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Abstract—The biomimetic research of vertebrates is challeng-
ing in both mechanism design and control methods. Motivated
by natural acrobatics exhibited by cats and humans, this paper
presents a generic multi-joint continuous spinal system and a
learning-based algorithm for agile and accurate control. The
spinal system combines flexibility with a high load-bearing
capacity, rendering it suitable for various types of bionic robots.
It features a chain-like structure formed by multiple pairs
of spherical gear joints, which endow it with the ability to
bend in all directions. Then, to realize dynamic and precious
control, a universal control framework integrating online and
offline learning is proposed. In this framework, Graph Neural
Networks are employed to learn the dynamic model parameters
of the spine offline, while the parameterized Model Predictive
Control (GNN-MPC) can update the dynamic constraints online
and select the optimal control strategy. In the aerial flipping
task of the spinal column, a dynamic constraint analysis of
the angular momentum of the spinal structure is conducted to
derive the most efficient flipping strategy. It allows the spinal
structure to execute flips in the air without relying on external
forces or mechanical structures. Quantitative analyses of high-
load applications on the spine reveal that the spinal column
can maintain strength, precision and flexibility simultaneously.
A series of aerial flipping experiments prove the designed spine’s
scalability, flexibility and high load capacity. With GNN-MPC,
the spine system can realistically mimic biological spine behavior,
validating the algorithm’s effectiveness and robustness.

1. INTRODUCTION

The vertebral column of biological organisms is essential
for complex movements like flexion, extension, lateral bend-
ing, and flipping [49][18]. These movements help organisms
quickly respond to environmental changes and change direc-
tions, crucial for prey capture and predator evasion with agility.
Flexible spinal structures allow quadrupedal and humanoid
robots to change postures without external force. They have
wide-ranging applications in search and rescue [28][17], film
special effects [8], military reconnaissance [11], and agri-
culture [57][34][50]. In space exploration, robots capable of
flipping offer greater flexibility and efficiency. They can flip
and adjust postures in microgravity for maintenance, repair,
and construction inside and outside space stations.

Despite the pivotal role that the spine plays in biological
systems, current quadrupedal [15][47] and humanoid robots
[22][9] often overlook the spine or reduce the complexity of
the spinal mechanism, thereby sacrificing the inherent flexibil-

(a) (c)

Fig. 1: The 2-DoF Spherical Gear-Based Synchronous Multi-
joint Mechanical Spine. (a) Basic mechanism. (b) Install two
driving modules to increase the strength. (c) Assemble two
mechanisms together for more DoF.

ity of biological systems. This limitation primarily stems from
the mechanical challenge of balancing high degrees of freedom
(DoF) flexibility with structural strength, coupled with the lack
of control algorithms capable of coordinating multi-DoF dy-
namic responses while adapting to diverse task requirements,
ultimately restricting spine’s application in quadrupedal and
humanoid robots.

Firstly, in mechanical design, flexible joints with flexibility
feature relatively low load-bearing capacity and precision
[42][58]. It is difficult to extend their application to spinal
robots like quadruped robots. Rigid structures, despite having
high load-bearing capacity and precision, require the addition
of transmission mechanisms and driving motors to increase
their DoF [33][55]. This adds extra weight to the system.
Moreover, there is a lack of a spinal structure that can provide
both flexibility and strength.

Most studies use predefined models and optimal control
algorithms for spinal robots. They show the spine can boost
quadruped robot walking, like improving energy efficiency
and increasing stride length [56][33]. [7] validates the benefits
of the spine’s lateral flexion, such as stride extension, better
stability, and a smaller turning radius. However, these studies
mainly focus on slow-speed tasks and don’t explore the
spine’s dynamic performance for robot flexibility and agility.
For example, the spine could help robots do aerial flips or
run faster. Thus, it remains challenging to develop control
algorithms that fully exploit the dynamic capabilities of spinal
joints while ensuring their adaptability across multiple tasks.
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Fig. 2: Mechanical design of the SGb-SMMS. (a) Structure of the SGb-SMMS. (b) Elements and assembly methods of the

spine mechanism. (c¢) Mechanism design of the drive module.

To address the challenge of integrating spinal functionality
into quadrupedal and humanoid robots, this paper proposes
a novel bionic robotic spine architecture with an associated
whole-body dynamic control framework. As illustrated in
Fig. 1 and Fig. 2, we develop a 2-DoF Spherical Gear-Based
Synchronous Multijoint Mechanical Spine (SGb-SMMS) com-
prising two subsystems: A mechanical structure using serially
connected 2-DoF spherical gear joints enabling omnidirec-
tional bending, and a drive module centered on a bevel
gear differential mechanism that dynamically allocates torque
between bilateral motors to achieve continuous full-range
actuation. The proposed Graph Neural Network-enhanced
Model Predictive Control (GNN-MPC) integrates task-specific
dynamic constraints with GNN-learned dynamic parameter
mappings. We validate the system’s efficacy through basic and
advanced locomotion tests under diverse conditions. The main
contributions of this paper are summarized below:

1) The SGb-SMMS is the first multi-joint spinal archi-
tecture integrating spherical gears. By leveraging the
multi-directional meshing characteristics of spherical
gear pairs, it achieves continuous 3D omnidirectional
bending using only two motors. This design synergizes
structural strength with flexibility while maintaining
control simplicity, and its modular architecture enables
seamless scalability.

2) The GNN-MPC employs offline learning with minimal
training data to optimize dynamic constraint parameters,
combined with online adaptation that updates system
parameters based on real-time joint states. This hybrid
offline-online strategy enables task adaptability across
diverse operational scenarios while fully exploiting the
spine’s dynamic capabilities for agile maneuvers.

3) We conducted extensive experiments to validate the
system’s effectiveness, including basic experiments and
advanced experiments. The basic experiments verified
the structural precision, load-bearing capacity, flexibility

and expandability. The advanced experiments analyze
the dynamic constraints of feline aerial flipping and
achieved multi-posture aerial flipping experiments using
the SGb-SMMS, demonstrating the structure’s flexibil-
ity, scalability, and the algorithm’s effectiveness and
robustness.

