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Abstract—Muddy terrains present significant challenges for
terrestrial robots, as subtle changes in composition and water
content can lead to large variations in substrate strength and
force responses, causing the robot to slip or get stuck. This
paper presents a method to estimate mud properties using
proprioceptive sensing, enabling a flipper-driven robot to adapt
its locomotion through muddy substrates of varying strength.
First, we characterize mud reaction forces through actuator
current and position signals from a statically mounted robotic
flipper. We use the measured force to determine key coefficients
that characterize intrinsic mud properties. The proprioceptively
estimated coefficients match closely with measurements from a
lab-grade load cell, validating the effectiveness of the proposed
method. Next, we extend the method to a locomoting robot to
estimate mud properties online as it crawls across different mud
mixtures. Experimental data reveal that mud reaction forces de-
pend sensitively on robot motion, requiring joint analysis of robot
movement with proprioceptive force to determine mud properties
correctly. Lastly, we deploy this method in a flipper-driven
robot moving across muddy substrates of varying strengths, and
demonstrate that the proposed method allows the robot to use
the estimated mud properties to adapt its locomotion strategy,
and successfully avoid locomotion failures. Our findings highlight
the potential of proprioception-based terrain sensing to enhance
robot mobility in complex, deformable natural environments,
paving the way for more robust field exploration capabilities.

1. INTRODUCTION

Navigating natural deformable terrains can present signifi-
cant challenges for terrestrial robots. This is because substrates
like sand and mud can behave solid-like or fluid-like (Fig. 1)
depending on their properties and how robots interact with
them [44, 37, 11, 9, 8]. Previous studies have found that
optimal locomotion strategies depend sensitively on substrate
properties[28, 34, 40, 39, 30]. Misapplied strategies, such as
robot leg frequency or flipper speed, can lead to catastrophic
locomotion failures. Successful movement on these substrates
requires robots to accurately determine the force responses of
the substrate [16, 32, 39, 29, 17] during their locomotion, and
adapt their interaction actions accordingly.

Most existing studies on online locomotion adaptation target
substrates of low deformability [33, 46, 27], where the robot
sinkage is relatively small as compared to the robot’s hip
height. However, how to effectively adapt robot locomotion
on highly deformable complex terrains, such as fluidizing
sand [40] and watery mud [30], is largely unexplored.
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Fig. 1. Natural mud mixtures vary significantly in water content and particle
size. Inspired by mudskippers’s ability to adapt locomotion strategies across
a wide range of muddy substrates, this study explores bio-inspired strategies
for proprioceptive sensing and locomotion adaptation on cohesive, deformable
terrains. Photo courtesy Wikimedia Commons.

Besides our limited understanding of the complex robot-
substrate interactions [14, 15, 31, 7], a key challenge for
robot adaptation on sand and mud is due to the challenges
in effectively measuring the properties of those substrates.
Existing terrain classification methods [48, 2, 18, 13, 42]
that rely on visual-based categorization often fail to capture
the complexities of deformable terrain properties. Variations
in terrain composition and compaction significantly influence
robot locomotion performance, yet these factors are difficult to
distinguish based solely on visual features. Force sensors can
provide valuable data for characterizing deformable substrate
strength [47, 3], but those that are sensitive enough are often
expensive and prone to damage under large impact forces
during robot locomotion [47], and resource-intensive in terms
of integration and data acquisition [4, 19].

Recent research has demonstrated the potential of using
direct-drive motors [24] for proprioceptive terrain sensing.
Given the reduced gear friction, direct-drive motors offer high
force transparency [5], enabling terrain property measurement
without the need for extra sensors [41]. However, most existing
researches on substrate property characterization using direct-



drive sensing were performed using single actuators or single
robotic appendages mounted on a fixed frame [43, 5, 41, 6].
How this method could be extended to characterize substrate
properties during continuous robot locomotion, particularly
over complex deformable terrains, remains unexplored.

To address these challenges, in this study, we characterize
the ability of a mudskipper-inspired robot to use proprioceptive
joint signals to estimate ground reaction forces from syn-
thetic mud mixtures (Sec. III-A). In addition to relating the
ground reaction forces to interpret mud properties, we leverage
existing granular physics models and develop a method to
estimate mud properties from force signals measured from
robot locomotion. To evaluate the accuracy of these esti-
mations, we perform sensing and locomotion experiments
with precisely-controlled and systematically-varied sand-clay-
water ratios, and compare robot-estimated mud properties
with the ground truth from standard load cells. Our result
reveals the importance of considering the robot locomotion
state jointly with ground reaction force for achieving an
accurate interpretation of substrate properties (Sec. III-C).
In addition, we show in Sec. III-D that the proprioception-
based measurements of mud properties can enable the robot
to mitigate locomotion failures effectively identified in [30]
without relying heavily on external sensors. Such adaptability
is crucial for field exploration robots, which often encounter
diverse and unpredictable terrains [38, 35, 49].

