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Provably-Safe, Online System Identification
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Abstract—Precise manipulation tasks require accurate knowl-
edge of payload inertial parameters. Unfortunately, identifying
these parameters for unknown payloads while ensuring that the
robotic system satisfies its input and state constraints while avoid-
ing collisions with the environment remains a significant chal-
lenge. This paper presents an integrated framework that enables
robotic manipulators to safely and automatically identify payload
parameters while maintaining operational safety gnarantees. The
framework consists of two synergistic components: an online tra-
jectory planning and control framework that generates provably-
safe exciting trajectories for system identification that can be
tracked while respecting robot constraints and avoiding obstacles
and a robust system identification method that computes rigorous
overapproximative bounds on end-effector inertial parameters
assuming bounded sensor noise. Experimental validation on a
robotic manipulator performing challenging tasks with various
unknown payloads demonstrates the framework’s effectiveness in
establishing accurate parameter bounds while maintaining safety
throughout the identification process. The code is available at our
project webpage: https://roahmlab.github.io/OnlineSafeSysID/.

1. INTRODUCTION

Robotic arms have widespread applications in cooperative
human-robot environments, including manufacturing, package
delivery services, and in-home care. These scenarios fre-
quently involve manipulating payloads with uncertain proper-
ties while operating under physical constraints. To ensure safe
operation, robots must avoid collisions while respecting joint
position, velocity, and torque limits. There are three challenges
to the safe deployment of robotic arms handling unknown
payloads.

The first challenge lies in bridging the gap between safe
planning and safe control. Current research in motion plan-
ning and manipulation often overlooks controller tracking
performance, where model uncertainties can cause deviations
between desired and actual trajectories. These deviations may
lead to obstacle collisions or torque limit violations. The
second challenge involves accurate estimation of model un-
certainties. For unknown payloads, online system identification
becomes necessary to estimate the range of inertial parameters.
However, larger uncertainty ranges necessitate aggressive con-
troller behavior to guarantee tracking performance, resulting
in conservative motion planning which can limit performance.
Therefore, obtaining tight bounds on model uncertainties is
crucial for ensuring satisfactory task performance. The third
challenge concerns safety assurances during system identifi-
cation. While extensive research exists on exciting trajectory
design for data collection and identification accuracy, these
studies primarily focus on industrial robots without payloads
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Fig. 1: This figure illustrates how the method proposed in this paper. (a)
Initially, the 7 degree-of-freedom Kinova-gen3 robotic arm picks up a series
of heavy dumbbells that are close to the design limit of the robot. The inertial
parameters of this payload are unknown. (b) The robot then performs online
system identification to estimate an interval bound using the method developed
in this paper. The interval estimate of the inertial parameters generated by the
algorithm is guaranteed to include the true inertial parameters of the dumbbell.
Notably, the data used to compute this interval estimate is constructed in
a manner that is guaranteed to be collision free while satisfying joint and
torque limits. The inertial parameter bound is then used to update the planner
and the controller, which allows the robot to (c) safely move all dumbbells
to the other side around the obstacles and then (d) stack them vertically in
order of increasing weight, which requires high precision. Our experiments
illustrate that state-of-the-art methods that do not incorporate such provably
overapproximative estimates of the inertial parameters result in a failure to
complete the task safely, due to exceeding the torque limits, colliding with
obstacles, or misplacing the dumbbells.

and do not consider operational safety during data collection.
Current approaches rarely address obstacle avoidance or torque
limit compliance during the identification process. This is par-
ticularly important when considering online operation wherein
the model parameters of a payload may not be known before
it is manipulated.

This paper presents a provably-safe and real-time system
identification framework that addresses these three challenges.
As illustrated in Figure 2, the proposed framework comprises
two integrated components. Initially, the approach assumes
an overapproximated bound on the inertial parameters of
the robot end-effector with unknown payloads. A trajectory
planning and control framework then generates a provably-
safe, locally exciting desired trajectory in real-time based on
this initial bound. This exciting trajectory can be tracked in
a provably safe manner. Using this collected data, the robust
system identification method generates a new, tighter, prov-
ably overapproximative bound on the end-effector’s inertial
parameters. This process iterates continuously, with additional
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Fig. 2: This figure summarizes the proposed framework. Initially, the approach assumes an overapproximated bound on the inertial parameters of the robot
end-effector with unknown payloads. A trajectory planner (Section V) then generates a provably-safe, locally exciting desired trajectory in real-time based
on this initial bound. A robust controller, modified from [28, Section VII], tracks this exciting trajectory while collecting robot data including joint positions,
velocities, and applied torques. Using this collected data, the robust system identification method (Section IV) generates a new, tighter overapproximated bound
on the end-effector’s inertial parameters. This process iterates continuously, with additional data enabling more precise parameter estimation and improved

planner and controller performance.

data enabling more precise parameter estimation and improved
planner and controller performance.

The key contributions of this paper are two-fold: First,
a real-time, provably-safe trajectory optimization framework
that generates locally exciting trajectories for system identi-
fication while respecting robot limits and avoiding obstacles.
Second, a robust system identification method that provides
an overapproximated bound of the end-effector’s inertial pa-
rameters given an overapproximated bound of sensor noise.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work. Section III introduces relevant
notation, mathematical objects, and robot kinematics and dy-
namics. The paper then presents the framework’s components
in reverse order: Section IV proposes the system identification
method based on momentum regressor, sensitivity analysis,
and interval arithmetic. Section V details the trajectory op-
timization problem formulation. Finally, Section VI demon-
strates the method’s efficacy through real-world experiments
and comparisons with state-of-the-art approaches.

II. RELATED WORK

The identification of uncertain payloads attached to the
end-effector of robotic manipulators leverages the fundamen-
tal property that inertial parameters exhibit linearity in the
equations of motion [26], enabling the use of least-squares
estimation methods [3] and, more robustly, weighted least-
squares techniques [6, 50]. Estimated payload parameters are
widely applied in various domains, including precise control
[21] and collision detection [14]. Recent advancements have
explored alternative formulations of system dynamics based

on momentum [31] or energy [36], avoiding estimation of
acceleration. Beyond joint encoders, proprioceptive sensors
mounted on the end-effector have been employed to esti-
mate payload properties using filtering-based methods [23].
Meanwhile, deep learning approaches have gained traction,
leveraging neural networks to learn system dynamics directly
from system state data [10, 17] or from pure vision input [22].

Another important direction relevant to both identification
and control of unknown systems is adaptive control. Early
adaptive controllers aimed to compensate for nonlinear dynam-
ics while decoupling joint interactions [42, 53]. Subsequent
theoretical developments leveraged the linear parameterization
of robot dynamics and Lyapunov-based stability analysis to
ensure convergence guarantees [38]. The introduction of pa-
rameter error dynamics through dynamic filtering and torque
prediction [39] enabled online parameter adaptation with
global stability properties. More recent work further advanced
this approach by leveraging momentum-based regressors [30],
thereby eliminating the need for acceleration estimation. De-
spite these advancements, adaptive control still faces important
limitations. Performance remains highly dependent on per-
sistent excitation, which affects both the convergence speed
and steady-state accuracy. More critically, classical adaptive
control methods typically do not offer explicit guarantees
on convergence rate for tracking errors. Additionally, they
are unable to enforce state and input constraints. Although
recent research [25] has attempted to address these issues, the
proposed solutions are limited to systems with just a single
linear actuators and does not generalize to robots governed by
nonlinear rigid body dynamics.



For all of these aforementioned methods, the design of
proper experiments for data collection, known as exciting
trajectory design, has emerged as a critical aspect of system
identification [13, 45, 4, 33, 7]. Early methods focused on
minimizing the condition number of the regressor matrix
[13], though later work demonstrated greater effectiveness in
optimizing the condition number of sub-regressors [45]. Most
approaches employ trigonometric series (Fourier series) [19] or
B-splines [34] as trajectory bases to facilitate the enforcement
of state and velocity limits, while some methods explore deep
learning-based techniques to maximize the Fisher information
of the payload properties [27]. However, safety guarantees
during the identification process are largely unexplored and
can be categorized into two main challenges: (1) Generating
a safe exciting trajectory and (2) safely tracking a given
trajectory. To address the first challenge, state of the art
approaches enforce only joint and velocity limits. This may
still produce trajectories that violate torque limits. To the
author’s best knowledge only [11] addresses the challenge
of generating an exciting trajectory while satisfying safety
constraints. However, [11] employs sampling-based planners
to generate collision-free trajectories which are unable to guar-
antee safety between sampled points. To address the second
challenge, state of the art approaches rely on PID controllers
[19] or manufacturer-embedded controllers [14]. As a result,
trajectory or controller fine-tuning is often required to balance
the trade-off between respecting torque limits and achieving
low tracking errors.