II. RELATIVES WORKS
A. Mechanical design

Biomorphic robots equipped with spine have emerged as
a focal point of research within the robotics domain. Such
structures enhance robotic agility and stability, enabling the
execution of complex maneuvers. The bionic spine in robots
is categorized into two distinct types: flexible and rigid.
The flexible spine, composed of multiple segments or joints,
allows for relative motion between segments, facilitating bend-
ing and twisting. These segments are typically actuated by
pneumatic and cable systems to mimic the flexibility of
biological spines. Cable-driven flexible spines aim to closely
replicate the flexibility of vertebral joints, but they are prone
to deformation and have limited load-bearing capacity [42]
[39] [23]. [58] presents a quadruped soft robot for climbing
parallel rods. Its pneumatic-driven spine, via an extendable
actuator, offers forward propulsion for effective movement in
special environments. Pneumatic systems provide high load-
bearing but sacrifice control precision and are greatly affected
by environment. The design of flexible spines permits more
natural bending and twisting movements in robots, but the
challenge lies in maintaining sufficient strength and stability
while achieving precise motion control.

Contrasting with the flexible spine is the rigid spine, which
is more structurally fixed and robust, to offer significant
support and load-bearing capabilities. Rigid spines utilize
non-articulating structures and high-strength materials, thereby
enhancing their rigidity and durability [48][6]. Despite their
limited DoF, these spines excel in stability and force trans-
mission. Serial multi-jointed mechanisms [33] and parallel



mechanisms [55] have been explored to increase the DoF of
robotic spines. In particular, the multi-joint spine connected in
series has also been studied to mimic the falling cat motion
[35]. However, these approaches introduce greater structural
complexity and additional weight from extra actuators, poten-
tially compromising the overall flexibility and agility of the
robotic system. [2] presents an active ball joint mechanism that
combines high rigidity and flexibility through spherical gear
interactions, achieving precise positioning and high-torque
transmission without sensors. To date, this structure has not
been implemented in spinal applications.

B. Control algorithm

In multijoint robotic research, conventional model-based
control methods typically employ predefined models such
as the spring-loaded inverted pendulum (SLIP) [12, 14] or
preconfigured system states [24]. These approaches enhance
computational tractability while preserving adaptability. How-
ever, discrepancies between predefined models and real-world
dynamics during motion may lead to system instability. For
multi-joint systems, accurate whole-body dynamics are gen-
erally difficult to obtain, and real-time updates of dynamic
parameters are further constrained by computational resources.
Consequently, there is growing interest in learning-based ap-
proaches that either learn precise system dynamics [45] or
integrate model-free methods to directly map robot behaviors
to control policies [16].

Current learning-based control methods for multi-joint
robots are divided into main approaches: one uses extensive
simulation training in virtual environments [5][3][27][44], and
the other captures real organism movements for imitation and
learning [16][53][25]. While these methods improve robot
stability and flexibility, they require extensive training data
and time and are often limited to fixed robot configurations. To
overcome these limitations, [1][10][4] uses machine learning
to learn unknown parameters of dynamics model from few
data. With a small amount of flight data, a deep neural net-
work (DNN) can be trained to represent aerodynamic effects
under different wind conditions for quadrotors [37]. These
methods collect prior information of the system, do not need
large datasets and can be adapted to various robotic systems,
potentially simplifying dynamic models.

Despite the potentials of active spines to enhance locomo-
tion performance in legged robots, the complexity of spinal
models leads to many quadrupedal robots to avoid spinal
joints to minimize control difficulties. Common controllers for
legged robots with active spines are typically limited to motion
in the sagittal plane [12][14]. Recently, compliant spines with
lateral flexion capabilities have gained more attention, improv-
ing legged robots’ turning and walking speed [33][21][7][30].
[33] and [7] design a bioinspired mouse robot, NeRmo, which
utilizes a compliant and flexible spine to improve locomotion
agility, static stability, walking speed, and maneuverability.
However, these studies use open-loop control and trajectory
optimization based on simplified models, with spine trajectory
pre-defined for specific locomotion tasks. To auto-optimize
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Fig. 3: Involute ring-tooth spherical gear pair.

the spinal trajectory, [26] employs Q-learning in a biomimetic
quadruped robot, enhancing spinal dynamic locomotion. To
the best of the authors’ knowledge, no existing approaches
of legged robots have utilized the dynamics of the spine to
achieve axial twisting in the sagittal plane.

III. MECHANISM AND KINEMATIC ANALYSIS

The natural animal spine is a continuous, multi-vertebrae
structure that bends flexibly through coordinated interactions.
Inspired by the natural animal spine, we designed the SGb-
SMMS with serially connected spinal joints that diven by
a drive module at one end of the mechanical spine allows
for simultaneous joint movement. This section presents the
mechanical design and kinematic analysis of the SGb-SMMS,
showing how it mimics biological spine movement via me-
chanical linkages.

A. Mechanism design

The structure of the SGb-SMMS is shown in Fig. 2, which
is mainly composed of two parts: the spine mechanism and
the drive module.

The spine mechanism is designed based on spherical gear
pairs. Spherical gear is a special type of gears whose teeth are
distributed on the surface of a sphere and are used to achieve
the transmission of multi-DoF motions in space [S9][S51][52].
Due to the meshing of the tooth surface structure, it has high
torque transmission and reliable positioning. Thus, spherical
gear have great potential and advantages in the application
of multi-DoF robot joints [40][32][20]. The spherical gear
pair applied in the spine mechanism is the involute ring-tooth
spherical gear pair [13]. There are abundant studies on the
kinematics [38], strength analysis [43][54] and manufacturing
processes [46] of this type of spherical gear, which proves that
it has certain advantages over other types of spherical gears.
For example, it has relatively good load-bearing capacity and
transmission accuracy, is free from errors in the transmission
principle, is easier to manufacture, and most importantly,
meets the requirements of the 2-DoF transmission.

As shown in Fig. 3, the involute ring-tooth spherical gear
pair is formed by rotating the tooth profiles of a pair of
conjugate involute spur gears around their polar axes. Since
the meshing of gears requires the teeth and tooth slots of two
gears to correspond to each other, one spherical gear’s polar
axis is the symmetry axis of a tooth, and the other’s polar
axis is the symmetry axis of a tooth slot. According to the
central structures, they can be divided into convex spherical
gear (CvSQ) and concave spherical gear (CcSG).