We summarize the main contributions of this paper as
follows:

« Developed methods that allow robots to estimate mud
penetration resistance, shear strength, and extraction re-
sistive force from proprioceptive joint signals.

o Performed experiments and analysis to characterize the
accuracy of the proposed method for estimating mud
properties during continuous robot locomotion.

« Developed an online locomotion adaptation strategy that
enables the robot to select locomotion strategies and
mitigate locomotion failures based on online estimated
mud properties.

II. MATERIALS AND METHODS

Using a mudskipper-inspired robot (Sec. II-A), we per-
formed five sets of experiments, with specific focus on (1)
characterizing the accuracy of proprioception-based torque
measurements from individual actuators (Sec. II-B); (2) char-
acterizing and interpreting proprioceptive force signals from a
statically-mounted robotic flipper to determine mud properties
(Sec. II-C); (3) relating proprioceptive force signals measured
by a locomoting robot to determine mud properties (Sec.
II-D); (4) comparing mud properties measured from robotic
flippers with lab-grade load cell ground truth (Sec. 1I-E); and
(5) demonstrating the ability of the robot to proprioceptively
determine mud properties online, and adapt its locomotion to
mitigate locomotion failures (Sec. II-F).

A. Robot

The flipper-driven robot (Fig. 2A) used in this study was
inspired by the mudskipper (Periophthalmus barbarus [23]
(Fig. 1), a small fish that can use its pectoral fins to produce
effective locomotion on mud surfaces through a “crutching”
motion. Modeled after the mudskipper’s pectoral fins, two
flipper arms (PLA plastic) were attached on the front side
of the robot body (Fig. 2A) to produce the flipper-driven
locomotion on mud. The flipper actuators in this study were
chosen to be direct-drive (i.e., gearless) brushless DC motors
(T-Motor, R60s). As compared to geared motors, direct-drive
motors can offer high force transparency [24], allowing the
robot to estimate substrate reaction forces proprioceptively
through joint position and joint current.

The robot was programmed to use a mudskipper-inspired
crunching gait [30], which is divided into four sequential
phases: insertion, stance, extraction, and swing (Fig. 2E).
During the stance phase, the flipper maintains a constant
insertion depth in mud, z, by controlling the sweeping angle,
«, and adduction angle, 5 (Fig. 2B, C).

B. Actuator sensing accuracy test

The goal of this experiment is to characterize the accuracy
of proprioception-based torque measurements from individual
actuators. To do so, we compare the torque estimation from
individual actuator with ground truth from calibration weights.

We isolated one robotic flipper and mounted it in two con-
figurations. In the first configuration (Fig. 2D, top diagram),
the axle of the adduction motor was kept horizontal, and a
calibration weight was suspended beneath the flipper, with a
horizontal distance [ from the adduction motor axle. In the
second configuration (Fig. 2D, bottom diagram), the axle of
the sweeping motor axle was kept horizontal, and a calibration
weight was suspended beneath the flipper with a horizontal
distance [ from the sweeping motor axle.

Both motors were programmed to hold constant positions
during the trial, alpha = 0 and beta = 0. The proprio-
ceptively estimated external torque [43, 5] was computed as
Tsense =~ ki1, where I is motor current, and k; = 0.083 Nm/A
is the motor torque constant !. The ground truth of the external
torque, Ty, can be computed as the gravitational force, mg,
of the suspended load, multiplied by the moment arm, [. Data
were collected across the torque range of the selected motor,
with suspended load of 10 g, 20 g, 50 g, 100 g, 200 g, 400
g, 600 g, and 800 g. Five trials were collected per calibration
weight for both configurations.

C. Single flipper measurements of mud property

The goal of this experiment is to characterize mud resistive
forces proprioceptively from an individual robotic flipper
and determine how these force signals can be interpreted to
determine mud properties.

To characterize the mud resistive forces, we mounted the
single robotic flipper above a container of synthetic mud

'"The damping friction force and torque-dependent Coulomb friction force
are negligible [24] and therefore not included in the computation.
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Fig. 2.

Robots and Experiment Setup. (A) A bio-inspired flipper-based robot with a direct-drive motor. (B)(C) The flipper arm has two degrees of freedom

(DoF): a sweeping angle, «, and an adduction angle, 8. The flipper arm length, 1, is 11.5 cm. The flipper width and height are 2.5 cm and 7 cm, respectively.
(D) Single flipper motor calibration experiment setup. (E) A single flipper robot force experiment setup, with a fixed base, tests flipper-mud interaction forces
in a fixed glass tank. (F) Locomotion experiment setup: A four-segment trackway allows robot traversal through different mixtures in a single trial, with two
motion capture cameras tracking the robot’s fore-aft position, while a supporting rail controls the flipper insertion depth precisely. (G)(H) Linear actuator

setup for horizontal shear and vertical insertion/extraction experiments.

