Robotics: Science and Systems 2025
Los Angeles, CA, USA, June 21-25, 2025

Behavior Synthesis via Contact-Aware Fisher
Information Maximization

Hrishikesh Sathyanarayan and Ian Abraham
Yale University, New Haven, CT, USA
Email: {hrishi.sathyanarayan, ian.abraham} @yale.edu

(a) Hefting

(b) Rubbing

Figure 1: Emergent Contact-Based Learning Behaviors.

(c) Pressing (d) Contouring

Here, we show emergent tactile behaviors resulting from the

proposed contact-aware Fisher information maximization that results in human-like tactile behaviors for learning (a) mass
and weight, (b) friction and textures, (c) stiffness, and (d) shape [20]. Additional media and code is provided in https:

//github.com/ialab-yale/contact_aware_active_learning.git .

Abstract—Contact dynamics hold immense amounts of infor-
mation that can improve a robot’s ability to characterize and
learn about objects in their environment through interactions.
However, collecting information-rich contact data is challenging
due to its inherent sparsity and non-smooth nature, requiring an
active approach to maximize the utility of contacts for learning.
In this work, we investigate an optimal experimental design
approach to synthesize robot behaviors that produce contact-
rich data for learning. Our approach derives a contact-aware
Fisher information measure that characterizes information-rich
contact behaviors that improve parameter learning. We observe
emergent robot behaviors that are able to excite contact interac-
tions that efficiently learns object parameters across a range of
parameter learning examples. Last, we demonstrate the utility
of contact-awareness for learning parameters through contact-
seeking behaviors on several robotic experiments.

1. INTRODUCTION

Contact dynamics are commonly used in robotics to manip-
ulate the robot itself, e.g., through locomotion, or manipulate
objects in its environment. However, the utility of contacts
goes beyond just manipulation, and instead, contact can be
seen as a medium to transmit information that can help a
robot learn about its environment. In fact, prior work has
demonstrated the information-richness of contact as a means

to improve parameter estimation problems [8, 21, 27]. The
underlying challenge is enabling robot behaviors that can
actively acquire contact data for learning.

Most prior work that leverages contact for learning acquire
contact data as a by-product of implicit interactions [8, 21].
However, information “rich” contact interactions are scarcely
found through unintentional interactions, necessitating the
need for robots to actively explore contacts. Past work has
shown the advantages of active exploration as a means to
improve data collection for learning [44, 39], but more work
is needed to improve the quality of contact data collected in
exploration. In particular, some physical parameters of objects,
e.g., shape and inertial parameters, can only be detected by
continuously breaking and making contact [32, 30, 45, 28, 14,
3]. Thus, the goal of this work is to develop the theoretical
foundations that optimize for robot behaviors that produce
contact-rich data for learning.

To achieve this goal, we first formulate the maximum like-
lihood formulation for parameter learning subject to contact-
based physics constraints. In this formulation, we connect the
robot’s dynamics, and contact constraints, with the generation
of sensor data for learning. We employ techniques from opti-



mal experimental design and derive a utility measure based on
the Fisher information [9, 2] that explicitly takes into account
information-rich sensor data as a function of contact. By
maximizing this contact-aware Fisher information measure, we
observe emergent robot behaviors that reasons about contact
interactions that significantly improves parameter learning.

We focus on a class of example problems where the robot
is tasked to interact with and learn object properties through
interaction (see Fig. 1). These types of problems are interesting
because many physical parameters can only be estimated
from physical interaction [8, 21]. In this work, we show that
a contact-aware optimal experimental design approach can
produce meaningful contact interactions for robots to obtain
information-rich data that facilitates improvement in parameter
learning. In summary, the contributions of this paper are the
following:

1) Formulation of a contact-aware Fisher information mea-
sure to identify information-rich contacts.

2) Development of an optimal control approach that plans
contact sequences that improves parameter learning.

3) Demonstration of our approach generating emergent con-
tact behaviors on a variety of robot parameter learning
scenarios.

This paper is structured in the following manner: Section
IT overviews prior related work. Section III overviews prelim-
inary material on Parameter Estimation, Fisher information,
and Experimental Design. Section IV details the methodolo-
gies used to construct our approach. Section VI discusses our
results and insights from using our approach. Section VII
overviews limitations and future works. We conclude the paper
in Section VIII.

II. RELATED WORK
A. Parameter Estimation

Parameter estimation has been widely explored where un-
known physical parameters about the robot need to be esti-
mated more precisely through measurements [21, 11, 16, 23].
In general, parameter estimation involves utilizing sensor mea-
surements from a system in order to fit unknown parameters of
interests to the sensor readings based on a model of choice that
captures the dynamical behaviors of the system. In the context
of learning parameters from contact, prior work remarks on the
observability and identification of parameters [8], stating that
not all interactions a system makes can be useful for estimating
parameters. For example, if a system makes no effort to
interact with the environment, and vice versa, parameters
such as mass and inertia are indistinguishable due to the
homogeneity of the equations of motion, and can only retrieve
a ratio of the parameters.

Parameter estimation algorithms generally consist of fit-
ting parameters comprised in a model structure with sensor
readings from the robot. Depending on the type of sensor
used, certain classes of physical parameters can be reasonably
identifiable [4, 22]. For instance, estimating inertial parameters
becomes intractable if the only available sensor for parameter

estimation is an accelerometer, and perceived contact forces
have no reference value to account for inertia. Therefore,
choosing the type of sensors available for parameter estimation
is crucial before deducing what unknown parameters should
be estimated.