As shown in Fig. 2, the spherical gears are the main
structure of the spinal joint components. Cut one end of the
spherical gear in a circular shape along the polar axis and
distribute several support brackets evenly around it. Then,
arrange hinged supports near the center of the sphere, and
a joint component is formed. According to the structure of
the spherical gear, the joint components can be classified into
CvSG-joint component and CcSG-joint component. A spinal
joint is assembled by connecting a CcSG-joint component
and a CvSG-joint component on a cross shaft. The two
joint components can rotate in 2-DoF along the center of
the joint relative to each other. Meanwhile, these two types
of joint components can form spherical gear pairs. When
forming a spherical gear pair, the two spherical gears are
installed opposite to each other along the polar axes, and their
pitch sphere are tangent, and the distance agy, between their
spherical centers is the sum of the pitch circle radius of the
two spheres. The spherical gear pair demands the two gears
have the same modulus, and the tooth ratio of the spherical
gear pairs in the spine mechanism is 1 : 1. Thus the two gears
have the same pitch circle diameter dgpp:

ey

The two meshing sphercial gears can mesh along any
longitude direction, doing 2-DoF pure rolling. At the contact
point, the speeds of the two spherical gears are equal and
opposite. As a result, the two joint components can be bent in
any direction relative to each other.

When assembling the spine mechanism, the polar axes of
all spinal joints are in a coaxial state, and the spinal joints are
aligned in the same direction. Using rods to connect the two
adjacent spinal joints by assembling the components that do
not participate in the meshing between these two joints. Since
the joints’ orientation are the same, there is a CvSG and a
CcSG between every two joints. Set the distance /,, between
the joints to be equal to the center distance of the spherical
gear pair:

Gsph — dsph-

2

So that the CvSG and the CcSG between the joints mesh
with each other to form a spherical gear pair. In this way, the
spine mechanism is assembled.

Fig. 2(c) shows the mechanism design of the drive module.
It mainly uses a bevel gear differential mechanism which has
advantages in the application of multi-DoF robotic joints as it
can achieve multi-DoFF motion and flexibly distribute power
[29][36]. In the driving module, two motors (M1,M2) on
both sides make the output component rotates through the
differential mechanism. In the differential mechanism, two
identical bevel gears BG1 and BG2 are distributed on both
sides and respectively mounted on M1 and M2. At the center
of the mechanism is a cross shaft, one of its axes is hinged to
the base and is coaxial with BG1 and BG2, while the other
axis is hinged to the actuator. The actuator is composed of a
spherical gear component (G,) and a bevel gear (BG3) fixed
together. In the straightened state of the spine, the axis of
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Fig. 4: Sectional view of the spinal mechanism. (a) Extended
state. (b) Bending motion. (c) Geometric analysis.

the spherical gear is along the z-axis, and the axis of BG3 is
along the z-axis. BG1 and BG2 are respectively meshed on
both sides of SG3, and through rotational coupling, drive the
output component to rotate omnidirectionally.

To install the spine mechanism on the drive module, engage
the output component with the spherical gear at the end of
the spine mechanism and fix another joint component of the
end spine joint to the base of the drive module as shown in
Fig. 2(a). Then a basic SGb-SMMS is assembled. Additionally,
depending on actual needs, we can install drive modules at
both ends of the spine mechanism to obtain greater driving
force as Fig. 1(b), or assemble multiple SGb-SMMS together
to achieve more DoFs as Fig. 1(c).

B. Kinematic analysis

This subsection introduces the mechanical principle of the
spine mechanism, and demonstrate how multiple joints can
synchronously carry out a bending movement with 2-DoF
through mechanical transmission, so that it can achieve the
movement state of the biological spinal structure.

To explain the movement principle of the spine more
clearly, we first conduct the analysis from 1-DoF. Taking the
movement of the spine in the z-axis direction as an example,
the plan view of the mechanism movement is shown in Fig. 4.
First, let’s explain the meaning of the symbols in the Fig. 4:
G, represents the spherical gear of the output component, and
Gia, GiB, Goa... represent the spherial gears on the spinal
joints. In the subscript symbol of Gya, ’1’ indicates the first
joint, A’ represents the spherical gear whose polar axis points
to the G,, and ’B’ represents another spherical gear on the
same joint. According to the mechanism design, the link
between two joints L, is composed of the spherical gears
facing outwards of two adjacent joints. For example, L is
composed of Gja and Gip. Since they form a whole, their
rotation speeds are the same during movement.

As it is a planar motion, the spherical gears can be analyzed
as involute spur gears. In Fig. 4, when G, rotates counter-
clockwise at w,, since the gear ratio of all gears is 1 : 1, Gya
rotates in the opposite direction at the same speed, driving L,
to rotate with angular velocity wyy:

3

Denote the rotation speed of the spherial gears on the spinal
joint Gip and Gy as wip and ws 4. Gy is fixed on the base
and stationary, so that wyp = 0. Ga4 is hinged on O3, and O»

Wil — We-



Fig. 5: 2-DoF movement of the spine mechanism.

rotates with L. Therefore, Gig, L1 and Gy form a planetary
gear mechanism. According to the analysis of the motion of
the epicyclic gear train, the reduction ratio i5Y, of "B’ to *A’
of L, frame can be obtained:

iLl _ wWi1B — w1
BA— -
WoA —wWn

“)

Since the teeth number of the gears are the same, the
transmission ratios i%7 of all gear pairs are -1. Based on the
given conditions, we can calculate the rotation speed of Lo:
wr,, = wWa4a = 2w, and the direction of rotation is the same
as that of L;. Thus, the rotational speed of L5 relative to L,
is wqs. By analyzing the subsequent joints in the same way,
the rotational speed wy,, of each link and the relative speed

between two adjacent links can be obtained:

Whn = NWq 5)
Win — WL(in—-1) — Wa-

The geometric relationship of the spine mechanism during
movement can be obtained as shown in Fig. 4(c). When G,
rotates by 6, all joints will synchronously rotate by 6, relative
to the previous joint, and the rotation angles 6,, of each joint
are:

0,, — nb,

6
Or — O(n1) = . @

The universal joint enables two-DoF rotation of the spher-
ical joint, allowing the spherical gear pair to mesh in all
longitude directions. This makes the planar mechanism’s
motion possible on planes through the z-axis, enabling the
spine to bend in any x — y plane direction (Fig. 5). The
spine’s bending posture is determined by 6. (joint rotation
angle, controlling bending amplitude) and « (deflection angle,
determining bending direction). Due to reduced contact area
and meshing reliability when involute ring-tooth spherical
gears mesh, 0, is limited to 30°, and « € (0°,360°).