(Fig. 2E). The synthetic mud used in this study was created
by mixing sand (Pottery Supply House, 150-600 pm Silica
Sand), clay (Seattle Pottery Supply, Edgar Plastic Kaolin), and
water. The sand-clay-water mixture has been shown to produce
similar theological behaviors of natural muds [11, 26], while
allowing for systematic variation of its properties. In this study,
we kept the clay-to-sand ratio constant, 3:1, and systematically
adjusted the water content, w, to control mud strength. In
this experiment, w was varied at five levels, 47.6%, 48.6%,
49.5%, 50.3%, and 51.2%. This range was selected between
the fracture limit and the settling limit [10], where most robot
locomotion failures occur [30]. Below the fracture limit, the
mud would behave like fractured solid and cannot be fully
mixed; whereas beyond the settling limit, the mud is fully
saturated and solid and liquid would begin to separate.

During each trial, the robotic flipper was programmed to
execute one cycle of the crunching gait (Fig. 2E, Insertion,
Stance, Extraction, and Swing phases). In this set of exper-

iments, the linear velocity of the flipper was set to 0.1 m/s
during all phases, and a three-second pause was added between
the phases to leave time for force relaxation. The insertion
depth, z, was set to be 3 cm for this set of experiments. For
all trials in this study, the sweeping range during the stance
phase was kept at [-30, 30] degrees. Motor angular position
and current were logged at 380 Hz. The external forces exerted
on the robot flipper, Fonee = [fz. fy, f-]T (Fig. 2B, C), were
computed as Fyepse ~ J Tt ense, Where J is the Jacobian of the
robotic flipper, and Tyne = [71,72]7 is the proprioceptively
estimated motor torque. During the robot stance phase, the
lateral forces, f,, from both flippers cancel each other out,
and we computed the vertical force f, and the fore-aft force
[z for estimating the terrain coefficients:

fa: cols « 0 7_1
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D. Online mud property mapping experiments

The goal of this experiment is to determine mud proper-
ties through proprioceptive joint signals from a locomoting,
flipper-driven robot.

The experiments were performed in a modular mud track-
way (183 cm x 76 cm x 30 cm) (Fig. 2F). The two removable
panels of the trackway allow mixtures in each separable
compartment to be prepared with different properties (e.g., ,
water content, or solid compositions). Once the mixtures are
prepared, panels can be lifted, allowing the robot to locomote
across the entire length of the trackway. This testbed enables
robot sensing and locomotion experiments on transitional
terrain properties. In this set of experiments, we prepared the
mud mixture in the three compartments with water content w
= 47.6%, 49.5%, and 51.2%.

A mudskipper-inspired robot was mounted on a linear rail,
and programmed to move through the mud trackway. The
robot used the same gait parameters as described in Sec. II-C.
During each step, the robot logs its motor position and current
at 380 Hz, and estimates mud properties using the propriocep-
tive signals from every step. The projected surface area and
insertion depth of the flipper in mud were computed from
the angular positions of the motors, measured by encoders.
Three trials were performed for this experiment. Before each
trial, the surface layer of the mud mixture was manually re-
mixed and leveled to ensure consistency between trials. Two
Optitrack Prime 13W motion capture cameras recorded the
robot’s position in the world frame (x, y, z) at 120 FPS. An
additional webcam was used to capture zoomed-in side-view
videos at 30 FPS, focusing on flipper-mud interactions and
robot footprints.

E. Load cell ground truth measurements

The goal of this experiment is to provide the ground truth
for robot-estimated mud properties in Sec. 1I-C and Sec. II-D
and evaluate the accuracy.

To determine the ground truth of mud coefficients, we
employed a high-speed linear actuator (Heechoo) to actuate a
flipper plate matching the size of the robot’s flipper. Two sets
of force measurements were conducted: (i) horizontal shear
(Fig. 2G), where the robotic flipper plate (3 x 3.5 cm) was
dragged horizontally across the mud at a constant insertion
depth of 3 cm, covering a shear distance of 20 cm; and (ii)
vertical insertion and extraction (Fig. 2H), where the flipper
plate was inserted vertically into the mixture to a depth of
3 cm, held stationary for 3 seconds, and then extracted. The
force responses were measured using a loadcell (DYMH-103)
mounted between the flipper and the linear actuator. The shear,
insertion, and extraction velocities were set to 0.1 m/s, the
same as the single flipper experiments in Sec. II-C.