Common methods for parameter estimation are Bayesian-
inference based approaches [29, 34] and least squares estima-
tion [8]. Bayesian approaches for parameter estimation bake
parameter uncertainty into the problem and can generalize well
for complex, nonlinear problems, at the cost of computational
efficiency for large data. Least squares estimation works
well for simple, linear regression problems, but struggles to
generalize to complex, nonlinear problems. Other methods
are presented in [38], where parameter estimation is solved
via a factor graph-based approach. However, factor graph-
based methods are computationally heavy to compute, and
requires careful engineering to construct. While there are many
approaches to parameter estimation, this paper formulates
the parameter estimation as a maximum likelihood problem
[12], which allows us to consider the dependence of data in
parameter estimation. Specifically, the maximum likelihood
formulation is amenable to techniques in optimal experimental
design that provides meaningful requirements for measurement
data.

B. Optimal Experimental Design and Fisher Information

The study of optimal experimental design [7, 9] provides
an insight towards how to best sample data for estimating
parameters in a maximum likelihood problem. Experimental
design involves optimizing over an information metric in order
to solve for expected measurements in an experiment that yield
the most information-rich data about unknown parameters
of interest. Fisher information is often used in experimen-
tal design, as it directly captures how sensitive the sensor
measurements are to slight perturbations of the parameter
estimates. By maximizing Fisher information [2, 7], we take
an outer product of the gradients over the maximum likelihood
reward function with respect to parameters of interest and
solve for regions in this new reward landscape where the
function is the most sensitive to slight perturbations of the
parameters. This optimization problem is known as experi-
mental learning. The Fisher information metric is often used
as it captures information-richness in datasets and is directly
related to the variance of parameter estimates of interest [33].
By optimizing directly over the Fisher information landscape,
we yield experiments that lead to desirable, information-rich
data [43, 44].

In the context of robotics, experimental learning provides
us a means to acquire information-rich data that describes un-
known parameters of interest accurately [43, 44]. The learning
algorithm will output a control sequence that is applied to the
robot which generates a motion that collects information-rich
data through equipped sensors.



C. Contact Implicit Trajectory Optimization

This paper takes a conventional experimental design prob-
lem and primes the Fisher information with contact-awareness,
allowing the robot to optimize for information-rich contact
interactions to improve parameter learning. In doing so, we
pose an experimental design problem where contact is an
implicit variable for optimization as a function of robot
trajectory. Contact-implicit trajectory optimization [24, 26, 40]
synthesizes trajectories wherein contact forces, robot state,
and control inputs are posed as decision variables in the
optimization problem. They are generally solved by optimizing
for robot trajectory and contacts over an objective, with
constraints being robot dynamics and a contact model of
choice [32, 8, 30, 40]. Essentially, these methods can generate
motions without explicitly specifying contact mode sequences.

Such formulations of optimization problems have been
shown to have impressive results, shown in [26, 40, 32].
These problems are formulated by a choice of contact model
and optimization methods. Particular to the algorithm pre-
sented in [32], the resulting motion is generated through a
time stepping method with linear complementarity constraints
posed by [36, 1] in order to resolve rigid-body contact modes
implicitly. In this work, we address a parameter learning
problem formulated as an contact-implicit optimization, using
a contact model of choice, where the parameters are embedded
within the contact model. We aim to refine parameter estimates
by optimizing contact modes such that they align closely with
given contact data.

D. Belief Space Planning and Control

Belief space planning is commonly used in robotics to plan
under parameter uncertainty by considering the robot’s belief
about the parameter, and gathering information to converge on
parameter uncertainty. Consequently, the robot infers unknown
properties of objects around it and plans for interactions
accordingly. Early works in [31, 19, 15] present belief space
control using a Partially Observable Markov Decision Process
(POMDP), where the robot explores for relavant and rich in-
formation about parameters which is used to solve a maximum
likelihood problem.

Recent approaches [42, 25] leverage the belief space formu-
lation for improving contact-based robot tasks. Our approach
is similar in that, we leverage the parameter uncertainty based
on the sensitivity of the measurement model to improve
robot task performance. The main difference is 1) the explicit
consideration of contact mechanics in computing the Fisher
information; and 2) that we can solve the contact-aware
Fisher information maximization problem via sample-based
control for real-time performance. The advantage is that we
can generalize across a larger range of contact-based robotics
tasks, and that can readily solve the information maximization
problem under real-time control setting without needing to
resort to computationally expensive reinforcement learning
methods.

III. PRELIMINARIES

A. Parameter Learning via Maximum a-posteriori Estimate

In this work, we cast parameter learning as a maximum a-
posteriori estimation over parameters § € O. Let p(d) : © —
R be the prior distribution over § and D = {(z;,y;)}, be
a collection of IV input-output sensor data where x; € X is
an input, and y; € Y is noisy sensor data. Given a likelihood
model! p(D|6), the posterior belief p(f|D) is given by the
Bayesian update

p(D|0)p(0

SoD) DI
Jo p(Dlv)p(v)dv

It is often difficult or intractable to directly solve for the

posterior distribution given data. Instead, it is easier to just
optimize for the mode 6§ of the posterior distribution.

D

Definition 1. Maximum a-posteriori Estimation. Given a
prior p(8) : © — R over parameters 0 € O, a data set of N
independent and identically distributed (i.i.d.) measurements
D = {(zi,y:}},, and a likelihood model p(D|0), the point
estimate of the posterior distribution is given as the maximum
a-posteriori (MAP) estimate 0 which is the solution to the
optimization
0= argénaxp(Dlﬂ)p(G)- 2)
In practice it is common to optimize for the log a-posteriori
6 = arg max, log (p(D]0)p(#)) which often has better numer-
ical conditioning.