All the joints and links of the spine mechanism are located
in the z — n plane and follows the motion principle of the
planar mechanism described in Fig. 4. Therefore, each joint
rotates by 0, in the same direction, and the rotation axis of
the joint is the vector k perpendicular to the z — n plane.

k=zxa @))]

ozarccos(n.w> (8)
ied

In Fig. 6, the direction of each link of the spine is the z,,
direction of respective joint coordinate system. According to

(a) (b)
Fig. 6: Drive device motion analysis. (a) The motion of the
spherical gear pair between the spine mechanism and the
drive module. (b) Kinetic analysis of bevel gear differential
mechanism.

Eq. (5), the relationship of the rotation angles of each link can
be known, and the calculation formula for z,, can be obtained:

z, = Rot(k, nfy)zg, 9)

where the rotation matrix Rot(k, nfls) represents a rotation
of angle nf, around the vector k, and can be solved by the
Rodriguez formula.

Due to the existence of gimbal lock in the universal joint
used in the spinal joint, the rotational change of the joint
coordinates needs to be determined by the installation direction
of the cross shaft. When installed as shown in the Fig. 2, the
hinge axis of the joint component fixed to the drive module
is parallel to the y-axis, then the x direction movement of [y
is carried out along the coordinates of the universal joint pin.
The angles of rotation of the spinal joints along the z-axis and
y-axis are denoted as ,,; and 0, respectively. At the same
time, since the installation directions of each spinal joint are
the same, it can be obtained that the rotation matrices R, of
each joint are the same, and can obtain the rotation matrix as
follow:

R, =Rot(y, 05y )Rot(x, b.5) (10)

Substituting Eq. (9) and Eq. (10) into Ly can solve .,
and f,,, thereby the rotation matrices of all joints can be
obtained. It is known that the lengths [, of all links are the
same. Therefore, the transformation matrix ™~ T, between
every adjacent joints can be obtained:

(cw !

Y

o~
w

0 0 O

Based on the transformation matrix »~'7T,,, the posture
relationships between spine links can be obtained. Matrix
multiplication determines the posture of any joint and points
on it relative to the driving device.

When the drive module drives the spine mechanism, the
spherical gear pair formed between the driving device and
the spine mechanism is shown in Fig. 6(a). The transmission
between the two spherical gears is relative to pure rolling.
On the cross section of the spherical gear movement direction
(z—n plane), G,, rotates in one direction, then Gy rotates in the
opposite direction at the same angle. In Fig. 6, the spherical
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Fig. 7: The control frame of the GNN-MPC.

gear Gy rotates 8, along k, while G, rotates along k,, which
is opposite to k. It can be obtained that the polar axis vector
of G, as follows:

ko — —k

12
zq = Rot(kg, nb,)zg. (12)

The movement of G, is controlled by the bevel gear
differential mechanism. As shown in Fig. 6, when the BGI,
BG2 rotate by the same angle 041, 042 in the same direction,
they drive the universal joint pin and BG3 to rotate by 0,,

along y,.
(13

When the BG1 and the BG2 rotate in the opposite direction
by the same angles 6,,1 and 6,2 respectively, it causes the
BG3 to rotate by 6,, along the axis of the universal joint pin.
In addition, since the number of teeth of the BG1, BG2 is
different from that of the BG3, there is a reduction ratio 7; in
the transmission.

Gay - Gayl - Gay2-

iy = 28 8 (14)
Zb1 Zb2
0 0
Bop = — 24 = =2, (15)
(13 1p

The two kinds of motion can occur simultaneously, enabling
G, to perform omnidirectional rotational motion. The trans-
formation matrix °7}, of the G, is:

0T, = Rot(y, 0oy )Rot(x, 04z ). (16)

For the rotation angles 651 and 62 of the two bevel
gears BG1 and BG2, when the driver rotates, each of them
is composed of the two basic rotations when G, rotates
omnidirectionally.

Gbl - Garl + Gayl
9b2 - 0&9:2 + eay2-
The rotation angles of BG1 and BG2 are the output angles

of motors M1 and M2. The corresponding relationships of the
movement of the driven components driven by the motors can

be obtained.
Gbl o *ib 1 Gaa:
O/  \ip 1 Oay )

Therefore, by substituting the specific values #, and « into
Eq. (10)-(18), the required motor output angles 8y, 052 can
be obtained. So that the drive module can perform accurate,
reliable and real-time control of the spine mechanism as shown
in Fig. 2.

7

(18)

IV. LEARNING BASED MPC CONTROLLER

While an active spine boosts the agility, stability, and
flexibility of multi-joint robots, the extra DoF of spine adds
significantly complicate the dynamics model. In addition, the
external forces acting on the robot vary in different situations,
and the role of the spine also changes, which results in
different dynamic models of the robot. For example, in the
air, the robot can use its spine to flip, while on the ground,
it can achieve faster running speeds through spine extension
and contraction. As depicted in Fig. 7, to fully utilize the
SGb-SMMS’s capabilities within limited computational power,
this section details a GNN-MPC method that combines offline
learning and online update for the spinal system consisting of
7 SGb-SMMS in series.

A. Adaptive MPC

As shown in Fig. 5, we use the bending angle 6, of the
spine and the rotation angle « to describe the rotational
state of the SGb-SMMS. The spinal robot system state is
given by ¢, = {Ry, Py}7T, 0, and «; represent the state of
the i-th SGb-SMMS, and the control outputs are chosen as
Uper = {dy, ési}T with (j > i > 1), where the rotation matrix
R represents the posture of the robot’s center of mass (CoM)
and P is the position of the robot’s CoM. The optimization
problem takes the desired state q, . as input and produces
the SGb-SMMA trajectories Us as output. Therefore, we
construct the following optimization problem:

2 v 2
| (PepT) [, + ]| (sl en)
Kp

arg min
Uref

K.