We conducted loadcell experiments on mud mixtures with
water content, 47.6%, 48.6%, 49.5%, 50.3%, and 51.2% to
provide a comparison with results from Sec. II-C and Sec.
II-D. For each water content, ten trials were performed, five
for horizontal shear, and five for vertical penetration and
extraction.

F. Locomotion adaptation experiments

The goal of this experiment is to demonstrate that by
proprioceptively determining mud properties online, a flipper-
driven robot would be able to flexibly adapt its locomotion
and mitigate locomotion failures.

To do so, we evaluated the robot locomotion performance in
the modular mud trackway, crossing transitioning mud prop-
erties with water content 48.5%, 53.8%, 45.9%, respectively
(Fig. 2F). A previous study [30] has suggested that this range
of water content variation can result in distinct mud strength
and rheology, leading to different locomotion failure modes
with misapplied robotic flipper actions. Specifically, mud with
higher water content (e.g., 53.8%) exhibited low yield strength
and could cause flipper slippage with small flipper insertion
depth, whereas mud with lower water content (e.g., 45.9%)
exhibited high cohesion and could lead to flipper entrapment
with large flipper insertion depth.

Based on this, We tested three flipper insertion depth across
the transitioning muddy terrain: (1) a constant 3 cm insertion
depth across all three mud mixtures; (2) a constant 5 cm
insertion depth across all three mud mixtures; and (3) an
adaptive insertion depth based on proprioceptively-estimated
mud properties. Three trials were performed for each con-
figuration. The mud surface was manually flattened between
the trials. Flipper velocity was set to 0.1 m/s during the
insertion phase to enhance sensing accuracy, and kept at 0.5
m/s during the Stance, extraction, and swing phases to enable
faster locomotion. No additional pauses were added between
the phases. During each trial, the commanded insertion depth,
robot motor position and current, and tracked robot pose were
recorded at 380 Hz.

III. RESULTS

In this section, we first report the characterized accuracy
of torque estimation from each joint actuator (Sec. III-A).
We then show proprioceptive force signals measured using
a statically mounted robotic flipper, and report our method to
estimate mud properties from these signals (Sec. III-B). These
proprioceptively estimated mud properties are compared to
measurements by a load cell to quantify the accuracy. In Sec.
IIT-C, we extend the proposed mud property estimation method
to a locomoting robot and investigate the additional challenges
introduced by body movements. Finally, we demonstrate the
ability of our robot to proprioceptively determine mud prop-
erties online and adapt its locomotion to mitigate locomotion
failures (Sec. II-D).

A. Torque sensing accuracy characterized from single actua-
tor experiments

Using the experimental setup described in Sec. II-B, we
quantified the accuracy of torque estimation by comparing the
proprioceptively-estimated torque, Tsense (Fig. 3, y-axis), with
the ground truth external torque, 7.,: (Fig. 3, x-axis). The
external torque, T..;, for both the adduction motor (Fig. 3,
blue circles) and the sweeping motor (Fig. 3, red diamonds)
closely aligns with the ground truth, with a RMSE (Root Mean



Square Error) of 0.0134 N/m, and 0.0127 N/m, respectively.
Furthermore, the standard deviation of Tse,s. remains very
low, with an average of 3.2% related to the Tscpse, indicating
a good repeatability of the torque estimation. We note that
all torque estimations were produced using motor current and
the manufacturer-provided torque constant without requiring
any fitting parameters. These results demonstrated the torque
sensing accuracy of direct-drive actuators, and confirmed the
validity of the proposed method of using motor current to
estimate external forces in the subsequent sections.
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Fig. 3. Comparison between the proprioceptively-estimated torque, Tsense,
and the ground truth external torque based on calibration weights, Tez¢.

B. Determining mud properties from proprioceptively-sensed
mud reaction forces

Here, we report our method for determining intrinsic mud
properties from the proprioceptive joint signals. Using the ex-
perimental setup described in Sec. II-C, we measured actuator-
estimated external torque for flipper motors, as the stationary-
mounted robotic flipper performs a full cycle of its crunching
gait (Fig. 4A). Propagating the actuator-estimated external
torque through the flipper kinematics allows us to determine
the external force, Fsense, acting on the flipper during its
interactions with muddy terrains (Fig. 4D, E). In this section,
we use the proprioceptively measured forces to determine mud
properties by leveraging granular physics force principles.

