85% 75% 85% 90% 84%
CordViP w/o. coordination pretrain 80% 85% 80% 85% 83%
CordViP(Ours) 85% 90 % 90% 95% 90 %

during the collection of expert demonstrations, we deliberately
reduced wrist speed, resulting in slight jitters that led the model
to learn suboptimal solutions. A potential solution could be
expanding the policy’s planning horizon by increasing the
values of horizon and n_action_steps.

Nevertheless, we also observe that our model possesses
the ability to automatically correct some failure scenarios
and recover from them. In the assembly task, inserting the
cylindrical cup into the kettle is a delicate operation that relies
on strong 3D spatial reasoning capabilities. As shown in Figure
8b, CordViP is able to make timely adjustments, such as when
the cup is stuck at the opening of the kettle. It can quickly sense
the state of the object and adjust the joint pose to successfully
complete the assembly task.

V. CONCLUSIONS AND LIMITATIONS

In this paper, we present CordViP, a novel framework that
learns correspondence-based visuomotor policy for dexterous
manipulation in the real world. First, we utilize powerful 3D
generation methods to obtain 3D models of objects, then use
robust 6D object pose estimation based on this modeling
information and robot proprioception to obtain interaction-
aware point clouds, enhancing the quality of the point clouds
and addressing the issues caused by occlusions from the
dexterous hand. Second, we use object-centric contact map
and coordination information to design a pre-training task that

effectively establishes spatial and temporal correspondences.
Finally, the features obtained from the pre-trained encoder
are used as conditions to train a visuomotor policy. CordViP
significantly outperforms state-of-the-art 2D and 3D baselines
on six real-world dexterous manipulation tasks, demonstrating
highly competitive performance in both effectiveness and
efficiency.

Limitations. Despite the exceptional performance demon-
strated by CordViP, there are still certain limitations that could
be explored in future work. First, our method struggles to
accurately estimate the 6D pose of deformable objects due
to the limited expressive capacity of FoundationPose when
handling non-rigid geometry. Second, the accuracy of digital
twin modeling can significantly impact pose tracking and the
quality of initial object point clouds, which are critical for fine-
grained dexterous manipulation. Additionally, if the dexterous
hand completely occludes the object, FoundationPose may
fail to track it. One promising research direction could be the
incorporation of visuotactile 6D pose tracking. We leave further
exploration of these possibilities for future work.
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APPENDIX

A. Real-World Task Description

PickPlace: This task requires coordinated motion of the
robot’s hand and arm, involving all four fingers. The Leaphand
first locates the position of the toy chicken based on visual
input. The palm then approaches the chicken, with all four
fingers gradually wrapping around it. Once the chicken is
grasped, the wrist is raised, and the hand is moved towards a
blue bowl. Upon reaching a position directly above the bowl,
the fingers are released, allowing the chicken to be placed
inside. This task presents challenges in accurately locating and
grasping the toy chicken, coordinating finger movements for a
stable grip, and precisely manipulating the hand to place the
object into the bowl while avoiding obstacles and ensuring a
gentle release. Success is achieved if the toy chicken is placed
into the bowl.

FlipCup: This task requires the robot to flip a cup from a
lying position on the table to an upright standing position. The
Leaphand approaches the cup and places its hand on the top of
the cup, lifts it, and then flips it to an upright position. The hand
must apply controlled force to rotate the cup while maintaining
stability to prevent it from tipping over. The challenge lies in
the fact that the cup may undergo changes in its orientation,
requiring the hand to dynamically adjust its position and force
to stabilize the cup’s motion and achieve the desired outcome.
Success is achieved when the cup stands upright on the table.

Assembly: This task requires the robot to assemble a
cylindrical cup onto a kettle. The Leaphand first approaches
the cup and grasps it, positioning it accurately to align with the
kettle’s opening. Using coordinated finger and wrist movements,
the hand carefully attaches the cup to the kettle, ensuring
a secure fit. The challenges lie in precise alignment and
making fine adjustments based on feedback while handling
high occlusion and ambiguity. Success is achieved when the
cup is securely assembled onto the kettle.