To overcome these challenges, the concept of closed-loop
state/input sensitivity metric was introduced in [15] to evaluate
the impact of model uncertainties on robot behavior. By
designing an optimized feedforward reference trajectory that
minimizes these sensitivity metrics, robustness against model
uncertainties is inherently embedded in the reference trajectory
itself, eliminating the need for specific control strategies [41].
This approach has been applied to UAVs [15] and quadrotors
[8, 48], providing a trajectory planning and control frame-
work that considers state/torque limits and obstacle avoidance.
Recent developments have extended this method to robotic
manipulators [41]. However, this work only considers a narrow
range of payload parameters [41, Section IV] and has not yet
been integrated with collision avoidance.

III. PRELIMINARIES

This section establishes the mathematical foundations nec-
essary for developing the safe system identification framework.

A. Interval Arithmetic

To handle uncertainty in robot inertial parameters, this paper
employs multidimensional intervals and interval arithmetic.
For vectors in R™, we first establish notation: x; denotes the
i component of vector x, and for vectors x,y € R", we write
x =y when x; < y; holds for all components 1.

Definition 1 (Multidimensional Interval). For vectors z,T €
R™, a multidimensional interval is the set:

[z,7] ={z € R” |z Xz <X T}, (1

where x and X serve as the interval’s infimum and supremum,
respectively.

The set of all n-dimensional intervals is denoted as IR™.
For analyzing functions over intervals, we introduce interval
evaluation:

Definition 2 (Interval Evaluation). For a function f : R™ —
R™ and interval [z, T, the interval evaluation is defined as:

[z, 2) = {f(2) | = € [z, 7]} 2

B. Robotic Manipulator Model and the Environment

1) Dynamics Parameters: For a fully-actuated robotic sys-
tem with n joints, let ¢ : [0,00) € © denote the generalized
trajectory, where @ C R™ represents the robot configuration
space. For convenience, we let N, = {1,...,n}. The sys-
tem’s behavior is characterized by its dynamics parameters,
6 ¢ R'", which comprise two distinct components: inertial
parameters and friction parameters. The inertial parameters
fip € R'9" describe the mass properties of each link j:

Oip.; = (M, Daj - ™My, Py - M, Daj - My,
XX]-,YY]-,ZZ]-,XYJ-,YZJ-,XZJ-]T, 3)

where m; represents mass, [pg; - M, Dy - My, Dxj - M)
encodes the first moments of mass, and the remaining six com-
ponents define the inertia tensor. Here, p; = [ps. i, Dy.j» Po.j] "
represents the center of mass for link j € {1,...,n}. The fric-
tion parameters 0y € R*" capture joint friction characteristics:

Or; = [ch’ij’Iaj’Bj]T’ 4

where these components model static friction, viscous friction,
transmission inertia, and bias for each joint j.

This work addresses the identification of end-effector dy-
namics parameters, including attached payloads, while ac-
counting for uncertainties in the complete robotic system. The
dynamic parameters naturally partition into two components:
the end-effector parameters §. € R'? and the remaining
robot parameters f; € R'7~19 In practical applications,
our objective extends beyond point estimates to establishing
conservative bounds on the end-effector’s dynamic parameters
that provably contain the true parameters. This challenge is
compounded by uncertainties in the base robot’s parameters,
leading to the following assumption:

Assumption 3 (Dynamics Parameter Bounds). The robot
dynamic parameters excluding the end-effector, 0., lie within
a known finite interval [0,] containing the true parameters
0. Furthermore, a nominal estimate 0,5 € [0;] of these
parameters is available.

This assumption aligns with practical robotics applications, as
manufacturers typically provide baseline kinematic and inertial
parameters for each robot link, including the unloaded end-
effector. Friction parameters can be characterized through es-
tablished methods when the robot operates without a payload,
following approaches detailed in [52] and [19]. The interval
bounds [f;] can then be constructed by expanding around



the nominal parameters ., to account for manufacturing
uncertainties.

2) Equation of Motion: The classical equation of motion
takes the form:

Hq(t),0)q(t) + Cla(t), 4(t), 0)q(t) + g(q(t), 0)
+ F(q(1),4(t), 0) = (), (5

where H(q(t),0) € R™ ™ is the positive definite inertia
mass matrix, C(q(t),q(t),0) € R™*™ is the Coriolis matrix,
g(q,0) € R™ is the gravitational force vector, and 7(t) € R"
is applied joint torques all at time f{. The friction model
F(¢(t),§(t),0) € R™, follows [19, (2)]:

F(q(t),q(t),0) = F. o sign(4(t))

+Fyoq(t) +1,04(t) + 8, (6)

where F. € R” is the static friction coefficients, F,, € R™ is
the viscous friction coefficients, I, € R” is the transmission
inertias, B € R™ is the offset/bias terms of all joints, and o
denotes the Hadamard product. In addition to this model, we
assume that the robot must satisfy several limits.

Assumption 4 (Workspace and Configuration Space). The
robot’s j" joint has position and velocity limits given by
g € [quhm,quhm] and §; € [q'jfhm,quhm] for all time and
for all 3 € Ny, respectively. During online operation, the
robot has encoders that allow it to measure its joint posi-
tions and velocities. The robot’s input T has limits given by
7 (t) € [T} i T;im] for all time and j € N,

The classical equations of motion (5) can be reformulated
using a momentum-based approach, which offers practical
advantages for system identification:

Theorem 5 (Momentum-Based Dynamics [31, (5)]). For a
robotic system with dynamics described by (5), define the
system momentum for any time t as:

pq(t),q(t),0) = H(q(t),0)q(t). (7
Then
p(a(t), (1), 0) = CT(q(t), (1), 0)d(t) — g(q(t),0)
—F(4(t),q4(t),0) +7(t), (¥

and for any time interval [tq,ta] with 0 < t1 < ta, the change
in momentum satisfies:

p(Q(t2)a Q(t2)a 0) - p(Q(tl)a Q(tl)a 0) -
- / (CT(g(t). (1), 0)ilt) — gla(t).0)

1 R, §(0.0) ()t ©)

This momentum-based dynamics formulation provides two
key advantages: it eliminates the need for acceleration mea-
surements, which are often noisy or unavailable in practice,
and it expresses the dynamics in an integral form that filters
measurement noise.

3) Environment: We begin by defining obstacles:

Assumption 6 (Obstacles). The transformation between the
world frame of the workspace and the base frame of the robot
is known, and obstacles are expressed in the base frame of
the robot. At any time, the number of obstacles no € N
in the scene is finite (no < o0). Let O be the set of all
obstacles {O01,05,...,0,,}. Each obstacle is bounded and
static with respect to time. The manipulator has access to a
zonotope overapproximation [18] of each obstacle’s volume
in workspace.

The manipulator is in collision with an obstacle if FO;(g(t))N
O, # 0 for any j € Ny or i € {l,...,no}, where
FO; describes the forward occupancy of the 4™ link of the
manipulator. This work is concerned with planning and control
around obstacles while performing system identification, not
perception of obstacles. As a result, we have assumed for
convenience that the robot is able to sense all obstacles in
the workspace.

C. Dynamics Regressors

To enable system identification of the dynamics parameters
#, we introduce two regressor formulations that each expose
the linear relationship between system dynamics and these
parameters. These regressors provide different perspectives on
the system dynamics and serve distinct purposes in controller
design and system identification.

Theorem 7 (Standard Dynamics Regressor [12, (12)]). For
any time t, the left hand side of the classical equation of
motion (5) can be expressed as a linear function of the dynamic
parameters:

W(q(t),q(t),4()0 = 7(t).

We refer to W(q(t),q(t),i(t)) € R™ Y a5 the standard
dynamics regressor [26].