1) Determine mud penetration resistance: During the in-
sertion phase (Fig. 4, blue shaded area), the proprioceptively-
measured f, exhibited a linear increase as the flipper inserted
into the terrain (Fig. 4D, green solid curve). This is because
the resistance force of substrates like sand and mud on pene-
trating intruders is primarily governed by the hydrostatic-like
pressure [21]. Previous research in granular physics [1, 22] has
found that this pressure scales linearly with insertion depth, z
(Fig. 2C), the projected intruder surface area perpendicular to
the motion, A, and the substrate’s penetration resistance, k.

For dry, deformable granular terrains like sand, the pene-
tration resistance has been a widely used metric to evaluate
the substrate strength [45, 28, 40]. Recent studies in theology
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Fig. 4. Measurements from the single flipper experiment. (A) During one
full gait cycle, the robotic flipper executes three phases of movements that
produce distinct mud force responses: insertion, stance, and extraction. (B)
The commanded insertion depth z. and actual insertion depth z versus time
in one gait cycle. (C) The recorded actuator position for the sweeping motor
(blue curve) and adduction motor (red curve) within one gait cycle. (D) The
proprioceptively-measured vertical external force, f. (green curve), within
one gait cycle. The modeled penetration force, fz, and the modeled extraction
force, fe, are represented as dashed red curve and dashed dark blue curve,
respectively. (E) The proprioceptively-measured horizontal external force, fa
(blue curve), within one gait cycle. The modeled yielding force, fz, is
represented as the dashed red curve. The blue, green, and orange shaded
regions in B-E correspond to the flipper insertion, stance, and extraction
phases, respectively.

and robot locomotion [14, 30, 7] have shown that despite the
significantly increased cohesion and more complex rheological
responses [44, 37, 12, 8, 11, 20] of muddy substrates, pene-
tration resistance remains an effective measure to characterize
the strength of these materials. Based on these findings, here
we seek to determine penetration resistance as one of the key
parameters to quantify mud properties.

One challenge in determining £, using a locomoting robot
appendage is that, based on flipper motion, its insertion depth
in the substrate, z(t), and project surface area, A(t), could vary
with time, resulting in challenges in interpreting the resulting
force responses and extracting k,. To address this challenge,
we leverage the granular resistive force theory (RFT) [29].
According to RFT, the granular resistive force on an object
moving through a granular medium can be computed as the
integral of infinitesimal resistive forces from segments at
different depths. For each segment, the force was a function of
the segment’s orientation and moving direction. By summing
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Fig. 5. Validation of robot-sensed mud properties. (A) Cropped f- versus insertion depth, z in the insertion phase. (B) Cropped fz versus sweeping angle,

« in sweeping phase. (C) Cropped f. versus insertion depth z, in the extraction phase. (D)(E)(F) Mud properties, kp ks and ke sensed by robot. (G)(H)X(I)
Comparison between robot-sensed mud properties, kp ks and ke, and the corresponding ground truth measured by the loadcell. The grey line indicates that
the estimated results are equal to the ground truth. For all plots, mixtures with different water content are represented by different colors.

up these infinitesimal forces across the entire object (e.g., ,
the robotic flipper), the theory gives an accurate prediction of
the total resistive force that the object experiences in granular
media. While RFT has been originally developed for dry
granular media, recent work has demonstrated its applicability
to be used for cohesive materials [25].

Based on RFT, we determine £, by minimizing the RMSE
between the modeled fz (kp) using Eqn. 1 and actual measure-
ments, f.:

kp = arg min (fz(/fp) — fz)z

P

Here f, (kp) was computed based on RFT, by integrating
the penetration force from each infinitesimal flipper bottom

segment at different depth z (Fig. 2C):
ﬂ:@/m@m (1)

where df, = ky - A(z) - dz is the force exerted on each
infinitesimal segment at z. Since k, is an intrinsic mud
property and does not depend on flipper motion, as the flipper
moves through the mud and gathers data of f,, it can use these
data to estimate k.



Fig. 5A shows the proprioceptively measured f, by the
robotic flipper during the intrusion phase. The force profiles
exhibit similar patterns across different water content, but
the force magnitude decreased monotonically as the water
content increased from 47.6% to 51.2% (Fig. 5A, light to dark
green). Fig. 5D plots the estimated mud penetration resistance,
kp, for each water content, using the proposed method, The
estimated £, was inversely related to the water content, which
is consistent with previous literature [30]. Using the estimated
kp, we plotted the modeled fz in Fig. 4D, red dashed line in
blue shaded region, which aligns well with the measured f,
(Fig. 4D, green curve in blue shaded region), and the ground
truth measurements from the load cell (Fig. 5G).