ArtiManip: This task requires the robot to open a box using
its thumb and index fingers. The robot needs to first reach the
box, grasp the box’s lid, and then carefully adjust its fingers
to open the box without pushing it. The hand must coordinate
the motion of the thumb with fine adjustments to apply the
right amount of force, ensuring the lid is opened smoothly and
safely. This task presents a challenge in handling articulated
objects with multiple moving parts while maintaining delicate
control over the manipulation process. Success is achieved
when the lid is fully open.

FlipCap: This task requires the robot hand to flip over a
small cap using coordinated motion of multiple fingers. The
robot must first reach the cap and stabilize it with the thumb
and middle finger, gently lifting and rotating it to a tilted
position. Simultaneously, the index finger is required to push
from the opposite side with precise force to complete the
flipping motion. This task demands high-level coordination
between fingers, particularly in managing the contact points
during rotation. Accurate finger placement and dynamic re-
adjustments are crucial to avoid slipping or excessive force.
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Success is defined as fully flipping the cap without displacing
it.

LongHoriManip: This task requires the robot hand to
complete a long-horizon manipulation sequence involving four
consecutive subtasks: pull, pick, place, and push. The dexterous
hand must locate and grasp the drawer handle, pulling it open
with sufficient force and precision. Once the drawer is fully
extended, the hand proceeds to pick up a small toy chicken
from the table using a coordinated grasp. It then carefully
places the toy into the open drawer, ensuring stability and
proper placement. Finally, the hand pushes the drawer closed,
completing the sequence. This task poses a significant challenge
due to its extended temporal dependencies and the need for
continuous, adaptive control across multiple object interactions.
Each subtask is individually evaluated for success to better
understand performance at different stages. The overall task is
considered successful when the toy is placed inside and the
drawer is fully closed.

We list the parameters of expert demonstrations for different
tasks in Table X. For all demonstrations of a given task, we
maintain a consistent number of steps. “Demo” refers to the
number of demonstrations collected for each task, “Episode
Length” denotes the duration of each episode in a task, “Teleop.
Times” indicates the teleoperation time required to collect a
single demonstration, and “Max Steps” represents the maximum
execution time for a task during evaluation.

TABLE X: Parameters of expert demonstrations for real-
world tasks. “Demo” refers to the number of demonstrations,
“Episode Length” denotes the duration of each episode in
a task, “Teleop. Times” indicates the teleoperation time per
demonstration, and “Max Steps” represents the maximum
execution time for a task during evaluation.

Task Name | Demos  Episode Length  Teleop. Times(s) Max steps
PickPlace 50 150 30 400
Flipcup 50 150 30 300
Assembly 50 175 35 500
ArtiManip 50 190 38 600
Flipcap 50 150 30 400
LongHoriManip 50 250 50 800

B. Implementation Details

Network Architecture. For point cloud encoding, we
first use PointNet[41] to process point cloud data without
RGB information, outputting a set of point feature vectors
at the dimension of 1024. The PointNet consists of three
fully connected layers, each followed by LayerNorm for
normalization and ReLU activation.

For the cross-attention transformer, we adopted the architec-
ture design from Eisner et al. [12], using a multi-head attention
block of 4 heads. The state features of the robotic arm and the
dexterous hand are each passed through a linear layer, mapped
to 16 dimensions. The features are then processed through
the same Transformer architecture for cross-attention, enabling
feature fusion. The fused features are subsequently combined
with the original features using a residual connection.
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Fig. 10: 3D digital asset generation from a single view.

Demonstrations Process. We utilize the RealSense L515
camera to capture RGB-D images with a resolution of 480
x 640. The depth data are aligned with the RGB data to
ensure accurate spatial correspondence. All data collection is
managed through ROS and data recording begins once both

the camera feed and robot teleoperation inputs are received.

For our method, we use only RGB and depth data to track the
object’s pose. In contrast, for other baselines, we synthesize the
point cloud from RGBD data, and both the pose and the point
clouds are transformed into the world coordinate system. We
crop point clouds with the range of x € [—0.4m,0.lm],y €
[-0.7,—0.4],z € [0.1,0.51], which has been verified to be
suitable for observation. as shown in Figure 9.
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Fig. 9: Visualization of Point Cloud Processing. The point
cloud is synthesized from RGBD data. The point cloud is then
cropped and processed using farthest point sampling (FFPS) to
generate 1024 points.