(10)

With this linear relationship, a least squares problem can be
formulated based on (10) to identify the dynamic parameters
[19, (9)]. The momentum-based dynamics (Theorem 5) pre-
serves the similar linear relationship.

Theorem 8 (Momentum-Based Regressors [31, (8)] and [47,
Appendix]). The momentum dynamics admit two specialized
regressors for any time t:

L. The system momentum (9) can be expressed as:

p(q(t),4(t),0) = Wi (q(t), 4(1))6, (11)

where Wp,(q(t),d(t)) € R4 js the momentum re-
gressor.

II. The momentum derivative (8) without torque input can
be expressed as:

CT(q(1),4(1),0)4(t) — g(q(t),0) — F(d(t),i(t),0) =
- WC(Q(t)5 Q(t))e - Ia o Q(t)a (12)
where W.(q(t), ¢(t)) € R4,



Combining these regressors yields the integral form for t5 >
tl.'

(Wi (a(t2), 4(t2)) — Win(q(t), §(t1))0 =

ta
oo (it) —d() + [ roa (13)

t1
Similarly, a least squares problem can be formulated using
(13) to identify the dynamic parameters [31, (16)]. However,
in this instance, one can rely on just position and velocity
measurements rather than acceleration measurements. Because
this work focuses on identification of the end-effector, we
separate the regressors into two parts. In other words, we
decompose W, into two components, W, -(q(t),¢(t)) €
R7*(147=10) and W, . (q(t), (1)) € R™ 10, where W,
corresponds to the columns of W,, associated with 6, and
Win,e corresponds to the columns of W, associated with 8.

We similarly decompose W, into W, , and W .

D. Physical Consistency Constraints and Parameterization

Using the regressors described in the previous subsec-
tion, the system identification problem can be formulated
as a linear regression task. However, to ensure the physical
consistency of the inertial parameters of each link of the
robot, additional mathematical constraints must be imposed
[40]. These constraints, also known as LMI constraints and
defined in Definition 15, require that the pseudo-inertia matrix
(31), which encodes the inertial parameters of a robot link,
be positive-definite. Consequently, the system identification
problem becomes a constrained optimization problem [40,
(20)], where physical consistency is explicitly enforced.

An alternative approach to enforcing positive-definiteness
is to utilize the Cholesky decomposition of the pseudo-inertia
matrix [35]. Specifically, this structure of ;, ; can be fully
described by

Gip,j - P(n)a

where the log-Cholesky parameters n € R0 are defined as

T
77:[04 di dy dz s12 s13 S23 S1a4 S:a 534] )

(15)

(14)

and the mapping P : R'® — R19 is given by

5%4 —+ 534 —+ 534 —+ 1
514ed1
d
514512 + S24€72
S14513 + S24823 + S34€
572+ 513+ 533 +d62d2 erezdg
si + 535 + €241 4 2%

5%2 + 62d1 +62d2
dy

ds

(16)

—S12€
_ _ da
512513 — S23€

fslgedl

Further details regarding this formulation and its properties are
provided in Appendix A.

IV. ROBUST, ONLINE IDENTIFICATION FOR PAYLOADS

This work focuses on the identification of the inertial
parameters of the end-effector link, including the payload
using the model and assumptions described in Section III-B.
The rest of the section discusses how to accurately estimate
0c0 with a conservative interval bound [f¢] that includes the
true 6. through a system identification process.

A. System Identification Problem Formulation

This subsection develops the mathematical framework
for identifying end-effector parameters from measurement
data. The approach leverages momentum-based dynamics and
builds toward an optimization problem that ensures physical
consistency.

Definition 9 (Measurement Data). For system identification,
we consider N sequential measurements of the robot state,
collected at times t; > 0 for 1 € 1,..., N that we refer to as
the measurement data:

arv = {g(t:)}Y, (17)
ai.v = {4t} (18)
T = {7t . (19)

Using this measurement data and the momentum regressor
described in Theorem 8, one can prove the following corollary:

Corollary 10 (Momentum-Based Parameter Identification).
Let h € NT denote the forward integration horizon. If
one applies Forward Euler Intergration, then the momentum
dynamics over interval [t;,t; ] yields a linear relationship
with respect to the end-effector’s dynamics parameters:

YiitnOe = Usiitn, (20)

where the regressor matrix Y;p captures the end-effector
dynamics:

Yiith = Wine(q(tivn), 4(tivn)) — Wine(a(ti), 4(t:)))—
i+h

=D Weelalty), d(t) (11 — 1;), 2D
=i
and Ui+, describes the rest of the system’s dynamics:

Usivh = — Wi (q(ticn), d(tign)) — Winr(q(ti), ¢(t:))+
ith

+ Z Wer(q(1), 4(0)(t501 — 15))0,—

i+h
—Iq 0 (G(tiyn) — () + ZT(tj)(th —t5). (22)

By applying this corollary, one can show that the system
identification problem can be formulated as the solution to
an optimization problem when there is no uncertainty in the
robot dynamics:

Theorem 11 (Uncertainty-Free System Identification). Let
h € NV denote the forward integration horizon, suppose



that measurement data was generated by the system dynamics
while satisfying forward Euler Integration, and suppose that
the robot’s dynamic parameters excluding the end-effector are
known exactly and are equal to 0, . Let the observation matrix
Y be defined as follows:

5/1:1+h

Yithi142n

Npnx10
€ RVnnx10,

Y(qun,qun) = (23)

Y1 (V1)1 Nk

and let the observation response U be defined as follows:

Ura+n
) Utiniiton Nom
U(QLN,QI:N,TLN,Gr) = . c R7” ’
Ul ((Nw DRl 1Nk
(24)
where Ny, = | %] is the total number of integration steps.

Consider the following optimization problem:

HelgleY(QLN; ai:n)P(ne) — Uldun, qun, T1n, 0r0)
Ne

(25)
where P is the Log-Cholesky parameterization defined in
(16). Let n; denote any local minimizer to this optimization
problem and let 05 = P(n), then Y(qun,q1.n)0; =
U(qun, q1.n8, T1:N, Or0)-

Proof: This result follows by first recognizing that in
the presence of no uncertainty, one can formulate the system
identification problem as:

min
e R0
st. LMI(fe) > O4x4,

1Y (qi:n, di:nv)0e — U(de:n, di:n, T1:8, Or0) ||
(26)

where have applied Definition 15 and Corollary 10. The result
then follows by applying Corollary 17. [ ]

The aforementioned Theorem makes several assumptions
that make its practical application challenging. First, as men-
tioned in Section III-B, usually the robot’s dynamic parameters
excluding the end-effector are not known exactly. Second, the
measurement data may not be noise free. Finally, the mea-
surement data may not be generated by performing Forward
Euler Integration. The next subsection describes how we deal
with the first two challenges while generating a conservative
estimate of the end-effector’s dynamics parameters.

B. Interval Bound Estimation via Perturbation Analysis

To construct a conservative bound on the end-effector’s
dynamics parameters, we begin by making the following
assumptions regarding the noise in the measurement:

Assumption 12. The joint position and velocity measurements
are perfectly accurate. The torque measurement is noisy, but
its uncertainty can be bounded by an interval vector that we
denote by [T1.n] € IRV,

To understand why this assumption is reasonable, recall that
the joint position and velocity of robotic arms are usually

captured by optical encoders [2]. The measurement error for
such sensors arises due to the resolution of the coded disk
inside the sensor [24, Section 2.4]. The noise in such sensors
is small in modern robots [32, Section IV]. On the other hand,
the torque sensor is usually based on electrical and optical
techniques [44] that can introduce a non-negligible error. As
a result, our system identification techniques focus on dealing
with the measurement error of the torque sensor 7. and the
uncertainty associated with the dynamics parameters of the
robot 0: o (excluding the end-effector).

The goal of this subsection is to understand how these
various forms of uncertainty impact the system identification
process. Using the aforementioned assumption, we simplify
our notation to focus on this objective. We concatenate the
variables 71,5 and 0 that affect the estimation and denote
this as a measurement vector m € RV?147=10 We denote
the uncertainty associated with this measurement vector by
[m] ¢ IRN?+147=10 "yhich can be computed by applying
Assumptions 3 and 12. Because the focus of this subsection is
understanding how uncertainty in this measurement vector im-
pacts the estimation of the end-effector’s dynamics parameters,
we denote the observation matrix by Y and the observation
response matrix by U(m).