2) Determine mud shear strength: The horizontal mud
resistive force, f,, remains near zero during the insertion
phase (Fig. 4E, blue shaded area), but began to increase
rapidly to a steady value as the flipper shears through mud
during the stance phase (Fig. 4E, green shaded area). This is
consistent with previous granular literature, which has found
that the shear resistance force, f;;, exerted on an object moving
horizontally, scales linearly with the shear depth z, the shear
object’s projected area perpendicular to the motion direction
A, and the material’s shear strength coefficient, k; [1, 29, 41].

Based on the granular force principle, we estimate kg,
by minimizing the RMSE between the modeled shear resis-
tive force, f; (ks), and proprioceptively-sensed shear resistive
force, f., during the steady-state region (Fig. 4E, between
vertical dashed lines):

ks = arg min (f;;(ks) — fg;)z (2

ks

Here f; = ks [ bzdz is an integral of the shear force from
each submerge infinitesimal flipper segments at depth z (Fig.
2C), where b is the width of the segment, b - dz represents
the projected surface area of the flipper segment along the
sweeping direction.

Fig. 5B, E shows the proprioceptively measured f, by the
robotic flipper during the stance phase, and the estimated mud
shear strength, %, respectively. Similar to k,, the estimated &,
was inversely related to the water content, which is consistent
with previous literature [30], and the ground truth measure-
ments from the load cell (Fig. 5SH). Using the estimated ks,
we plotted the modeled f; in Fig. 4E (red dashed line in green
shaded region), which aligns well with the measured force, f,
(Fig. 4E, blue curve).

3) Extraction resistance: During the extraction phase (Fig.
4, orange shaded area), the proprioceptively-measured f, was
in the —z direction, indicating a suction force on the flipper
due to mud cohesion. As the flipper begins to extract from
the largest insertion depth, z;, the magnitude of f, rapidly
increases to a peak value, f., then steadily decreases as the
flipper continues to pull up from the mud (Fig. 4D).

This observed force profile is consistent with measurements
from previous literature [7], which has shown that, different
from dry, cohesionless sand, the presence of fine particles

(clay), when activated with water, creates attractive forces
between particles and increases cohesion. Due to increased
cohesion, the extraction resistance force, f,, was no longer
negligible like in dry sand. The penetration resistance, during
the extraction phase, k., quantifies this cohesion effect. Here
we estimate k. from the proprioceptive measurements.

Similar to k,, k. could be estimated by minimizing the
RMSE between the modeled f.(k.) using Eqn. 1 and actual
measurements, f,, during the extraction phase (Fig. 4D, be-
tween two dash vertical lines).

Fig. 5C, F shows the proprioceptively measured f, by the
robotic flipper during the extraction phase, and the estimated
extraction resistance, k., respectively. The estimated k. ex-
hibited a good agreement with the ground truth measurements
from the load cell (Fig. 5I). Using the estimated %., we plotted
the modeled fe in Fig. 4D (dark blue dashed line), which
aligns well with the measured force, f, (Fig. 4E, green curve).

C. Online mud property estimation during robot locomotion

In this section, we extend the validated proprioception-based
mud sensing method from the static single flipper setup to a
locomoting robot. We seek to characterize the accuracy of
mud property estimation in the new setting, as the robot is no
longer stationary mounted, which could induce challenges in
state estimation, and more complex robot-terrain interactions.
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Fig. 6. Mud property estimation during robot locomotion. (A) The robot

moves through 3 different mud mixtures with water content 47.6%, 49.5%,
and 51.2%. (B)(C) The estimated f; and f, from the right flipper over time.
(D)E)(F) The estimated kp, ks, and ke, over time. The horizontal dashed
line represents the ground truth measured using the load cell. The vertical
lines represent the separation between different mixtures.



A key difference from the static single flipper setting is that, as
the robot moves through mud, the flipper and body can disturb
the mud surfaces, leading to challenges in correctly estimating
penetration and shear depth of the flippers. To address this
challenge, we detected the mud surface at each step using the
proprioceptively-measured vertical force, f,. Specifically, the
mud surface height was determined when f, exceeded a force
threshold of 0.5 N, which was selected based on the noise
level in the force measurements.

Fig. 6D-F shows the estimated mud properties, k,, ki,
and k., as the robot traversed through transitioning mud
mixtures with water contents of 47.6%, 49.5%, and 51.2%
(Fig. 6A). Proprioceptively-measured vertical force, f., during
the penetration and the extraction phases (Fig. 6C, orange
and green, respectively) were qualitatively similar to those
from single flipper experiments. From the robot-measured f,,
the estimated k, and k. exhibits a clear distinction between
three mud mixtures with varying strength (Fig. 6D, F), closely
matching the ground truth measured from the load cell (Fig.
6D, F, black line), illustrating the potential of the proposed
method to enable online mud property sensing during contin-
uous robot locomotion.
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Fig. 7. Proprioceptively measured horizontal force, f, and estimated mud

shear strength, ks, from a locomoting step from mud mixture with water
content 53.8%. (A) The proprioceptively-measured f during the shear phase,
for flipper insertion depth, 5 cm (blue) and 3 cm (orange). (B) Estimated ks
using different methods: Ef (z = 5 cm) and Ef (z = 3 cm) without considering
body motion and mud response, Eb (z = 5 cm) with compensated body drag,
and ground truth from load cell measurement.