95(ap, Urer) = 0
94(qp, Uret) > 0
Pi(gp, Uret) = 0
ha(qe, Uret) = 0,

where the g, and hj represent the kinematic constraints of
the spine robot, g, and hy represent the dynamic constraints
of the spine robot. The spine functions differently in various
scenarios, and the corresponding dynamic constraints are also
distinct. To enhance computational efficiency, our control
system analyzes the dynamic model of the spine in accordance
with different scenarios and selects the most efficient dynamic
constraints. In order to analyze the dynamic model of the
spine in various situations, accurate dynamic parameters are
essential. In [41], a Body Transformer architecture based on
GNN is proposed for learning robot policies. Its advantage
lies in the ability to capture the structural information and
relationships of multi-joint robots. Therefore, we adopt a
model parameter identification method based on GNN.

In contrast to the dynamic constraints, the kinematic con-
straints of the same spinal joints remain unaltered. As shown
in Fig. 5, the spine can be modeled as a series of connected,
compatible revolute joints (n-DoF). Due to the constraints of
the spinal joints, the rotation angles of each revolute joint are
consistent. Denote the transformation matrix of the i-th SGb-
SMMS as OTfZ (t, 05). Therefore, we transform the kinematic

19)
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Fig. 8: (a): Different values of 6, result in different bending
angles of the spine, but the center of mass of the spine remains
unchanged. (b): With the same value of #,, changing only o
causes the spine to rotate around a fixed axis at the same
bending angle, generating rotational angular momentum.

constraints of the spinal system consisting of 5 SGb-SMMS
in series. The constraints on the relative positions are refined
in terms of the relationship between the positions of the spinal
end P,, and the state of the spine {a, 0, },0 <i < j.

P, ="Ty(01,041) - - °T(0y,045) Po
Plower S PTL S P

where Py = [0 0 [, 1]7. And Eq. (20) represents the
limitations of the workspace at the spinal end, and as j
increases, the workspace at the spinal end becomes larger.
However, the load and accuracy of the spinal system also
decrease. By specifying dynamic constraints for different tasks
and solving the optimization problem, we can obtain the
desired output Uys of the spinal system. Through inverse
kinematics calculation, the state corresponding to Uy can be
transformed into the desired angle ¢; and angular velocity (;SZ
of each joint motor. The joint trajectory is controlled by a
Proportional-Derivative control (PD control):

7i = Kp(¢ia — ¢i) + Kaldia — d4),

where 7; is the control torque of the i-th joint, K, is the pro-
portional gain coefficient, K is the derivative gain coefficient,
@i,4 1s the desired angle of the i-th joint, and fl'%,d is the desired
angular velocity of the ¢-th joint.

(20)
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B. Learning-based Dynamic Constraints

The dynamic role of the spine in increasing the turning
radius and walking speed has been widely studied. Therefore,
this paper mainly focuses on the dynamic constraints of the
spinal robot’s flipping only through the spine. Since the falling
cat’s mid-air flip relies on the Law of Conservation of Angular
Momentum (LOCAM), LOCAM serves as the fundamental
principle of the spinal robot’s flipping. The LOCAM states that
the total angular momentum of a spinal robot remains constant
if no external torques act on the system when it falls from the
air. Assume that the initial momentum and angular momentum
of the robot in the air are both 0. In fact, different 6, and « can
change the bending angle of the spine and also make the spine
rotate around a fixed axis. Since the robot is only affected by
the vertical downward gravity in the air, the position of the
robot’s center of mass only moves downward along the z-axis
of the world coordinate system. As shown in Fig. 8, assuming

that the 8, of the spine at a certain point in the air is different,
resulting in different curvatures of the spine, the center of
mass of the spine remains unchanged. As shown in Fig. 8(b),
if appropriate 6, are selected to make the bending angles of
the spine in the air the same and only change the rotation
angle « of the spine around the fixed axis, the spine rotates
around the rotation axis w,,qss passing through the center of
mass. As shown in Fig. 8(b), assuming that the spine rotates
around the rotation axis passing through the center of mass
with different bending angles, then we can divide the spine
into three parts. The angular momenta generated by the three
parts around w,,qss are Ly, Lo and L3 respectively. Since the
directions of the angular momenta generated by L,, Lo and
L3 are the same:

L=Li+Ly+L3+#0. (22)

According to the LOCAM, there must be another angular
momentum in the robot system that is equal in magnitude
and opposite in direction to L to cancel it out, so that the
angular momentum of the entire system remains constant.
Since the robot is symmetric about the plane that passes
through its center of mass and is perpendicular to w455, tO
nullify the angular momentum L, the robot can only rotate
about its own axis to alter its attitude relative to the world
coordinate system. Denote the angular momentum generated
by the robot’s rotation as L g, then

L=Lg. (23)

Since the angular momentum is the product of the moment of
inertia and angular velocity:

L= Ei 4+ Es 4 s
= Jiwr + Jows + J3ws
LB = JBLUB.

(24)

Because the spine as a whole rotates around w455 at the
same speed, that is w; = ws = w3. Since the moment of inertia
is related to the mass distribution of the rotating object around
the rotation axis, different o and 8, of the spine correspond to
different moments of inertia. That is, denote the rotation angle
of the spine around the rotation axis wy,gss aS Wimass, 1.€.

J(O&, Gs)wmass = JBWB

25
J(O&,GS):J1+J2+J3. ( )

According to the law of conservation of energy, wy,qss = WH.
As shown in the Fig. 8(b), when J(«, fs) = Jp, we can get
Winass = wp, that is, J (v, 05)w? ..o = 5JpwS. The kinetic
energy generated by the rotation of the spine is completely
converted into the kinetic energy of the robot’s rotation, which
not only has the highest flipping efficiency but also no energy
loss. However, if J(«,fs) < Jp, we can get wyess > wp,
(e, 05 w2 45 > L Jpw?, then the kinetic energy generated
by the rotation of the spine is almost completely lost, the
angular velocity of the spine rotation is large, and the rotation
amplitude of the robot itself is also very small. Therefore, the



smaller J(«, 0,) means, the lower the efficiency of the robot’s
rotation and the lower the energy conversion efficiency.