Using these definitions, we can conservatively bound the
end-effector’s dynamics parameter estimates that one generates
by applying Theorem 11:

Theorem 13. Ler ni(m) be any local minimizer to (25). Let
0%(m) = P(n}(m)), where P is the Log-Cholesky parame-
terization defined in (16). Then the true dynamics parameters
of the end-effector satisfy the following inclusion

0c € 03(m) + 2 (fm)(m] — m).

27

The proof to Theorem 13 and the formula for gin;;(m) are
provided in Appendix C.

Algorithm 1 describes how to perform system identification
using Theorem 13 given data and an initial estimate for the
dynamics parameters of the robot excluding the end-effector.
Note that the output of the algorithm does not require an initial
estimate of the dynamics parameters of the end-effector. The
algorithm outputs an estimate for the dynamics parameters of
the entire robot along with a conservative interval-based bound

on the dynamics parameters of the entire robot.

V. PROVABLY-SAFE LOCALLY EXCITING TRAJECTORY
GENERATION

The objective of this paper is to perform system identi-
fication during online operation while ensuring safety. The
previous section describes how to apply optimization to the
collected data to conservatively identify the dynamics param-
eters of the end-effector. However, it does not describe how
to collect the data in a safe manner. To solve this problem,
this paper relies on Autonomous Robust Manipulation via Op-
timization with Uncertainty-aware Reachability (ARMOUR)
[28], which is an optimization-based motion planning and
control framework that can ensure the safety of synthesized



Algorithm 1 (005 [9]) - SySID(qa qa Ta 01‘,05 [01']5 ha [m])

mn <— (T, 01-70)
Y(q,q) < (23)
U(q, q,m) < (24)
nz(m) « (25)
0;(m) < P(n*(m))

[fc] < 0% (m) + ggnj ([m])([m] — m) using Theorem 13
0o < (br0, 02(m))
[0] < ([0:], [

R N e

Return: (9, [0])

trajectories even in the presence of model uncertainty. This
section provides a brief overview of ARMOUR and how it
must be modified to design trajectories that can make the
identification of the true dynamics parameters of the end-
effector occur more rapidly.

A. An Overview of ARMOUR [2§]

ARMOUR plans safe trajectories in a receding horizon
fashion that minimize a user-specified cost. To accomplish this
goal, ARMOUR optimizes over a space of possible desired
trajectories that are chosen from a prespecified continuum of
trajectories, with each determined by a trajectory parameter,
k € K. During each planning iteration, ARMOUR selects a
trajectory parameter that can be followed without collisions
despite tracking error and model uncertainty while satisfying
joint and input limits. To ensure that ARMOUR is capable
of planning in real time, each desired trajectory is followed
while the robot constructs the next desired trajectory for
the subsequent step. Next, we summarize how ARMOUR
accomplishes this goal by selecting a feedback controller and
a planning time and describing what trajectory optimization
problem it solves.

1) Feedback Controller: ARMOUR associates a feedback
control input over a compact time interval T = [0,¢¢] C R
with each trajectory parameter & &€ /. Here K represents a
parameterized space that includes a variety of behaviors of the
robot. This feedback control input is a function of the nominal
inertial parameters 6, the interval inertial parameters [0], and
the state of the robot; however, it cannot be a function of
the true inertial parameters of the robot because these are not
known. To simplify notation, we denote the feedback control
input at time ¢ € T under trajectory k& € K by 7(¢; k).
Applying this control input to the arm generates an associated
trajectory of the arm. These position and velocity trajectories
are functions of the true inertial parameters. We denote the
position and velocity trajectories at time ¢ € 7" under trajectory
k € K under the true inertia model parameters 6 € [0] by
q(t; k,0) and (t; k, 9), respectively.

2) Timing: Because ARMOUR performs receding horizon
planning, we assume without loss of generality that the control
input and trajectory begin at time ¢ = 0 and end at a fixed
time ;. To ensure real-time operation, ARMOUR identifies
a new trajectory parameter within a fixed planning time of

t, seconds, where ¢, < {y. ARMOUR must select a new
trajectory parameter before completing its tracking of the
previously identified desired trajectory. If no new trajectory
parameter is found in time, ARMOUR defaults to a braking
maneuver that brings the robot to a stop at time ¢ = .

3) Online Trajectory Optimization: During each receding-
horizon planning iteration, ARMOUR generates a trajectory
by solving a tractable representation of the following nonlinear
optimization:

iréilré cost(k) (28)
q;(t; %, 0) € [¢; i Q;rlim] vteT,0€(0],j € Ny
G (t;k,0) € (45 1mr 45 tl VteT,0c0],5e N,
i(t k) € [T i thm] vteT,0elf),je N,
[6]

FO;(q(t; k,0) (O =0 VteT,0c8],je N,
The cost function (28) specifies a user-defined objective, such
as bringing the robot close to some desired goal. Each of the
constraints guarantee the safety of any feasible trajectory pa-
rameter as we describe next. The trajectory must be executable
by the robot, which means the trajectory must not violate the
robot’s joint position, velocity, or input limits (i.e., the first
three constraints in the optimization problem, respectively).
These constraints must be satisfied for each joint over the
entire planning horizon despite model uncertainty; The robot
must not collide with any obstacles in the environment (i.e.,
the last constraint in the optimization problem). ARMOUR
solves this optimization problem in a provably safe fashion in
real-time despite model uncertainty [28, Lemma 22].

We make one final observation about ARMOUR. Recall that
during receding horizon planning, ARMOUR must select a
new trajectory parameter before completing its tracking of the
previously identified desired trajectory. Note that to do this,
naively one may assume that one needs to know the future
state of the manipulator to compute a trajectory parameter
using ARMOUR. Because there is uncertainty in the system
model, knowing the future state of the robot perfectly is
untenable. Fortunately, ARMOUR does not require knowledge
of the future state of the manipulator to ensure that the robot
stays persistently safe. In fact, to ensure that the manipulator
is persistently safe using ARMOUR in a receding horizon
fashion, one only needs to know the previously computed
ARMOUR trajectory parameter [28, Remark 12].

In the remainder of the paper, ARMOUR represents a function
that solves the optimization problem (28), denoted as:

kE* = ARMOUR(k,, O, cost, t,, T, 6y, [6]), (29)

where k* represents the optimal trajectory parameters, and the
inputs specify the previously computed trajectory parameter
kp, obstacle set O, objective function cost, planning time ,,
trajectory duration 7', nominal dynamics parameters 6y, and
dynamics parameter bounds [#]. Note during the first planning
iteration, one can just pass in the actual initial state of the
robot instead of k.



B. Modify Cost Function for Locally Exciting Trajectories

This subsection describes how to design ARMOUR’s cost
function to generate exciting trajectories which can expedite
the rate at which the dynamics parameters of the end-effector
are identified. To appreciate why this is important, note that
large model uncertainty may require an overly conservative
representation of the forward occupancy while necessitating
larger control effort to ensure safety. This could impede
completing subsequent planning tasks. We illustrate these
challenges with poor system identification in the experiments
as is described Section VI

By looking at (27), one can determine that the size of [6,]
depends on the measurements uncertainties. Besides, the size
of [fe] also depends on the inverse of matrix g%(m, 7 (m)),
which depends on the matrix YTY, as shown in (42) and (43).
Unfortunately, in certain cases Y'Y may be close to singular,
which yields a large bound for [0¢]. As a result, we would like
to generate trajectories for the robot to follow that minimize
the condition number of Y7'Y. Such desired trajectories are
usually referred to as exciting trajectories. To be more specific,
we consider the 2-norm condition number of YTY, which
is essentially the ratio between the largest and the smallest
singular values of YTY [5, (5)].

However, recalling the integral nature of the momentum
regressor Y described in (21), it is computationally expen-
sive to optimize the condition number of Y'Y because the
gradient of the regressor matrix is required. In this work, we
instead minimize the condition number of the portion of the
Standard Dynamics Regressor (Theorem 7) associated with
the dynamics parameters of the end-effector. Note that this is
the approach taken by most prior work to generate exciting
trajectories [13, 45, 4, 33, 7].