Remark 1. Not including the prior p(0) in the maximization
in (2) yields the simpler, but effective maximum likelihood
problem. While the formulation remains useful for accounting
for collected data, it is unable to account for prior information.

In general, solving the maximum a-posteriori estimation as-
sumes data has been provided. We are interested in producing
a method that provides the best data D that improves the
conditioning of (2).

B. Fisher Information

One way to establish better conditioning on maximum a-
posteriori problems is to analyze the statistical manifold of
the problem. In particular, we are interested in analyzing the
sensitivity of the posterior distribution with respect to the
parameter. The insight is that certain measurements yield more
information about parameters, i.e., reduction in uncertainty,
when the gradient of the likelihood model is largest. A
common measure of information with respect to parameter
sensitivity is the Fisher information matrix.

Definition 2. Fisher Information Matrix. Let L(D|0) be the
log likelihood of an unbiased estimator that is continuous and
differentiable with respect to elements in D and 6 € @ C R

'Tn our work, we call this the sensor model which provides the likelihood
that the collected data D is explained by parameter 6.



Then, the Fisher Information Matrix F(D|§) € R¥ of 0 is
defined by

0 0

_ I I T
F(DI9) = B | 55 L(DI6) 5 L(DIO) 3)

and

F(D|#) = —E [VZL(D|6)] )

if L € C2. Here, the expectation is with respect to the random
variable D and V(% is the Hessian [6].

Note that the Fisher Interestingly, the Fisher information
matrix also has a unique interpretation as a lower-bound on the
uncertainty of the posterior in maximum likelihood problem.

Definition 3. Cramér-Rao Lower Bound [33]. Let D be a
random variable drawn from a distribution p(D|0), and 0 be
the unbiased estimator for 6, then

F(D|) > cov() . (5)

For the interested reader, the proof of this lower bound
can be found in [33]. The bound shows that maximizing the
Fisher information matrix directly impacts the variance of the
parameter estimate which we use to establish an optimization
problem over planned datasets.

C. Optimal Experimental Design

We can maximize the Fisher information in order to choose
measurements D = {(z;,y;)}Y, that improves the preci-
sion of parameter estimation. The idea is to establish an
optimization on the input design of an experiment, i.e., the
independent variable x;, such that the dependent variable y;
that has not been collected has more utility. To establish this
optimization, we first assume maximum likelihood and nor-
mally distributed measurements[46] where L£(D|0) = L(X0)
and X = {z;}}¥,. Under a finite sampling of independent
variables x; we obtain the empirical Fisher information
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Since X is now an independent control variable, the fol-
lowing optimal design is constructed

max ) (F(X[0)) ™
where the Fisher information matrix is overloaded with ar-
gument X [33, 9], and ®(-) is a matrix reduction operator
over the Fisher information that returns a scalar measure of
the matrix, e.g., the determinant (D-optimality), or the trace
(T-optimality). Note that the Fisher information is symmetric
and positive semi-definite [17, 5]. The inducing operator
1 is then a metric on the information landscape that alter
the experiment design, e.g., D-optimality will maximize the
total volume of the Fisher information matrix, whereas T-
optimality maximizes the largest enclosing sphere. Our goal

is to formulate a contact-aware formulation of experimental
design to facilitate with contact-based robot tasks that seeks
information-rich contact for learning.

IV. CONTACT-AWARE EXPERIMENTAL DESIGN

To enable robots to actively seek out contact, we need
to derive a notion of “information” related to parameter
estimation subject to contact. Thus, we first need to establish
the explicit dependence of contact in parameter estimation.

A. Contact-Aware Max. A-Posteriori Estimation (CA-MAP)

Let us define a robot with the state variable z; € X
with control input u; € U at some discrete time ¢ € Z7.
Additionally, let us define the dynamics constraints of the
robot as x;41 = fa(xs,us, M) and the sensor measurement
model y; = gg(x:) parameterized by § € O where y; € YV isa
sensor measurement, and \; € Cy(x;) is the contact constraint.
Here, Cy(z) denotes the contact conditions as a function
of state, e.g., friction, non-penetration, and complementarity.
We define an “experiment” as a set of 7' measurements
D = {(yt,us)vt € [0,T — 1]} where the goal is to maximize
the a-posteriori estimate 0 given a prior p(6) and experiment D
subject to the dynamic, contact, and sensor model constraints.

Definition 4. Contact-Aware MAP (CA-MAP) Let 7 =
{(ze, M)Vt € [0,T — 1]} be a trajectory of states x; and
contact forces N for some time horizon T € 77. Given
the likelihood model p(D|r,0) (i.e., a sensor model) that is
normally distributed with mean gyp(z) and variance X, the
contact-aware maximum a-posteriori estimation (CA-MAP)
problem is defined as

6 = arg max log p(D|r, 0)p(6)
0,1

Tg given (initial cond.)
g d L= Jo(xi,ue, N\t)  (dynamics model) &)
T A € Colxy) (contact constraints)

0co (feasible parameter)

where the subscript 0 denotes the functional dependence of
the model on the parameter.

The intuition behind this problem formulation is that we
are optimizing for the parameter estimation and the trajectory
7 that best explains the data D. The role of the contact
model for A is to explicitly consider contact constraints as
part of the parameter estimation problem. In many scenarios,
contact forces are not explicitly measured, but do appear in the
physical constraints of the system and are critical for parameter
estimation. Thus, incorporating the contact model enables us
to explicitly optimize contact interactions for experimental
design.