Therefore, we choose Eq. (25) as the dynamic constraint
for the robot’s flipping in the air. The solver considers the
relationship between the moment of inertia J and the spine
states «, 6, and can solve for the control output with the
highest flipping efficiency.

As shown in Fig. 1, due to the expandability of the SGb-
SMMS, two SGb-SMMS are connected in series. Then, since
the two ends of the series-connected SGb-SMMS can rotate
in different directions respectively, the series-connected spine
has angular kinetic energy for rotation in different directions.
Therefore, when extending this dynamic constraint to a multi-
segment series-connected spine, the LOCAM is as follows:

JHay, 0wt + T (v, 0s)w” = Jpwp

26
J(a,l):J1+J2+J3. ( )

The MPC solver considers the relationship between the mo-
ment of inertia J i(ozl-, 0.;) and the spine joint angles, and can
solve for the control output with the highest flipping efficiency.

C. Training of the GNN

Due to the fact that we only consider the flexibility of in-
dividual SGb-SMMS connected in series, and the connections
between joints are relatively simple, the GNN can be designed
as a 3-layer structure.

Based on the dynamic constraints of aerial flip, we make
full use of the powerful learning ability of GNN to study the
moment of inertia of the spine at different bending angles.
We import the URDF model of the spinal model into Gazebo,
and set the Gazebo environment to a zero-gravity environment.
By setting different initial positions of the spinal joints {c, 6.}
and various rotation speeds w,, .55, We get the angular velocity
of spinal self-rotation wp in Gazebo.

Then the relationship between the moment of inertia as:

J w
Ji=—=—2 27)
JB Wmass
Thus, we can obtain a series of datasets D, =

{P1,Ps,---P,}, and Dy = {Jy,J2, - J,} corresponding
to the points of this dataset. And the designed 3-layer GNN
consists of an MLP layer, a feature aggregation layer, and an
MLP layer.

After training, the variation relationship between the single
spinal joint J; and the spinal state {c,l} is obtained in
Fig. 9. As analyzed theoretically, the moment of inertia Jof the
SGb-SMMS increases with the growth of the bending angle.
At the same w455, the spinal self-rotation speed wp rises,
enabling more efficient conversion of the motor-generated
angular kinetic energy into spinal self-rotation kinetic energy.

Given this complex situation, it is extremely difficult to
determine the inherent relationship J; between the dynamic
parameters and the joint angle through conventional dynamic
analysis methods, such as Lagrange methods [31]. The clas-
sical methods can only estimate .J; by approximating the
spherical gear as an equivalent regular rigid body.

0 5 10 15 20 25 30
Os (degrees)

Fig. 9: The relationship between a single spinal joint .J; and
the spinal state ..
TABLE I: The MSE of different methods for SGb-SMMS.

methods equivalent MLP GNN
ng <6 | 20x1072 | <1.0x10°% [ <1.0x107*
ng >6 | 3.0 x 1072 1.2x 1073 <1.0x 107 %

We employed the classical equivalent rigid-body method
(equivalent), MLP, and GNN networks to predict the J; for
SGb-SMMS with number of spherical gears 1, ranging from
4 to 10. GNN and MLP are designed with nearly identical
parameter counts (500 epochs and a learning rate of 0.01),
using the Mean Squared Error (MSE: X > (y — §)* where n
is batchsize, y—7 represents the predicted error). In Table I, the
network-based methods significantly outperform the equivalent
method. MLP performs well when n, < 6 but degrades
with more serial gears. GNN shows good generalization and
inverse-deduction abilities for over 5 serial gears.

V. EXPERIMENT RESULTS

In experiments, we use various robots with the SGb -
SMMS to test the spinal system’s versatility, dexterity, and
robustness. The experiments, divided into basic (precision-load
and flexibility) and advanced (aerial flipping and robustness)
types, are detailed below:

1) Precision-load experiment: The SGb-SMMS carried
weights and rotated about a fixed axis to verify its strength,
precision, and flexibility.

2) Flexibility experiment: In the flexibility experiment, two
SGb-SMMS units were spliced to test the Dol of the combined
spine rotating around various axes, verifying its structural
expandability and enhanced flexibility.

3) Aerial flipping experiment: In this experiment, both
a single-SGb-SMMS robot and a double-SGb-SMMS robot
were dropped from a height in different initial postures to
verify that the spine and algorithm can mimic the flexible
structure and behavior of natural spinal organisms, as well
as the effectiveness of enhancing flexibility through serial
connection.

4) Robustness experiment: In this experiment, we drop
the single-SGb-SMMS robot from a height with randomly
designed initial angular kinetic energies, then conduct com-
parative and repeated tests against other methods to validate
the robustness and reliability of our proposed algorithm.

A. Experiment setup

In this experiment, four experimental platforms are utilized.
Fig. 10(a) represents the platform for the precision-load exper-
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Fig. 10: experimental platform. (a): Spinal strength and preci-
sion test platform. (b): Dual-SGb-SMMS connection flexibility
test platform. (c): The single-SGb-SMMS robot. (d): The
double-SGb-SMMS robot consists spine 1 and spine 2.

iment, which is composed of one segment of SGb-SMMS. It
has two degrees of freedom and can rotate around a fixed axis.
Fig. 10(b) shows the experimental platform for the flexibility
experiment. This platform has DoFs to rotate around multiple
axes. Fig. 10(c) shows a single-SGb-SMMS robot, in which
the spinal joints can only bend at the same angle. Fig. 10(d)
presents a double-SGb-SMMS robot. It has 3-DoF, and the
two segments of SGb-SMMS can bend in different directions.

The spine of the robot is equipped with Wit’s six-axis
IMU to obtain the robot’s posture and acceleration accurately.
Meanwhile, an Optitrack motion tracking system is employed
to gather information such as the position, velocity, and angu-
lar velocity of the robot’s movement. The robot is controlled
by a NUC computer. The driving motor for the spinal joints
is a Gyber motor, and the solver for the MPC optimization
problem is Acados.