To be specific, consider the following regressor matrix:

Wel(q(ti; k), G(t1; k), G(t1; k)
W(k) = : ,
Wel(q(tn,; k), d(tn.; k), d(tn,; k)

where W, is the collection of columns corresponding to the
dynamics parameters of the end-effector within (10), ¢; > 0
for i € {1,..., Ns} are the time instances of each sample of
the desired trajectory, and N, is the number of samples. To
compute locally exciting trajectories, we set the cost function
in ARMOUR equal to the condition number of W (k).

To see why this works, recall that the original robot dynam-
ics (5) is equivalent to the momentum version of the dynamics
(13) by taking time derivatives on both sides. Hence, W can be
thought of as approximating the time derivative of Y, as they
contribute linearly to (5) and (13), respectively. Unfortunately,
it is non-trivial to analytically prove that minimizing the con-
dition numbers of these two regressor matrices is equivalent.
However, during the experiments described in Appendix D, we
illustrate that minimizing the condition numbers of these two
regressor matrices generates approximately similar behavior.

(30)

C. Provably-safe Online System Identification Pipeline

Algorithm 2 Provably-Safe Online System Identification

1: Require: ¢y € Q, O, t, >0, [0], 6y € [0], h € N, [m]
. Initialize: j =0,¢, =0, 7 ={}, ¢={}. ¢={}, and
k§ = ARMOUR(qo, O, cost, t,, T, 6y, [])
. If: k§ = NaN, then break
while 1 do
/I Line 6 executes simultaneously with Lines 7 — 10 //
Apply 7(t; k;) to robot for ¢ € [t;,1; +t,] and append
input, position, and velocity of robot into T, q,
and ¢, respectively
k3,1 = ARMOUR(K}, O, cost,t,, T, 0, [0])
(8o, 10]) — SysID(d, G, 7, 01 0, 6], h, [m])

(3]

> ok W

: If k7., = NaN, then break
10: Else tj+1 <— tj + tp andj <— ] +1
11: end while
12: Apply 7(t;k}) to robot for t € [t;,t; + 1]

This subsection describes how to combine ARMOUR with
the cost function described in the previous subsection with
the system identification procedure described in Theorem 13 to
create the provably-safe online system identification algorithm
described in Algorithm 2.

To begin, we assume that the robot has picked up a payload,
which is then rigidly attached to the end-effector of the robot.
We assume that the robot starts at rest from a known initial
state, go, given known obstacle configurations, O. A user then
specifies a planning time horizon, #,, provides an estimate
of the nominal dynamics parameters of the robot, 6, along
with a conservative interval based bound on the dynamics
parameters of the robot, [6], selects a forward integration
horizon i € NT, and specifies a conservative error bound for
the measurement vector, [m]. Before performing any system
identification, ARMOUR first tries to compute an exciting
trajectory (Line 2). If no feasible solution is found, then NaN
is returned and the robot does not move (Line 3).

On the other hand if a feasible solution can be found, the
while loop begins. At this point, the previously computed op-
timal trajectory is tracked by ARMOUR’s feedback controller
and the behavior of the robot is saved in the measurement
varaibles (Line 6). While this is happening the next trajectory
to be tracked is computed by ARMOUR (Line 7) and then
system identification is performed using Algorithm 1 (Line
8). This is then repeated, unless ARMOUR is not able to find
a feasible solution at which point ARMOUR uses the braking
maneuver whose safety was verified in a previous planning
iteration to bring the robot to a stop (Line 12). In practice, the
while loop is terminated if the the size of the interval estimate
does not increase during subsequent iterations.

One can prove that Algorithm 2 generates provably safe
behavior while performing system identification. However,
before proving that result, we make one observation. Recall
that Theorem 13 allows us to estimate conservatively bound
the dynamics parameters of the end-effector without starting
from an initial conservative estimate of these parameters.



Unfortunately, to collect data to perform system identification
using ARMOUR, we must rely on ARMOUR’s feedback
controller. This controller requires a conservative estimate
of the dynamics parameters of the overall robot to ensure
safe behavior. However, note that generating a conservative
overapproximation of the range of the initial parameters of the
end-effector with payload is not challenging. For example, the
range for mass could be set from 0 to the maximum payload
weight defined by the manufacturer. The center of mass can
also be bounded within the geometry of the end-effector and
the payload. The range of inertia can also be overapproximated
given the range of mass and the center of mass.

Finally by applying [28, Lemma 22] and Theorem 13 one
can prove the following result:

Lemma 14 (Algorithm 2 Generates Safe Motion). Suppose qg
is collision free and [0] is an overapproximation that includes
the true dynamics parameters of the robot, then the robot
motion generated by Algorithm 2 satisfies all the limits of the
robot while staying collision-free.

V1. EXPERIMENTS & COMPARISONS

This section describes experiments that we conducted to
evaluate the performance of the proposed algorithm. Our
implementation has been open-sourced!.

A. Robotic Platform

We performed hardware experiments on Kinova-gen3,
which is a 7 degree-of-freedom robotic arm. Encoders and
torque sensors are equipped on all joints. The joint encoder
position resolutions are 0.02 degrees for the first four joints
and 0.011 degrees for the last three. Consequently, this work
ignores the joint encoder measurement error and focuses only
on the torque sensor (Assumption 12). The frequency of
control and data collection on Kinova-gen3 is not constant, but
around 3.5-4 kHz. The robot end-effector (the last link and the
gripper) weighs about 1.28 kg. The maximum payload weight
of Kinova-gen3 is 2 kg for full-range continuous motion and
4 kg for mid-range continuous motion. For safety reasons, in
the hardware experiment, we restrict the payload weight to
less than 4 kg. All elements of Algorithm 2 are implemented
in C++ and executed on a desktop computer with an AMD
Ryzen Threadripper 7980X CPU and 256 GB RAM.

B. Experiment Settings
We evaluate our method across three hardware experiments:

(a) Five dumbbells are placed on one side of the robot. The
robot must place the lightest dumbbell on a 3D-printed
platform, which is positioned at 0.25m in front of the
robot, while stacking the remaining dumbbells vertically
in ascending order of weight, all while avoiding obstacles
in the environment, particularly with one low obstacle in
the way, as illustrated at the top of Fig. 3.

The same stacking task is repeated with the platform
positioned at 0.50m in front of the robot, particularly with

(b)

Uhttps://github.com/roahmlab/OnlineSafeSysID

one high obstacle in the way, as illustrated at the bottom
of Fig. 3.

(c) The robot must pick up the heaviest dumbbell (8Ib) and
then follow a trajectory while avoiding obstacles in a
more challenging setting, as illustrated in Fig. 4.

Throughout these experiments, we aim to demonstrate that
our provably-safe online system identification framework is
able to accomplish a variety of complex manipulation tasks
with a higher success rate because it is able to provide
the robust controller with a more accurate model estimate
while guaranteeing safety during the system identification
process. Experiments (a) and (b) evaluate the accuracy of
each method while performing manipulation of a variety of
unknown payloads. Experiment (c) evaluates the accuracy of
trajectory tracking for collision avoidance. Experiment (c)
is the most challenging task because the desired trajectory
is close to the obstacles to minimize the path length. The
dumbbells weigh 4, 5, 6, 7, and 8lb (about 1.81, 2.27, 2.72,
3.18, and 3.63kg, respectively). The robot has no access to
their inertial parameters in prior.

Inertial parameters | nominal fe ¢ | interval [Oe]
m (kg) 32 12, 5.2]
P - m (kg-m) 0.0 [-0.4, 0.4]
py - m (kg-m) 0.0 [-0.4, 0.4]
pz - m (kg-m) -0.5 [-1.0, -0.1]
XX (kg-m?) 0.0 [-0.2, 0.2]
YY (kg-m?) 0.0 [-0.2, 0.2]
Z7 (kg-m?) 0.0 [-0.2, 0.2]
XY (kg-m?) 0.0 [-0.2, 0.2]
Y Z (kg-m?) 0.0 [-0.2, 0.2]
XZ (kg-m?) 0.0 [-0.2, 0.2]

TABLE I: The conservative nominal parameters and interval uncertainties of
the end-effector assigned to the planner and the controller at the beginning of
the identification phase, which serve as initial estimates for Algorithm 2 before
identifying each dumbbell. The interval [fe] covers the inertial parameters of
the end-effector with any of the 5 dumbbells, while the nominal fe g lies
around the middle of [fe].