B. CA-MAP Fisher Information Matrix

Given the contact-aware a-posteriori estimation problem,
our goal is to derive an equivalent notion of the Fisher
information that explicitly considers contact. To achieve this,
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Figure 2: Collapsing Parameter Uncertainty Through Contact. In this example, the robot seeks to estimate the friction
coefficient, ., of a nearby table. Given an initial prior of the parameter estimate, the robot seeks to update its belief of the friction
coefficient by interacting with the environment through contact. In doing so, the robot collects contact sensor measurements
that hold information, F (green curve), about the parameter, which is then used to update the parameter estimate and variance.
We can see that in order to reduce parameter variance and converge to a more precise parameter estimate, the robot exhibits
a sliding behavior that excites terms in the Fisher information, which is a lower bound on parameter uncertainty [33].

we first define the Lagrangian of the contact-aware parameter
estimation problem as

L(D|7,0,a) = £D]|r,0) + ad(7,0) 9)
where « is the Lagrange multiplier for each constraint d(7, &)
and £(D|r,0) = log p(D|7, 0)p(H).

Theorem 1. Ler L(D|r,0,a) be the Lagrangian of the
contact-aware estimation problem Def. 4 where L € C2.
The contact-aware Fisher information matrix F(D|1,0,a) €
R4 for § € © C R? is given by

F(D|r,0,a) = —V3L(D|r,0,c) (10)

defined by the steepest ascent problem

§0* = argmax Vo L(D|r,0)' 50 + %mﬁvz,cwh, 0)50
60

(11
where F(D|r,0) = ViL(D|r,0) and the dependence of
the Lagrange multipliers are dropped and assumed to be
constants.

Proof: See Appendix A for the complete proof. [ ]
Theorem 1 connects a variation of the Fisher information
matrix to a Newton’s method conditioning for the steepest
descent problem. Note that in this case, we define the empirical
Fisher information (where the summation over data is implicit
in the augmented log-likelihood model). Furthermore, consider
that the Fisher information has as an argument the trajectory
7 = {(x4, M) }_,, and the measured data D = {(y;, u;)} 1 .
We can use this fact to solve for robot behaviors that maximize
the Fisher information, ultimately improving the conditioning
on the steepest descent for the CA-MAP problem in the
data space where contact can be explicitly sought to excite
information about physical parameters.

V. CONTACT-AWARE OPTIMAL EXPERIMENTAL DESIGN

We now derive the contact-aware optimal experimental
design approach to synthesize robot behaviors for learning.
Our approach integrates the contact-aware Fisher information
into a closed-loop optimal design procedure to facilitate robot
parameter learning from information-rich contact data.

A. Contact-Seeking Behavior Synthesis

We first establish the optimization formulation that maxi-
mizes the contact-aware Fisher information matrix.

Definition 5. (Contact-Aware Optimal Experimental Design
(CA-OED)). Let o : Rxd 5 R define a continuous and
differentiable metric and J(D,T) denote a cost term on
the trajectory. Additionally, assume the contact-aware Fisher
information matrix F(D|r,0) is symmetric and positive seni-
definite [35, 37]. Then, for a given estimate 8, the contact-
aware optimal experimental design problem is defined as

D, # = argmax ) (F(D|r,0)) — T (D, 7) 12)
D,r
xg (given)
ot $t+1:f0($t;uta)‘t)a
)\t = Cg(xt)
Yt = go(z4)

where D = {(ys,us)YT_y is the predicted dataset and + =
{(z¢, M)YL is a reference trajectory.

We can solve this optimization problem in (12) using
any number of optimization techniques. We opted to solve
this problem using predictive sampling [13] where contact
constraints are implicitly solved through the dynamics model
[32, 8]. In this formulation of optimal experimental design, it
is important to recognize that the measurements y; that are
optimized are only predictions. The purpose of the prediction



is to specify the Fisher information matrix which explicitly
considers the parameter sensitivity to the measurement. As
such, we can use the sensor predictions as an interpretation of
what “information-rich” contact behaviors produce.

In this work, we use the trace for i) as the metric on the
Fisher information. By maximizing the trace Fisher informa-
tion matrix, we improve the condition number of the matrix
used for Newton’s step in the CA-MAP problem thus allowing
empirically faster convergence and numerical stability. An
example of this phenomena is illustrated in Fig. 2.

(a) Hefting

Grippers

(c) Pressing |—

Figure 3: Experimental Setup. The experimental setup
for (a) hefting experiments for mass estimation, (b) rubbing
experiments for friction coefficient estimation, (c) pressing
experiments for material stiffness and dampening estimation,
and (d) contouring experiments for shape estimation.

B. Closing the Loop

Given the solution to Eq. (12), the following step is to exe-
cute the behaviors on the robot, record the measured data and
repeat the process until a desired parameter confidence defined
by p(f|D). Since our problem formulation only accounts for
the posterior parameter mode 6, we use the approximate update
equation on the posterior variance

2+:(]-"(D| By +x1) 13
; 70)+3;) a3

where the Fisher information is calculated from the collected
experiment data, Xy is the covariance of the prior, Eg is the
posterior covariance, and 0 is solved initially using Eq. 8. Note
that this equation over-approximates the uncertainty, which we
found in practice assists with parameter convergence.

Remark 2. Because we are estimating continuous parameters
0, and not contact forces or potentially discontinuous state
transitions, we can assume belief propagation is also contin-
uous. Thus, we do not require techniques such as saltation
matrices [18] to estimate parameter belief.