B. Analysis of precision-load experiment

Since the length and load of the SGb-SMMS are inversely
proportional to the precision, it is a great challenge to balance
the flexibility, precision, and strength of the spinal joints. The
platform for the load experiment is shown in Fig. 10(a). When
unloaded, the spine bends downward by ~ due to the motors’
gravitational pull. We then perform circular motion around
the bent spine axis; the trajectory’s projection on plane [
perpendicular to the spinal axis is circular. Finally, we convert
the target trajectory to the world coordinate system and, via
inverse kinematics, transform it into spinal joint control angles.

Because the spinal structure is rigid, its load-bearing ca-
pacity is determined by the driving motors. The spinal joints
employ GyberGear motors, which have a continuous torque
of 4 N - m, a spinal joint length of 0.40 m, and a motor
self - weight of 0.317 kg. Theoretically, the SGb-SMMS load
should not exceed 1.3 kg. We performed load experiments on
the SMMS with loads of 0 kg and 1.2 kg.

—— Reference trajectory
0.00 —— no-load with avg. error 0.002 m

Y (m)

—— load of 1.2 kg with avg. error 0.004 m
A §

—-0.05

-0.10

-0.10 —0.05 0.00 0.05 010
X (m)

Fig. 11: The trajectory of the projection of the end of SGb-
SMMS on the /5 plane.

It can be seen in Fig. 11 that the SGb-SMMS can flexibly
and stably follow the circular trajectory under free-load and a
load of 1.2 kg. With no load, the SGb-SMMS tracks the target
trajectory accurately, with an average error of within 0.002 m.
When the load is 1.2 kg, the spine maintains accurate tracking
with an error within 0.004 m. Therefore, this experiment
proves that our SGb-SMMS structure 1) can flexibly track
circular trajectories, 2) has a large load-bearing capacity, and
3) features high precision.

C. Analysis of flexibility experiment

The end of a single-SGb-SMMS can rotate around a fixed
axis by the LOCAM. In the tandem double-SGb-SMMS, the
two ends can rotate in different directions, giving it more
DoFs for multi-axis rotation. To verify the flexibility and
expandability of the proposed spine structure, the experiment
has three parts: 1) Double-SGb-SMMS rotates around the
body’s z-axis via joint movement; 2) Around the y-axis; 3)
Around the z-axis.

As shown in Fig. 12(a), the double-SGb-SMMS can achieve
the self-rotation around the body’s z-axis by continuously
bending two SGb-SMMS in the same direction by the same
angle. In Fig. 12(b), The double-SGb-SMMS can achieve the
self-rotation around the body’s y-axis by first rotating one
SGb-SMMS around the y-axis, then rotating the other SGb-
SMMS around the y-axis, and finally restoring both SGb-
SMMS to their initial states simultaneously. Similarly, the
spinal joints can rotate around the body’s z-axis as shown in
Fig. 12(c). Therefore, we have verified the expandability and
higher flexibility of the SGb-SMMS proposed in this paper.
Its modular design can be applied to different spine robots
according to the needs of practical applications, enabling more
flexible movements.

D. Analysis of aerial flipping experiment

A single SGb-SMMS can flip in one direction, allowing the
spinal robot to land legs-down from a high-altitude back-down
drop. The double-SGb-SMMS robot has more flexible degrees
of freedom, enabling it to flip from back-down to back-up and
rotate around the body’s z-axis in the air to adjust the landing
orientation. To verify the proposed spinal electromechanical
system’s ability to flexibly mimic natural organisms’ spinal
structures and behaviors, both single-SGb-SMMS and double-
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(a) The process of the spine rotating around the z-axis.

(b3)
(b) The process of the spine rotating around the y-axis.

(b2)
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(¢) The process of the spine rotating around the z-axis.

(b4)

(c4) (d) The motion trajectory diagram of the single-
SGb-SMMS robot flipping after falling from the

height of 2.8 m.

Fig. 12: Flow schematic illustrations for the flexibility experiment and the aerial flipping experiment

SGb-SMMS robots shown in Fig. 10 are tested for flipping to
the target state under various initial conditions.

The experiment has two parts: 1) A single-SGb-SMMS
robot is dropped from 2.8 m with initial roll angles of
[90°,135°,180°, —135°, —90°]. Our algorithm enables it to
quickly flip to a legs-down posture around the z-axis in the
shortest time; 2) A double-SGb-SMMS robot is dropped from
2.8 m and rotates to the target posture around the z-axis and
z-axis respectively.

As the robot dropped from 2.8 m lands in 0.8 s, it
must flip to the target posture within this time. Figs. 12(d)
and 13(a) show that a single-SGb-SMMS robot can fall from
2.8 m and land on all four feet, autonomously planning the
shortest path to the legs-down posture from various initial
roll angles. Figs. 13(a) and 13(a) indicate that the robot’s
rotation during flipping adheres to the LOCAM, with the
controller maintaining .J; at its maximum of 0.4021. The robot
can execute a 180° flip from a back-down posture to a legs-
down one within 0.6 s, confirming that the proposed control
algorithm emulates falling-cat motion effectively.

Fig. 13(b) shows the attitude-angle changes of the double-
SGb-SMMS robot rotating around the body’s z-axis and the
z-axis in the air. With an initial roll angle of 150°, the
double-SGb-SMMS robot can flip around the z-axis to a
four-legs-down posture and rotate around the z-axis unaided,
shifting the x-axis orientation from 0° to 48°. This verifies
that the proposed spinal system can achieve multi-DoF flips
via structural expansion, and the control algorithm enables
multi-axis flips. Therefore, the cat-falling experiment verifies
that the proposed spinal electromechanical system: 1) has the
flexibility to actively minic biological dynamic behaviors; 2)
has strong expandability in flexible tasks. It is proved that in
practical applications, when a quadruped robot or other robots
with the SGb-SMMS are dropped in vertical and horizontal
initial states, they can adjust multiple postures in the air

TABLE 1II: The success rates of different methods in perform-
ing the aerial flipping task.

GNN-MPC
95 %

MPC
<5%

methods
success rates

Jeffrey’s[14]
40 %

through our method proposed to achieve a stable landing.

E. Analysis of robustness experiment

In order to verify the robustness and effectiveness of the pro-
posed control algorithm, we used a single-SGb-SMMS robot
to conduct multiple comparison and repeated experiments. The
robustness experiment has two parts: 1) When given an initial
horizontal and yaw angular velocity, the robot can still flip
to the target posture before landing; 2) Multiple cat-falling
experiments compare our proposed GNN-MPC algorithm with
the reduced-order model (Jeffrey’s)[14] and MPC without
dynamic constraints.