C. Comparisons

For the hardware experiments, we evaluate a variety of
comparison methods, summarized in TABLE 1I. These com-
parisons fall into two main categories.

The first category consists of methods that execute
the task directly without an additional identification phase
(“wrong”, “conservative”, “adap-1/2”, “grav-pid”). Among
these, “wrong” uses the same robust controller as our method,
but assumes no payload is attached to the end-effector, while
“conservative” uses a conservative estimate in TABLE 1 that
encompasses all possible dumbbells.

The second category includes methods that perform iden-
tification of the payload’s inertial parameters before execut-
ing the task (“ours”, “random”, “adap-1/2-excit”’, “grav-pid-
ours/excit”). The “random” baseline serves as an ablation
study, where identification is conducted using randomly cho-
sen trajectories rather than the most exciting ones. The “grav-
pid-excit” method utilizes a classical approach [5] based on
Fourier series to generate exciting trajectories, considering



Fig. 3: This figure illustrates a complex pick-and-place task used in the hardware experiment. Five dumbbells are placed on one side of the robot, whose
inertial parameters are unknown to it (first image in both rows). The robot is required to move each dumbbell around the obstacles, place the lightest dumbbell
on a 3D-printed platform in front of it, and stack the remaining dumbbells vertically in ascending order of weight (fourth image in both rows). We design
two experiments with different settings: (a) The 3D-printed platform is positioned 0.25 m from the robot, with one low obstacle in the way, as shown in the
images in the first row. (b) The 3D-printed platform is positioned 0.50 m from the robot, with one high obstacle in the way, as shown in the images in the
second row.

methods controller robot model robot model uncertainties | exciting trajectories
ours ARMOUR robust [28] 0 from Algorithm. 1 [0] from Algorithm. 1 Algorithm. 2
wrong ARMOUR robust [28] assume no payload at end-effector 0% N/A
conservative ARMOUR robust [28] nominal in TABLE I interval in TABLE I N/A
random ARMOUR robust [28] 0o from Algorithm. 1 [0] from Algorithm. 1 random
adap-1 adaptive [38] identified by adaptive controller N/A N/A
adap-1-excit adaptive [38] identified by adaptive controller N/A Algorithm. 2
adap-2 adaptive [1] identified by adaptive controller N/A N/A
adap-2-excit adaptive [1] identified by adaptive controller N/A Algorithm. 2
grav-pid gravity compensated PID [37, (6.19)] | assume no payload at end-effector N/A N/A
grav-pid-ours | gravity compensated PID [37, (6.19)] 6o from Algorithm. 1 N/A Algorithm. 2
grav-pid-excit | gravity compensated PID [37, (6.19)] 0o from Algorithm. 1 N/A [5]

TABLE II: All comparisons evaluated in the hardware experiments, categorized by the controller type, the robot model used in the controller, the robot model
uncertainties used in the controller, and whether exciting trajectories were used for system identification prior to task execution. Methods marked "N/A” in

the “exciting trajectories” column skip the identification phase and directly execute the task.

Fig. 4: An illustration of the third real-world experiment. The robot is required
to pick up and perform system identification with an 8lb dumbbell and then
follow a trajectory to avoid obstacles.

only velocity and acceleration limits. However, these con-
straints may be insufficient for ensuring safety in terms of
collision avoidance or torque limits when handling unknown
payloads. “adap-1/2-excit” applies the adaptive controllers
from [38, 1] while following the same exciting trajectories
as “ours” before executing the task, allowing the adaptive
controllers additional time to estimate the end-effector inertial
parameters.

D. Implementation Details

1) System Identification Implementation: The system iden-
tification solver (Algorithm 1) is also implemented using Ipopt
[46]. The analytical gradient and analytical hessian are also
provided to improve computational efficiency. The forward
integration horizon h is chosen to be 400, which implies
a forward integration time of 100-120 ms on Kinova-gen3.
The maximum amount of uncertainties over the measurements
[6m] is set to 5% maximum uncertainty for both robot
dynamics parameters [0;] (without end-effector) and 2.5% for
applied torque measurement .

2) Exciting Trajectory Planner Implementation: The trajec-
tory planner (28) is implemented using Ipopt [46], an open
source interior point optimizer for nonlinear programming.
The duration of the exciting trajectories ¢y is chosen to be
3.0 s. The total computation time of the trajectory planner is
limited to £, = 1.5 s. N, = 128 samples are uniformly dis-
tributed along the trajectory to formulate the inverse dynamics



regressor W (30). We quit the while loop in Algorithm 2
after generating 4 exciting trajectories, implying a total time
of (4—1)x 1.5+ 3.0 = 7.5 s during the identification phase.

Algorithm 2 requires initial estimates of the nominal pa-
rameters f¢ o and uncertainties [f.] of the end-effector inertial
parameters. TABLE 1 reports the initial nominal parameters
fc.0 and the initial interval uncertainties [¢] at the beginning
of the identification phase. We select a range for mass that
includes both the robot end-effector’s mass and any dumbbell’s
mass. Assuming the robot consistently picks up the dumbbell
at its center, the center of mass of the end-effector remains
near the z-axis of its inertial frame. Thus, we select a relatively
narrow range centered on O for p; - m and p, - m. For other
inertia parameters, we determine the ground truth using CAD
estimation and select a range that includes the results of all
dumbbells. Note that the distribution that we use in TABLE 1
is much wider than that of the existing work [41, Section IV].

For the “random” comparison, we run a different version
of Algorithm 2. Instead of optimizing for the most exciting
trajectories in line 7, we randomly sample the trajectory
parameter k7, in the parameter space K.

3) Trajectory for Executing Tasks: For all three experi-
ments, each compared method (including our own) is required
to follow a pre-defined trajectory to move the payload at a
user-specified terminal location. We compute this trajectory
offline by minimizing the jerk while avoiding obstacles and
satisfying joint and torque limits. This is done by using RAP-
TOR [51], an open-source trajectory optimization toolbox,
with the estimated 8lb dumbbell model attached to the end-
effector. The fast trajectory spans 2s and consists of two 1-
second piecewise-continuous degree-5 Bezier curves.

E. Results

We repeat all the experiments 5 times using the method pro-
posed in this paper and each of the aforementioned comparison
methods in TABLE II. The results of all the experiments were
consistent across all 5 trials and are summarized in TABLE III.
Only the method proposed in the paper (“ours”) is able to suc-
cessfully complete all three experiments. For safety reasons,
we only ran “grav-pid-excit” in simulation because, in contrast
to the trajectories generated by our approach, the trajectories
from [7] violate safety constraints and torque limits, even
with the lightest dumbbell. The tracking performance and the
commanded torque inputs of placing the dumbbells after the
identification phase are illustrated in Figure 11 for Experiment
(a) and Figure 12 for Experiment (b) in Appendix E.