Interestingly, the estimated k&, exhibited a significant un-
derestimation as compared to the ground truth (Fig. 6E). We
hypothesized that this behavior arises from the rheology of

yield-stress materials such as sand and mud. When the applied
force exceeds the yield stress [36], the material would yield
and flow, whereas when the applied force remains below the
yield force threshold, the material would behave like a solid.
In the robotic flipper case, the mud was forced to yield consis-
tently throughout the stance phase. However, in a locomoting
robot, the flipper initially shears through the mud, but as soon
as the increasing shear force was sufficient to overcome the
body drag (approximately 2.5N in our experiment), the mud
solidifies, and the proprioceptively measured force no longer
reflects the mud’s shear strength, resulting in the observed
underestimation.

To test our hypothesis, we performed the online mud sensing
experiments using two different insertion depths, at 3 cm and
5 cm, respectively. The mud yield stress at 3 cm was not
sufficient to overcome the body drag, and therefore the flipper
continuously sheared through the fluid-like mud, resulting in
an estimated k., (Fig. 7B, orange) close to the ground truth
measured by the load cell (Fig. 7B, pink). However, due
to the large flipper slippage, the robot’s locomotion speed
was low. On the contrary, the mud yield stress at 5 cm was
larger than the body drag, resulting in solidified mud and
an underestimated %, (Fig. 7B, blue) that was only half of
the ground truth value (Fig. 7B, pink). The benefit was that
the robot flipper could push against the solidified mud and
effectively advance its body forward. These measurements
supported our hypothesized cause of sensing discrepancy,
illustrating the importance of considering substrate responses
and robot body motion jointly when resolving proprioception-
based force signals. To account for the force discrepancy, we
compensated the proprioceptively-measured f, with the body
drag, to estimate k; when body advancement was detected
(Fig. 7B, green), which exhibited a better match as compared
to the original estimated &, without account for the body drag
(Fig. 7B, blue).

D. Locomotion adaptation based on online-sensed mud
strength

In this section, we demonstrate that the online-sensed mud
strength can enable a flipper-based robot to adapt its gait
parameters to mitigate catastrophic locomotion failures. A
previous study [30] discovered that flipper-driven locomotion
on mud can encounter two primary failures: (1) a flipper
slippage failure during the stance phase, that often occurs
on low shear strength mud, and (2) a flipper extraction
failure during the extraction phase, which often occurs on
high extraction strength mud. Based on these findings and the
new proprioceptive sensing method developed in this paper, we
develop a sensory-based gait adaptation system, comprising
an online sensing component and a gait adaptation compo-
nent. Both components update once a stride cycle during the
swing phase. The online sensing component uses the proposed
method in Sec. II-C to estimate the mud parameters, kj, ks,
and k., based on the state history, including the instantaneous
forces, f, and f,, flipper sweeping angle, o, as well as the
insertion depth, z. The gait adaptation component takes the



terrain coefficients to optimize the insertion depth, z, to avoid
the two primary locomotion failures:

« Flipper slippage failure: The flipper insertion depth was
chosen to satisfy the following condition to ensure that
on low shear strength mud, the force generated by the
flippers (2f,) is larger than the body drag and inertial
forces (f-+ f.) that the robot needs to overcome to move
forward:

2ful ke > Felle) + Ja

Here 2f,(z,ks) denotes the mud shear resistive force
on two flippers, which scales with both the insertion
depth, z, and the mud shear strength, k,; f. denotes
the shear resistive force on the body; and f, denotes the
acceleration induced inertial force.

« Flipper extraction failure: To guarantee that the robot
flipper can successfully extract from the mud during
the extraction phase, the insertion depth should satisfy
Je(z,ke) < fm, where f. is the extraction resistive force,
and f,, is the maximal lifting force that the flipper could
apply.

To evaluate the effectiveness of the proposed sensory-
based adaptation, we measured the robot stride length (i.e.,
displacement per gait cycle) as it traverses mud mixtures
with varying water content (Fig. 8A) with three different gait
parameters: (1) a constant flipper insertion depth of 3 cm (Fig.
8F, green); (2) a constant flipper insertion depth of 5 cm (Fig.
8F, orange); and (3) an adaptive flipper insertion depth based
on the sensed mud properties (Fig. 8F, blue).