As Fig. 13(c) shows, when dropped from a height of 2.8 m
with back-down: 1) With a random initial horizontal velocity,
the robot plans an optimal trajectory and flips to a legs-down
posture in 0.50 s for a safe landing; 2) With a random initial
yaw angular velocity, it follows the desired path and flips to a
legs-down posture in 0.70 s. This confirms the robustness of
our proposed control algorithm across various conditions.

The success rates of the three algorithms in 20 experiments
are shown in Table. IL. It can be seen that the control algorithm
proposed in this paper has a success rate of 95 %, while the
algorithm of reduced-order model in [14] only has a 40 %
probability of successful flipping. If dynamic constraints are
not considered, it is difficult to achieve flipping.

Our proposed control algorithm fully exploits the spine’s dy-
namic performance, allowing the spine-equipped robot to land
safely from various initial states, proving its robustness. Re-
peated tests show it has a higher success rate than algorithms
ignoring dynamic constraints, validating its effectiveness.
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Fig. 13: Comprehensive experimental results of the single-SGb-SMMS and multi-SGb-SMMS robots.

VI. LIMITATIONS

1. The SGb-SMMS is constructed using 7075-O aluminum
alloy with a hardness of approximately 80 HV—significantly
lower than that of commonly used gear steels (500-700 HV).
After 100 flipping experiments, noticeable wear appears on the
gears, resulting in an increased positional error of 0.01 m at
the joint ends. Replacing the material with a harder alternative
can effectively improve the spine’s durability.

2. Currently, the SGb-SMMS is only applied in simplified
spinal robots to verify the effectiveness of the control algo-
rithm rapidly. In future work, we will integrate the movement
of SGb-SMMS with that of other joints such as legs to further
validate the effectiveness of the structure and the algorithm.

VII. CONCLUSION

This paper proposes a novel spine SGb-SMMS that can
achieve omnidirectional continuous three-dimensional bending
with only two motors for driving. The proposed GNN-MPC
algorithm learns the dynamic parameters offline through a
GNN and updates the dynamic constraint online for MPC,
thus realizing agile motion control of the spine in complex
environments. Through double verification of basic exper-
iments and advanced experiments, the flexibility, strength,
expandability, and control precision of the designed SGb-
SMMS are verified. The spine can complete multi-posture
aerial flipping only by its own joint torques, which verifies the
synergistic optimization effect of the structure and the control
algorithm. The collaboration of SGb-SMMS and GNN-MPC
suits robots of various sizes and has wide applications like
speeding up running and navigating complex, confined spaces.
Future work will study spinal dynamic constraints to fully
utilize its flexibility.
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APPENDIX
A. Details about Key Physical Parameters
The structural parameters of the single-SGb-SMMS robot
experiment platform are shown in Table. IIIl. The maximum
bending amplitude #; of each joint is 30°, and the maximum
bending amplitude of the entire spine is 180°.

TABLE III: The structural parameters of the experiment plat-
form

Parameter Value
Weight 3.272kg
Size 502 x 266 X 160mm?>

Spherical Gears-Module 2

Spherical Gears-Tooth 22

Spherical Gears-Material | 7075 Al Alloy
Number of Joints 6

Length of Links 44mm

B. Design of Graph Neural Network (GNN)

The input to the GNN consists of point information related
to the robot’s joints and edge information representing the
connection relationships between the joints. The point infor-
mation includes the bending angle 6, of the spinal joint and
the rotation angle «. We represent each joint as a node in
the graph. For a spinal robot with n SGb-SMMS, we have a
set of points P = {p1,pa, - ,Pn}, Where each point p; is
associated with a feature vector {cy;, 8, } of i-th SGb-SMMS.

The edge information is a matrix F that represents the
connection relationships between the joints. If joint ¢ and joint
j are connected, then I;; = 1; otherwise, F;; = 0. The GNN
consists of multiple layers, each layer performing message
passing and feature aggregation.

In the first layer, for each node 7, we compute the message
from its neighboring nodes j using the following formula:

hzl,j :¢1([h?,h?,Eij,aj 70‘1'595]' 7051']), (28)
where hY and hQ are the initial features of nodes i and j
respectively, and ¢! is a multi-layer perceptron (MLP). The

input includes the features of the nodes, the edge connection
information, and the differences in joint bending and rotation
angles between the neighboring nodes. This helps in capturing
the local relationships between the joints.

After computing the messages, we aggregate them for each
node i using an aggregation function .4 (max function):

1 1,
hy = A(hi ;1 € Ni),

where N is the set of neighboring nodes of 4.
We repeat this process for multiple layers. In each subse-
quent layer k, the message computation formula is:

29)

hy ;=" (b W Eyog — oq, 055 — 04]), (30)
and the aggregation formula is:
E_ E |
hi = A(hi,j lj € M). (3D

Finally, after the last layer L, we use an MLP to predict the
moment of inertia parameter /:

I = MLP(hF). (32)

This designed GNN structure aims to capture the complex
relationships between the joint information of the spinal robot
and predict the dynamic parameters effectively. Given the
dataset Dy = {Py, P2, -+ P,} and the corresponding set of
the dynamic parameters )y, the goal of our reward function
is to encourage the GNN to accurately predict the dynamic
parameters for a given spine state P, in the dataset Dj.

We define the reward function R as follows:

T
R=Y | ®(P)—Ji, (33)
i=1
where ®(F;) is the predicted dynamic parameters by the GNN
for the input configuration F;, and J; is the true dynamic
parameters from the dataset D ;.

The negative sign is used to convert the error into a reward
that we want to maximize. By minimizing the difference
between the predicted and true values of the moment of inertia,
the GNN is trained to better approximate the relationship
between the input configurations and the dynamic parameters.

In addition, when considering computational efficiency,
integrating a lightweight GNN as a trained constraint with
IsaacGym has a negligible impact on computational efficiency.
We incorporated the GNN as a trained constraint into the
open-source legged robot project [19], training 4096 agents
on an NVIDIA RTX 3090 Ti Super GPU. The inclusion of
the GNN increased the training time per iteration by less than
5% compared to non-GNN training.