Figure 5 shows the evolution of the estimated end-effector
mass over time as the robot picks up and places the 4lb
dumbbell in Experiment (b), providing further insight into the
performance of methods that perform system identification of
the payload’s inertial parameters before executing the task.
For both “ours” and “random”, inertial parameter estimates
are updated only after completing each trajectory during the
identification phase (line 8 in Algorithm 2), due to the receding
horizon nature of their strategy. In contrast, “adap-1” and
“adap-1-excit” continuously update their parameter estimates

Methods Experiment (a) | Experiment (b) | Experiment (c)
ours success success success
wrong fail at 8lb fail at 8lb collide
conservative fail at 8lb fail at 8lb collide
random success fail at 8lb collide
adap-1 success fail at 8lb collide
adap-1-excit success success collide
adap-2 fail at 8lb fail at 41b collide
adap-2-excit fail at 8lb fail at 41b collide
grav-pid success fail at 61b collide
grav-pid-ours success success collide
grav-pid-excit fail at 41b fail at 41b collide

TABLE III: Results of our method and baseline comparisons across three
hardware experiments. Each experiment was repeated five times and returned
consistent results.

from the very beginning of the experiment. Notably, “ours” is
more accurate while converging faster than all tested methods.
It does this before the execution of the move-and-place task,
which results in a higher success rate across all experiments.
Without overburdening the readers, the results for “adap-2”
and “adap-2-excit” are omitted from this figure.

st 2nd 3rd 4th

ick vy
P! s excit  excit  excit excit

move and place

mass (kg)

ours
random
adap-1
adap-1-excit

0 4 55 7 8.5 1.5 '\7‘.5
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Fig. 5: This figure illustrates the evolution of the estimated end-effector mass
over time as the robot picks up and places the 4lb dumbbell in Experiment
(b). For both “ours” and “random”, we only plot the nominal estimate fe o.
For both “ours” and “adap-1-excit”, an additional identification phase (from
4 to 11.5 seconds) is included, during which the robot tracks four exciting
trajectories from Algorithm 2 to identify the end-effector inertial parameters.
In contrast, “random” follows four randomly generated trajectories during this
phase instead of exciting ones. For “adap-1”, since the identification phase
is skipped entirely and the robot directly executes the task (i.e., moving and
stacking the dumbbells onto the platform), the identification phase (4-11.5
second) is denoted as a dotted line. We observe that “ours” achieves more ac-
curate estimation of the end-effector parameters than random”, demonstrating
the effectiveness of using exciting trajectories. Additionally, “adap-1-excit”
benefits from both extended identification time and proper data excitation,
resulting in improved estimation accuracy and thus, a higher success rate in
the experiments compared to “adap-1".

Figure 6 reports the interval bound estimates after iden-
tifying the inertial parameters of the end-effector while ma-
nipulating the 4lb dumbbell. Because both our method and
“random” utilize Algorithm 1 they are guaranteed to generate
conservative interval estimates for all relevant inertial param-



eters, which empirically validates Theorem 13. In particular,
given a conservative measurement noise bound, (27) can
always generate overapproximated bounds that include the
true inertial parameters .. In addition, note that the interval
bounds generated using the proposed method are smaller than
the ones generated by selecting random trajectories for almost
all inertial parameters, which illustrates that the cost function
described in (30) is able to generate exciting trajectories. The
identification results of 5, 6, 7, and 8lb dumbbells can be found
in Appendix E. We also report the condition numbers of the
observation matrix Y corresponding to these results in TABLE
V.
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Fig. 6: This figure illustrates the interval bound estimates of the 10 inertial
parameters of the end-effector along with the 4lb dumbbell after the identifica-
tion phase. Note that by following the most exciting trajectories, our method is
able to achieve more accurate results and tighter interval estimates, compared
to "random”, which does not optimize for the most exciting trajectories.

VII. LIMITATIONS

There exist several limitations in both the exciting tra-
jectory planner and the robust system identification in our
framework. While most of the related work parameterize
exciting trajectories as a Fourier series [5, (50)], the trajectory
planner in our framework, which is based on ARMOUR [2§],
parameterizes the trajectories as degree-5 Bezier curves and
plans for receding horizons. Although inheriting the safety
guarantees properties from ARMOUR (Lemma 14), the gen-
erated trajectories can only capture locally exciting features,
generally resulting in a regressor matrix with a larger condition
number than the Fourier based methods.

In addition, the approach developed in this paper has
assumed that the noise in the robot manipulator system is dom-
inated by the torque measurements. In addition, the proposed
approach assumes that the data are generated by forward Euler
integration. Though this could be extended to more accurate
forms of numerical integration, these methods would still
potentially just be approximations to the true system dynamics.

The Log-Cholesky parameterization P (14) transforms the
traditional SDP formulation (26) into an unconstrained convex
problem (25), thereby facilitating perturbation analysis for the
estimation of the interval bound of inertial parameters. How-
ever, introducing exponentials within P to enforce positive
diagonal entries can also introduce numerical issues when
computing the inverse of the second-order Hessian matrix
in (42) and, as a consequence, complicates the process of
obtaining tighter interval bounds during online estimation.

Finally, our framework requires system identification to
be performed prior to task execution, which may increase
overall task completion time. According to our simulation
experiments, trajectories that attempt to complete the task di-
rectly may lack sufficient excitation, resulting in larger interval
bounds on the estimated parameters. These conservative esti-
mates, in turn, lead to more conservative trajectory planning
to ensure safety, ultimately prolonging task execution.

VIII. CONCLUSION

This paper presents a provably-safe, online system iden-
tification framework for robotic arms manipulating heavy
payloads with inertial uncertainties. By combining provably-
safe trajectory optimization and robust system identification
based on perturbation analysis, the framework ensures safety
while refining inertial parameter estimates of the end-effector
online, leading to improved planning and control performance.
Hardware experiments demonstrate its effectiveness in han-
dling heavy payloads under significant uncertainty, ensuring
precise and safe operation.
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APPENDIX A
PHYSICAL CONSISTENCY CONSTRAINTS

Using the regressors described in the previous subsection,
one can cast the system identification problem as a linear
regression problem. However, physical consistency of robot
link parameters requires satisfying additional mathematical
constraints. This subsection presents two approaches for en-
suring these constraints: Linear Matrix Inequalities (LMI) and
log-Cholesky parameterization.

Definition 15 (Physical Consistency LMI, [40]). The inertial
parameters of the j™* link O;p,; are physically consistent if they

satisfy:

;)

LMI(0;, ;) == l( 2

s~ I5) pf'mf']>@4x4, 31)

T . .
P m; mj

where LMI(0;, ;) is defined as pseudo-inertia matrix for each
link 7 € {1,...,n}, tr denotes the trace operator, l3x3

represents the 3-by-3 identify matrix, and I; represents the
inertia tensor:

XX, XY; XZ;
L= | XY, YY;, YZ|, (32)
X7, YZ; 77

J J J

One can cast the system identification problem as trying
to minimize a linear cost function while satisfying LMI
constraints associated with physical consistency. While these
LMI constraints can be incorporated into convex optimization
problems [49, (25)], they require semi-definite programming
(SDP) solvers and involve relaxing the LMI (31) to positive
semidefiniteness rather than strict positive definiteness. As a
result, a computed solution may not be physically consistent
because the LMI may just be positive semidefinite rather
than positive definite. An alternative approach leverages the
Cholesky decomposition to ensure positive-definiteness:

Theorem 16 (Log-Cholesky Parameterization, [20, Corollary
7.2.91). Every physically consistent set of inertial parameters
can be uniquely parameterized through a log-Cholesky decom-
position:

LMI(0; ;) = MMT, (33)

where M takes the form of an upper triangular matrix with
positive diagonal entries:

dy

€ S12 S13  S14
0 6d2 593 So4

M :=e” 34
0 0 e¥s sy (34)

0 0 0 1

This structure is completely characterized by the log-Cholesky
parameters 1 € R0:
U [a di da d3 s12 s13 S23 S14 S 534]T -
(35)
To enforce positive definiteness and thereby enforce physi-
cal consistency of the links, one could apply the log-Cholesky
decomposition (14). However, this would transform the convex
system identification problem into a nonlinear optimization
problem that may have spurious local minima. Fortunately,
the following corollary resolves that shortcoming:

Corollary 17 (Parameter Recovery, [35, Section V.A]). The
function P : R1Y — R1Y defined in (16) that transforms log-
Cholesky parameters to inertial parameters is a diffeomor-
phism.

This diffeomorphism result has significant practical implica-
tions for system identification. As described earlier, the log-
Cholesky parameterization offers an approach to enforce phys-
ical consistency through its structure. While this transforma-
tion introduces nonlinear relationships between the parameters,
the diffeomorphic nature of the mapping ensures that this
nonlinearity does not create spurious local minima in the
optimization landscape. This mathematical guarantee allows
us to work with the nonlinear parameterization confidently,
knowing that any local minimum we find in the transformed



space corresponds uniquely to a global minimum in the
original parameter space.