The estimated force (Fig. 8B) and coefficients (Fig. 8C,
D) exhibits distinct patterns for the three mud mixture re-
gions, corresponding to the expected mud strength: lowest
penetration and extraction resistance for w = 53.8%, and
highest penetration and extraction for w = 45.9%. Analysis
of robot stride length showed that the proprioception based
adaptation allowed the robot to maintain a large step length
across all three mud mixtures (Fig. 8F, blue), with a trial-wise
average speed of 6.2 £ (0.3 cm/s across all three mud mixtures
(Tab. I). In contrast, the gait with a 3 cm insertion depth
encountered a slippage failure in the low-k, mud mixture
with w = 53.8% (Fig. 8B, green), registering a speed of 2.1
+ 0.9 cm/s (Tab. I). With a 5 cm insertion depth, the robot
was able to move through low-%£, mud, but struggled with
extraction failures in high-k. mud mixture with w = 45.9%
(Fig. 8B, orange), registering a speed of 3.0 + 1.0 cm/s (Tab. I).
These measurements demonstrated that the proprioceptively-
sensed substrate properties are crucial to enabling robot gait
adaptation and avoiding catastrophic locomotion failures.

IV. LIMITATIONS AND DISCUSSIONS

A key limitation of this study is that the robot locomotion
was constrained to the linear slide, which eliminates robot
body pitch and roll and simplifies the challenges in state
estimation and force interpretation. Future work should inves-
tigate the effectiveness of the method during unconstrained
robot locomotion. According to our results, we hypothesize
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Fig. 8. Sensory-based gait adaptation. (A) Adaptation experiment setup on
three different mud mixtures, with water content w = 48.5%, w = 53.8%,
and w = 45.9%. (B) The proprioceptively-measured f. over time. (C) The
proprioceptively-estimated kp, over time. (D) The proprioceptively-estimated
ke over time. All data plotted are measurements from the right-side flipper.
(E) Adaptive insertion depth, z, based on estimated mud properties. (F) Robot
step length, se, along the y direction, measured from one representative trial
for each of the three gait parameters: a constant insertion depth of z = 3 cm;
a constant insertion depth of z = 5 cm; and adaptive insertion depth shown
in E, shown in blue, green, and orange, respectively.

w=485% w=>531% w=453%

v (cm/s)

=3 7.6£0.5 2.1+0.8 7.2+0.5
v (cm/s)

2=5 6.6+0.3 5.5+£0.7 3.0+1.0
v (cm/s)
aflaptive 2 6.420.4 51403 7.240.1

TABLE I

AVERAGE FORWARD VELOCITY ON DIFFERENT TERRAINS OF THREE
DIFFERENT GAIT CONFIGURATIONS.

that for unconstrained robot on yield-stress substrates like
sand and mud, the resistive force sensed by the flipper will
exhibit an initial, linearly increasing force—depth response
similar to the constraint case, but followed by a plateau upon
mud solidification. This provides a pathway to address the
limitation and generalize our methods to unconstrained robot:



by coupling flipper force measurements with a simple state
estimator (e.g., body lift/pitch detection via motion tracking
or IMU), one could detect the yield-to-solidification threshold
from robot state, and isolate the linear region for computing
penetration resistance. This generalization will allow our meth-
ods to be applied across diverse platforms and a wide variety
of yield-stress terrains, enabling robust, real-time adaptation
to challenging field conditions.

The other limitation is that the proposed method is currently
specific to the bio-inspired crunching gait, where the robot
flipper executes strictly horizontal and vertical movements,
limiting the gait space that a robot could use. Future work
will explore how the proposed method could be extended to
more generalized trajectories.

V. CONCLUSION

This study presents a proprioceptive-based method for char-
acterizing deformable terrain properties using actuator signals
from robot-terrain interactions. By comparing the propriocep-
tive measurements with load cell data, a direct-drive actuated
robotic flipper could accurately estimate penetration resistance,
shear strength, and extraction resistance from mud mixtures
with varying levels of strength and cohesion. We demonstrated
that the proposed method enabled robots to detect changes
in substrate properties during locomotion, without any ex-
ternal sensors. These estimated properties allow the robot to
effectively adjust its gait in real time, preventing locomotion
failures and improving mobility across transitioning muddy
substrates.

Our findings highlight the importance of terrain-aware pro-
prioceptive sensing and adaptive gait strategies in enabling ro-
bust robot mobility on complex, deformable substrates. Future
research can extend this method by investigating additional
gait trajectories, applying it to diverse robotic platforms,
and evaluating its effectiveness on various substrates. These
advancements can benefit a wide range of robotic applications,
such as mudslide assessment, nearshore characterization, and
extraterrestrial exploration missions.
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