We present an algorithm that comprises of 1) the contact-
aware experimental design optimization that searches for
information-rich contact, and 2) the contact-aware maximum
a-posteriori estimation problem that estimates parameters from
collected data in Algorithm 1. We summarize the contact-
aware experimental design procedure in Fig. 4.

Algorithm 1 Contact-Aware Behavior Synthesis

Require: initial state x(, prior parameter estimate p(6), pa-
rameterized dynamics, sensor, and contact models, total
number of experiments kp,x, and experiment duration 7.
k=0
while £ < k. do
ﬁ, 7 <— CA-OED Eq. (12) > cale. contact behavior
D < Execute experiment ﬁ, 7 on robot
é, Eg < CA-MAP Belief update Eq. (8), Eq. (13)
k< k+1
end while

e A A

D,z
Execute Control Seq. on Robot
Experimental Design gnext . Z‘I)leXt D, Tsim
(Eq. 12)
onexXt _ solve Eq. 8
deXt < solve Eq. 13

Initialize @Mit, Zf,"“ Parameter Estimation

Figure 4: Experimental Design Pipeline. Here we outline
our approach using Alg. 1. Given a prior on the parameter, we
plan trajectories that excite information-rich contact modes.
We then apply the planned trajectories to the robot and gather
sensor measurements. These measurements are used to update
the parameters and the variance of the prior to obtain the
posterior. We repeat this process until the robot estimates
parameters at a parameter certainty tolerance of choice.

VI. RESULTS AND DISCUSSION

This section details simulated and experimental results of
our contact-aware experimental design approach in several
scenarios. Our approach is evaluated using contact-implicit
trajectory optimization methods where we optimize for con-
tact modes that maximize information about objects with
unknown parameters of interest, thus improving parameter
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Figure 5: Emergent Behaviors from Experimental Design. Time series of experiments conducted over all scenarios. By
maximizing contact-aware Fisher information, the robot seeks information-rich contacts for efficient identification of (a) mass,
(b) friction coefficient, (c) material properties, and (d) shape. Simulation results are visualized on MuJoCo [41]. The robots
were given a planned trajectory to execute, where we assume perfect robot state tracking upon executing the trajectory. We see
the emergent behaviors in (a) a hefting motion that perturbs contact force on the object, (b) the end-effector rubbing against
the wall with a nonzero normal force and tangent contact velocity, (c) the gripper pinching the object to excite contact modes,
and (d) an object contouring behavior with both end effectors to excite contact modes across different regions of the object.

learning performance. We compare our approach to a sim-
ilar approach [25], which executes trajectories based on a
Fisher information maximization approach where contact is
not considered explicitly. Particularly, we are interested in
observing emergent behaviors from our approach that answer
the following questions:

Q1) What classes of parameter learning problems require
more compounding and constant contact interactions as
the resulting optimal emergent behavior?

Q2) What classes of parameter learning problems require
making and breaking contact as its resulting optimal
emergent behavior?

Q3) What convergence do we see for parameter learning
through our optimized contact behaviors?

Q4) How does the information loss landscape change for
different parameter estimation problems?

We answer the questions aforementioned in this section se-
quentially with corresponding answers ‘A(-)’.
Robot Scenarios

The results in this paper answers these questions by imple-
menting our Fisher information maximization approach on the

following robot scenarios shown in Fig. 3:

1) Weight Estimation, where an Allegro-Franka system
estimates the mass of a grasped object through hefting
behaviors.

2) Friction Estimation, where a Franka robot interacts with
a wall to estimate friction coefficient.

3) Stiffness Estimation, where a robot gripper learns ma-
terial stiffness and dampening properties of a uniform
object through its grasping interactions.

4) Shape Estimation, where a Franka robot estimates the
shape of a box (length and width) through non-prehensile
contact interactions.

Experiment details are shown in Appendix B. Note that
we implement these robot scenarios in the presence of high
contact force sensor noise, which makes small perturbations
of contact ambiguous information to identify parameters. We
demonstrate the robustness of our approach to high sen-
sor noise by enabling robots to reason about exploring for
information-rich contacts outside some contact uncertainty
envelope.

Our experimental pipeline is shown in Fig. 4. We compare
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(a) Mass Estimation. The robot seeks to estimate the mass of a
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(c) Material Property Estimation. The robot gripper interacts with
an object to learn its material properties (stiffness and dampening
coefficients).
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(b) Friction Estimation. The robot seeks contacts with the wall to
estimate the friction coefficient.
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(d) Shape Estimation. The robot that interacts with a box to learn
its shape (length and width). Estimation is solved in-the-loop ober
discrete time.

Figure 6: Contact Excitations Improves Parameter Learning. We compare our experimental design approach with baseline
similar to works in [25] for all robot scenarios. The baseline implements a belief-space planning controller that reasons about
contact naively. We evaluate each robot scenario over a finite number of experiments. Here, we model the parameter error as
Yoerr = 100(é —0)/0", where 0 is the current estimate and 0* is the true parameter. By maximizing the contact-aware Fisher
information, we see that the robot seeks contacts that are information-rich about the unknown parameters of interest, and thus
converging closer to the true parameter values 6%, with resulting higher Fisher information gains.

our approach to a recent belief space planning baseline in [25],
which explores for information-rich data about parameters
without the explicit reasoning over contact.