APPENDIX B
PERTURBATION ANALYSIS OF CONVEX OPTIMIZATION
PROBLEMS

The objective of this work is to understand how bounded
noise in the data influences the dynamics parameter estimates.
To analyze how measurement noise affects parameter esti-
mation in system identification, we draw upon perturbation
analysis of optimization problems:

Theorem 18 (Sensitivity of Optimal Solutions, [43]). Con-
sider a parametric optimization problem:
min f(z,y), (36)

where x represents the decision variable and y denotes prob-
lem parameters, with X C R™ and Y C R™. If:
I f: X xY— R is continuously differentiable on both X
and Y
II. [ is geodesically convex on X and convex on Y
then the sensitivity of the optimal solution to parameter
perturbations is given by
ox 0? 0?
o= G ),
This sensitivity analysis, discussed extensively in [16], pro-
vides the foundation for bounding optimal solutions when
problem parameters are subject to bounded perturbations.
Specifically, given bounds on parameter perturbations, we

can establish corresponding bounds on variations in optimal
solutions.

(37

APPENDIX C
PROOF OF THEOREM 13

Proof: To prove (27), first note that 8. € 6 ([m]). Hence
one can apply the Mean Value Form from Interval Analysis
[29, (6.25)] to compute the right-hand side of (27), which
describes how to overapproximate 8% ([m]) by applying the
Mean Value Theorem over interval arguments Required by

o (m).

Let 7% (m) be any local minimizer to (25)
7 (m) = arg min|[Y P(1e) — U(m)]. (38)
neERMO

Note that this is also equivalent to the following form

Ne (m) = arg min J(m, 7.), (39
ne ERLO
where
1

J(m,ne) = 5 (Y P(e) = U(m))"(Y P(ne) — U(m)). (40)

The first-order optimality condition of the optimization prob-
lem above is as follows:
oP

o om s () = (X Pr2) — UGm)) Y 5

ns) =0.
(41)

Treating this as an implicit equation and apply (37), we can
get that

on:, . (0%, o8 .
S )~ (Gptmorzm)) 52 ).
(42)
where
9?J . orT oP .,
Gz M () = T 2 ()Y o (m))
* T 82P
+ (YP(n;(m)) — U(m)) Y8n2( 7 (m)),  (43)
and
9?J . _ou” oP
G (7 () = — G ()Y 7 (). 44
Given 0%(m) = P(nf(m)), we can then apply the chain
rule:
00% 0P, ons
8m (m) - 8778 (778 (m)) 8m( )5 (45)
which can be further expanded using (42)
90* opr , . 2y, !
) = 50 o ) (5 omam)) )
02J N
. 8mane(m, 75 (m)). (46)
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APPENDIX D

CONDITION NUMBER OF INVERSE DYNAMICS REGRESSOR
(30) AND MOMENTUM REGRESSOR (23)

In Section V-B, we discuss minimizing the condition num-
ber of the standard dynamics regressor W instead of the
momentum regressor Y to generate exciting trajectories for
system identification. Since the original robot dynamics in (5)
are equivalent to the momentum-based formulation in (13) via
time differentiation, W can be viewed as an approximation
of the time derivative of Y, as both regressors contribute
linearly to (5) and (13), respectively. Here, we numerically
demonstrate that the condition numbers of these two regressors
are positively correlated.

To do so, we parameterize a 10-second trajectory using
a Fourier series with randomly assigned coefficients. We
sample the trajectory at a uniform time interval of 1ms, which
indicates 10000 instances in total along the trajectory. We
evaluate both regressors at each time instance, and construct
observation matrices from the collected data. We then compute
the condition numbers of these observation matrices for both
the standard dynamics and momentum regressors across eight
different values of the forward integration horizon h. The
positive correlation between the condition numbers of W and
Y is quantified using Pearson correlation coefficients [9], as
shown in TABLE IV. As h increases, this correlation weakens
due to the accumulation of integration errors. These results
suggest that, with an appropriately chosen s, minimizing the
condition number of the standard dynamics regressor W can



effectively generate exciting trajectories that also reduce the
condition number of the momentum regressor Y.

forward integration horizon h | Pearson correlation coefficients

1 1.0000

5 1.0000

10 0.9994

20 0.9934

50 0.9540

100 0.6709
200 0.3537
500 0.2789

4 0.2 0.25
ours
39 0|—= —— 0.2 random
— groundtruth
38 02 0.15
E ~
a7 g 04 e o [—
2 . |
36 2os 2 o005
35 0.8 o E— —_—
34 - -0.05

33

TABLE IV: The Pearson correlation coefficients between the condition
number of the standard dynamics regressor W and that of the momentum
regressor Y are reported for different forward integration horizons h. When
h is small, the Pearson correlation coefficient is close to 1, indicating a strong
positive correlation between the two condition numbers. As A increases, this
positive correlation gradually decreases.

APPENDIX E
FULL SYSTEM IDENTIFICATION RESULTS

This section reports the full system identification results of
the inertial parameters of the end-effector along with the 5, 6,
7, and 8lb dumbbells. The final system identification results
can be found in Figures 7, 8§, 9, and 10. We also report the
condition numbers of the observation matrix Y corresponding
to these results in TABLE V. Because both our method and
“Random” utilize Algorithm 1, they are guaranteed to generate
conservative interval estimates for all relevant inertial parame-
ters, which empirically validates Theorem 13. In addition note
that the interval bounds generated using the proposed method
are smaller than the ones generated by selecting random
trajectories for almost all inertial parameters, which illustrates
that cost function described in (30) is able to generate exciting
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Fig. 7: This figures illustrates the interval bound estimates of the 10 inertial
parameters of the end-effector along with the Slb dumbbell after the iden-
tification phase. Note that by following the most exciting trajectories, our
method is able to achieve more accurate results and tighter interval estimates,
compared to “random”, which does not optimize for excitation.
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Fig. 8: This figures illustrates the interval bound estimates of the 10 inertial
parameters of the end-effector along with the 6lb dumbbell after the iden-
tification phase. Note that by following the most exciting trajectories, our
method is able to achieve more accurate results and tighter interval estimates,
compared to “random”, which does not optimize for excitation.

trajectories.

dumbbell ours random
41b 274.030 | 479.573
5lb 282.840 | 418.078
61b 250.704 | 373.448
71b 258.517 | 312.352
8lb 233.539 | 413.381

49 02 0.2
ours
4.8 o= =0 random
018 = groundtruth
47 0.2
0.1
48 -04 o
2 . E o005
45 Z.s
0 —_ = e
4.4 -0.8
43 - 005
4.2 -1.2 0.1
mass comx comy comz 3 Ixy bz lyy lyz lzz

TABLE V: This table reports the 2-norm condition number of Y based on
data collected during the entire 7.5-second identification phase. By optimizing
for the most exciting trajectories, our method produces an observation matrix
Y with a significantly smaller condition number compared to the “random”
baseline, which does not optimize for excitation. As a result, our method
achieves more accurate parameter estimation and generates tighter interval
bounds, as demonstrated in the figures on the right column.

APPENDIX F
FuLL TRACKING ERROR & COMMANDED TORQUE PLOTS

This section reports the tracking error and the commanded
torque when the robot moves each of the five dumbbells
around the obstacles by following a precomputed trajectory
and stacks all dumbbells vertically on a 3D-printed platform
during the second phase of the second experiment. Figure
11 and 12 include the results of our method and all the
comparisons listed in TABLE 1I.

Fig. 9: This figures illustrates the interval bound estimates of the 10 inertial
parameters of the end-effector along with the 7lb dumbbell after the iden-
tification phase. Note that by following the most exciting trajectories, our
method is able to achieve more accurate results and tighter interval estimates,
compared to “random”, which does not optimize for excitation.
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Fig. 10: This figures illustrates the interval bound estimates of the 10
inertial parameters of the end-effector along with the 8lb dumbbell after the
identification phase. Note that by following the most exciting trajectories, our
method is able to achieve more accurate results and tighter interval estimates,
compared to “random”, which does not optimize for excitation.
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Fig. 11: This figure illustrates the tracking error of our method and all the comparisons on the left and the commanded torque on the right, while moving
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and stacking each of the five dumbbells on the 3D-printed platform located 0.25 m in front of the robot in Experiment (a).
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Fig. 12: This figure illustrates the tracking error of our method and all the comparisons on the left and the commanded torque on the right, while moving
and stacking each of the five dumbbells on the 3D-printed platform located 0.50 m in front of the robot in Experiment (b).