We collect both the robot’s state and actions using joint
angles in radians, including the 6-DOF joints of the robotic
arm and the 16-DOF joints of the Leaphand.

Real-to-Sim for Digital Twin Generation. We use TripoSR
[53] to generate digital twins from a single-view image, which
enables the creation of high-quality 3D assets. The visual
results are shown in the figure 10.

6D Pose Estimation. We utilize FoundationPose [60] to
perform robust 6D pose estimation for various objects across
tasks. For the PickPlace task, we estimate the 6D pose of both
the chicken and the bowl to capture the spatial relationships
between the objects. For the FlipCup task, we focus on
accurately estimating the 6D pose of the cup. For the Assembly
task, we separately estimate the 6D pose of the cylindrical cup
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and the kettle, enabling precise interactions with each object
during assembly. For the Artimaip task, we first decompose
it into two distinct parts: the box body and the lid, and then
perform estimation for each part using FoundationPose. For
the FlipCap task, we estimate the 6D pose of the cap. For the
LongHoriManip task, we separately estimate the 6D poses of
the toy chicken and the drawer handle.

Normalizations. The range of training data has a significant
impact on the training stability of Cord ViP. We linearly scale the
minimum and maximum values of each action and observation
dimension to the range of [-1, 1]. This step is necessary for
DDIM [50] and DDPM [22], as they clip the predicted results
to the range of [-1, 1] for training stability.

Hyperparameters. We list the training hyperparameters
used in CordViP in Table XI.

TABLE XI: Training hyperparameters in CordViP.

Hyperparameters Value
Robot point cloud size 1024*3
Object point cloud size 1024*3
Contact map scaling factor ~ 1
Contact map scaling factor 6 10

Contact map size 1024*1
Loss weight A 1
horizon 12
n_obs_steps 4
n_action_steps 6

Optimizer AdamW

Baselines settings. We train the Diffusion Policy

for 600 epochs with horizon=12, n_obs_steps=4, and
n_action_steps=8. The Diffusion Policy baseline utilizes
ResNetl8 as the visual encoder and employs CNN-based
backbones. The 3D Diffusion Policy is trained for 8000 epochs
with horizon=12, n_obs_steps=4, n_action_steps=8. It uses
DP3 Encoder as the point cloud encoder. For ACT, we train the
model for 5000 epochs with action_chunk=30. In ACT3D,
train for 1600 epochs with an action_chunk size of 30. Point
clouds are used to replace the original image inputs. The
point clouds are encoded using PointNet, and the extracted
point cloud features are given learnable positional encodings,
similar to other input information such as joint states and
latent inputs. For BCRNN, we train the model for 1500
epochs with horizon=10, n_obs_steps=1, n_action_steps=1.
The BCRNN3D is trained for 3000 epochs with horizon=10,
n_obs_steps=1, n_action_steps=1, where the observations
are replaced from images to point clouds. It uses PointNet as
the point cloud encoder.

C. Failure Analysis of Baselines

3D Diffusion Policy. DP3 [69] appears to struggle in learning
meaningful actions from our demonstration data. We have
already analyzed in the paper that potential reasons include
factors such as the camera’s viewpoint and the quality of the
point cloud. Wang et al. [56] also points out that the type
of motion patterns can affect the quality of demonstration
learning. Instead of nature actions, axis-wise actions were used



in DP3’s demonstration data. This is because the robotic arm is
controlled by the keyboard, which inherently limits the motion
representation to axis-wise actions.

axis-wise action
----- natural action

Fig. 11: Comparison of Motion Patterns. DP3 Uses Axis-
Wise Actions.

RISE. RISE [56] is a recently proposed end-to-end baseline
for real-world imitation learning, which predicts continuous ac-
tions directly from single-view point clouds. It takes voxelized
point clouds as input to the policy and assumes that the end-
effector pose of the robotic arm is implicitly encoded within the
point cloud. However, this approach proves unsuitable for our
dexterous hand scenario, where the hand has a high degree of
freedom and often experiences occlusions. We evaluated RISE
in our settings and observed that the robotic arm exhibited
excessively abrupt movements.

D. More Visualization Results

We present additional point cloud visualization results in
Figure 12, demonstrating that interaction-aware point clouds
can effectively enhance the quality of 3D observations.
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Fig. 12: Visualization of Point Clouds During the Task Process.
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