Al. Compounding Contact Behavior

As shown in results in Fig. 5, the hefting experiment (a),
where the robot pregrasps an object and learns the mass of that
object through perturbing its constant normal contact force, as
well as the rubbing experiment (b), where the robot interacts
with a nearby wall to estimate the friction coefficient, both
maintain nonzero contact in order to estimate parameters.
When estimating friction coefficient, we can see in the contact
sensor model in Appendix B that this term is identifiable
when exciting both a high normal force as well as a non-
zero tangent velocity. Therefore, maximizing over contact-
aware Fisher information yields a high excitation of tangent
velocities at the contact frame along with a high excitation
of normal contact force. Therefore, the resulting emergent
behavior results in compounding frictional contact with the
wall.

In the case of the hefting experiments (a), it is possible
to estimate mass parameters even if the object momentarily
leaves the hand of the robot as long as the object returns to
the hand. However, this adds new sparsities in the contact
forces, and thus the sensor readings during the moments
where the object leaves the hand would not contribute to

significant updates of the parameter prior. Therefore, in order
for the robot to effectively learn the mass parameter of the
object, it is desirable for the object to not leave the hand,
and rather experience perturbations in normal contact forces.
Such perturbations would excite the contact sensor model
output written in Appendix B such that the gradient of the
sensor model can extract mass information from the signed
distance function ¢, between the object and the hand, as
well as the normal velocity at the contact frame v,,. As a
result, the resulting behavior for this experiment using our
experimental design approach yields a hefting behavior where
the robot moves its hand in an up-and-down motion in order
to perturb normal force readings between the object and the
robot optimally.

A2. Making and Breaking Contact Behavior

As shown in Fig. 5, the pressing experiment (c), where a
robot gripper interacts with an object by grasping it, as well
as the contouring experiment (d), where the robot interacts
with an object its end effector, both make and break contact
in order to significantly perturb the contact forces. Note that
for experiment (d), the robot identifies the parameters online,
where we execute Alg. 1 in the loop during robot operation.
In these experiments, the robot is tasked with reasoning about
material properties stiffness and dampening (c), as well as
shape (d). To do so, our experimental design approach gives us



a planned trajectory that excites contact modes with the object
by making and breaking contact in order to significantly per-
turb the contact forces. Intuitively, learning material properties
naturally requires excitations in the normal forces between the
robot and the object, and in doing so we can excite gradients
in the contact sensor model as written in Appendix B.

A3. Parameter Convergence Over Experiments

We aim to demonstrate the convergence of parameter learn-
ing by comparing our experimental design approach for all
robot scenarios shown in Fig. 5 to a baseline similarly imple-
mented in [25]. The baseline reasons about information-rich
trajectories to improve learning, only that it does not reason
over contact explicitly by simply approximating the gradients
of the sensor model using a finite differencing method. The
goal of this section is to show that by reasoning over contact
explicitly, we can converge better on parameter uncertainty.

The results are shown in Fig. 6. We can see that upon
evaluating over experimental runs, we can observe that our
experimental design approach is able to converge to a more
precise parameter estimate with higher Fisher information
gains. The emergent behaviors that result from contact-aware
Fisher information maximization actively search for contact
modes that are information-rich, resulting in naturally emerg-
ing behaviors that allow for precise identification of parame-
ters. The reason that our approach improves the works in [25]
is due to our direct consideration of contact interactions in the
optimization as well as our approach in structuring the Fisher
information with contact. The baseline approaches contact
more naively, where Fisher information is constructed by ap-
proximating the gradients of the trajectory measurement model
through a finite differencing method for a small perturbation
in parameter space. By structuring the Fisher information
based on a structured contact measurement model, the robot
is able make deliberate decisions through its contact seeking
behaviors.

In the case of the pinching experiments in Fig. 5, we can
observe that our contact-aware Fisher information maximiza-
tion approach only marginally improves parameter learning
compared to the baseline. This due to the constrained nature
of the problem, where the robot motion is constrained by a
bounded 1 dimensional motion, assuming that the gripper is at
a pre-grasped state. Because of high contact sensor noise, the
robot is forced to perturb the contact force between its grippers
and the object such that the resulting contact readings are
outside of the contact uncertainty envelope in order to prop-
erly identify parameters. Because of the highly constrained
nature of contact in this robot scenario, directly reasoning
over information-rich contact will result in similar emergent
behaviors as the baseline approach. Similar behaviors for the
hefting experiments can be seen if the contact sensor is not
as noisy. However, we can observe that our approach can
outperform the baseline in more complex and unconstrained
scenarios.

In Fig.7, we demonstrate the robustness of our approach
as a function of parameter initialization. We observe that
our approach is highly robust to initial priors within ~30%
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Figure 7: Robustness to Initialization. We study robustness of
our approach is to 7 initial parameter priors for all scenarios.
Note here that we model the parameter error as a distance
§ — |0 — 0%|. We observe that our contact-aware Fisher
information maximization approach is resilient across a diverse
initialization of priors over all experiments.

for hefting, and even more robust for other scenarios. We
also expand on the remarks in [8] that estimating multiple
parameters that are co-dependent to one another makes the
estimation unidentifiable, unless we make assumptions of the
contact interactions (e.g. bounding contact impulses), provided
within the problem definition in Eq. 8 in the paper.

Ad4. Information Loss Landscape

We aim to provide a visual intuition of the information
landscape that we optimize over in our contact-aware Fisher
information maximization problem in Eq. 12. The information
landscape is dictated by the physics models chosen for each
robot scenario as well as the unknown parameters to estimate.
Given that the robot has engaged contact with the environment,
we show in Fig. 8 the changes in the information landscape
with respect to different kinematic parameters that impact the
landscape the most.

Based on the results in Fig. 8, we choose to focus on
observations from the information landscape for the weight,
friction, and material stiffness estimation scenarios.

Weight Estimation

The emergent hefting behaviors shown in Fig. 5 optimizes
for perturbations in normal contact between the hand and the
object, with assumed soft body interactions. As a result, a nat-
ural consequence from our Fisher information maximization
approach is exciting the ‘perturbation’ depth ¢,, between the
hand and the object upon contact and the normal velocity v,
at the contact frame. Fig. 8a shows the smooth information
landscapes resulting from the current configuration of the
hand-object system. The Fisher information landscape is linear
with respect to the kinematic inputs, and results in the system
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(b) Pinching Behavior Information Landscape. Here, Fisher information is maximized by exciting contacts by activating
the penetration distance into the object ¢, as well as the deformation rate %Lt" through pinching. This yields natural behaviors
of squeezing and contracting the object in order to identify material properties optimally.
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tangent contact velocity v; in order to collect information-rich contact about the friction coefficient, resulting in a rubbing
behavior shown in Fig. 5

Figure 8: Optimizing Over Contact-Seeking Information Landscapes. We show the contact-aware Fisher information
landscape that our experimental design method optimizes over for all scenarios.

being ‘pulled’ to the velocity boundaries, resulting in the robot From our approach, we observe in Fig. 5 that the robot op-
exhibiting a hefting behavior. timally learns the friction coefficient between its end-effector

and the wall by maintaining non-zero tangent contact forces
Friction Estimation




through rubbing. Intuitively, the friction coefficient parameter
appears only in the tangent forces in the sensor model used
for the experiment (See Appendix B), so the robot requires
consistent and compounding excitations of tangent forces by
pressing against the wall with a normal contact velocity v,, and
exerting a non-zero tangent velocity v, at the contact frame.

As shown in Fig. 8c, we visualize the information landscape
that the robot optimizes over to obtain information-rich data
to estimate the friction coefficient. The robot maximizes
information about the friction coefficient during contact by
sliding velocity v; and pressing velocity v,, against the wall
simultaneously, thus exhibiting a rubbing behavior. Note in
the figure that the robot seeks to choose velocities at contact
that are approach the peaks of the information landscape, but
are bounded by physical constraints. This yields the robot in
exhibiting a rubbing behavior with the wall.
Stiffness Estimation

The results in Fig. 5 show that the robot optimally learns
stiffness and dampening parameters of a ball by interacting
with its gripper. The gripper excites perturbations in the normal
forces between the gripper fingers and the ball by making and
breaking contact, and pressing into the ball during contact
engagement. The information landscape shown in Fig. 8b
indicates that there is a locally optimal trade-off between
the penetration ¢,, length of the gripper finger and the ball
surface and the penetration rate g’t” (equivalent to normal
contact velocity v,,). We can observe that such normal force
excitations can lead to excitations of the gradients of the
sensor model detailed in Appendix B. The robot excites its
grippers to pinch and release contact with the object by seeking
trajectories that maximize penetration and pinching velocity as
shown by the information landscape. This naturally results in
the robot exhibiting a ‘squeezing and contracting’ behavior
with the object.

VII. LIMITATIONS

The experimental design method in this paper has several
limitations worth discussing below.

Deterministic Dynamics in a Dynamically Changing
World. Our approach assumes that the dynamics of the system
are deterministic, and we fit stochastic data with a sensor
model that assumes zero mean Gaussian noise. Such assump-
tions can be especially tricky to deal with since we do not
capture any uncertainties in our dynamics model, which may
lead to under or over approximations of contact behaviors and
limit the performance of our method in practice. Additionally,
our dynamics model captures contact modes at certain body
frames of the robot system; if the robot interacts with the world
outside the body frame of interest, the desired synthesized
behavior may not be accurately exhibited on the robot.

Nonlinear Optimization Landscape. In general, the com-
plexity of the sensor model and dynamics of the robot create a
challenging optimization landscape in the CA-MAP problem
in Eq. 8 that is nonlinear and non-convex in nature. As a result,
optimizing contact behaviors for parameter learning are likely

to be sub-optimal solutions. Consequently, finding effective
behaviors in real-time settings can be difficult to plan for.

Contact Model Parameter Tuning. The experiments pre-
sented in this paper requires a great deal of parameter tuning
in the contact model. For example, the hefting experiments
demonstrated in this paper assumes that we have a priori
knowledge of the material properties of the object of interest,
which is required for the soft contact model implemented. This
required careful tuning of the contact model parameters in
order to obtain reasonably realistic contact model behaviors.

Limitations from Fisher Information. Optimizing over
Fisher information, in accordance with Definition 3, reduces
the variance of the parameter estimates by pushing the tight
lower bound down. Future work will investigate stronger
notions of variance reduction by means of reducing an upper
bound of parameter variance. Additionally, Fisher information
only provides notions of parameter precision, and no guaran-
tees on accuracy, which therefore may lead to systematic error
in parameter estimates over time.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a contact-aware Fisher information max-
imization approach that results in emergent learning behaviors
that precisely identifies parameters of interest. We develop the
theoretical foundations of our problem formulation, and why
maximizing over Fisher information yields the steepest descent
in parameter learning, thus improves convergence of parame-
ters through select contact behaviors. Last, we demonstrate our
approaches ability to estimate physics parameters on a variety
of robot settings, resulting in different emergent learning
behaviors depending on the parameters being estimated.

Future work will explore how our Fisher information max-
imization approach will impact downstream policy learning
and trajectory optimization. A limitation of the proposed work
is that our approach structures learning using deterministic
dynamics. Future work will explore how process noise im-
pacts our contact-aware information maximization approach.
Furthermore, future directions will also explore contact-aware
information maximization approaches to more complex, higher
dimensional robotic systems.
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APPENDIX A
PROOFS

Fisher Information Steepest Descent Proof

Proof: We first approximate £(D|r,6 + §6) in Eq.11 by
a second order Taylor expansion,

L(D|7,0 + 60) = L(D|r,0) + Vo L(D|r,0)T 50
1 (14)
+ 559Tv3,c(p|7, 0)50

Solving for 46 can then be done with the Taylor Expansion as

§6* = arg max Vo L(D|r, 0)T 560 + %50TV§£(D|T, 0)50
60

(15)

which has the following closed form solution
§6* = F(D|r,0) "VoL(D|r,0). (16)
|

APPENDIX B
IMPLEMENTATION DETAILS

Relationship between Condition Number and Trace

To improve the condition number of the Fisher information
matrix, x(F), we optimize over the trace of the Fisher infor-
mation matrix (T-optimality) as condition numbers bounded
by the trace of a nonsingular matrix [10], as

(WFIPIFME — (n—2)° = (5 (F) + 5 (F))
Z{ n even, || F|[2||F 1|2

n odd, o (IIFIPIF 1P - 1)
where F € R™ ", and the Schur matrix norm ||F|| =
tr (FT]-" ), for a nonsingular matrix 7. By maximizing over
the trace of the Fisher information matrix in Eq. 7, we thus
maximize the bounds of the condition number.

7

Contact Model

The contact sensor model implemented in this paper utilizes
the following soft contact model,

] - [0, 2o~

At O max (—pA,, —R|vi|) (18)

where K, C, p, and R are the material stiffness, material
dampening, friction coefficient, and friction resistance param-
eter, respectively, ¢, is the signed distance function between
the system body and object, and v, = [v,,v:]T = Jc(q)g are
the normal and tangent velocities at the contact frame with unit
vectors ¥, and 9y, respectively, and where J.(¢) is the contact
Jacobian that maps joint velocities to the contact frame.

Experiment K [N/m] C [Ns/m] o R [Ns/m]
Hefting 500 0 N/A N/A
Rubbing 100 1 0.4 2.0
Pinching 800 10 N/A N/A
Contouring 500 0 0 0

Table I: Contact Model Parameters. Soft contact model
parameters for all experiment scenarios. Bold parameters the
unknown true parameters.

Experiment Details

Here we detail the experiment settings discussed in this
paper.
Predictive Sampling Parameters. All experimental setups
were conducted in discrete time settings with a short time
horizon ¢t = 10, and an initial nominal plan Il =
zeros(ty, ng), where n, is the number of controllable joints
in the system. The N = 10 sampled control splines were
constructed using a Cubic Hermite spline, as demonstrated
by [13]. For all experiments we fix the sampling variance as
3 = 1.0. To prevent the control sequences from violating joint
constraints during forward rollouts and execution on the robot,
we clamp the control splines to only sample within a domain
that satisfy joint constraints.
Mass Estimation Experiments. The Franka end effector is
free to move within 1 dimensional domain W = [0,0.6] m
in the z direction with respect to world frame coordinates (at
the Franka root), with bounded joint velocity constraints v, €
[—1.0,1.0] m/s. The robot starts at initial end effector position
Dee,o = 0.2 m with zero initial velocity. The Allegro hand
attached to the Franka estimates the mass of a grasped tennis
ball of mass 0.05 kg (the results in this paper scale this value
by a factor of 100). We initialize the variance of the mass
parameter as Xy = 10 kg®. The contact model parameters in
this scenario is shown in Table I.
Friction Estimation Experiments. The Franka end effector
is free to move within 2 dimensional domain W = [0, 1.0] x
[0.5,1.0] m with respect to a local wall frame coordinate
system at the base of the wall, with bounded joint velocity con-
straints ve, € [—1.0,1.0] m/s in both x and y directions. The
robot starts at initial end effector position p.. o = [0.5,0.8] m
in wall frame coordinates (oriented 0.8 m in the y direction
from the root of the Franka, with its x axis pointing away
from the wall) with zero initial velocity. The robot estimates
the coefficient of friction between its end effector and the wall,
with true parameter i = 0.4. We initialize the variance of the
mass parameter as Xy = 1. The contact model parameters in
this scenario is shown in Table I.
Material Property Estimation Experiments. A robot grip-
per enters a pregrasped state, where the gripper surface is
positioned 0.4 cm away from the surface of the ball object
with stiffness coefficient K = 800 N/m N/m, and dampening
coefficient C' = 10 Ns/m. The gripper is free to move within
gripper velocity constraints and prismatic joint constraints as
per an Aloha 2 system. We initialize the variance of the mass
parameter as Xy = [100.0 (N/m)?,10.0 (Ns/m)?].



Shape Estimation Experiments. A Franka is tasked with
estimating the length [ = 0.126 m and width w = 0.05 m
block. on a table surface. The robot is constrained in the
world frame z axis such that is motion is planar about the
surface of the table. The robot is initialized at end effector
position p.. = [0.5,—0.1,0.08] meters with respect to the
world frame, and is constrained to a planar domain W =
[0.3,—0.15] x [0.8,0.15] m, with velocity constraints set to
Vee € [—0.5,0.5] m/s for all axes. We initialize the variance
of the mass parameter as ¥y = 10 cm?. The contact model
parameters in this scenario is shown in Table 1.



