Robotics: Science and Systems 2025
Los Angeles, CA, USA, June 21-25, 2025

Discrete-Time Hybrid Automata Learning: Legged
Locomotion Meets Skateboarding

Hang Liu' Sangli Teng!?

"University of Michigan

Ben Liu®
2Southern University of Science and Technology

Wei Zhang? Maani Ghaffari!

tCorresponding Author: sanglit@umich.edu
Website, Code: https://umich-curly.github.io/DHAL/

Fig. 1: Demonstration of DHAL performance across various indoor and outdoor terrains, including slopes, carpets, sidewalks, step, and scenarios with additional

=5

payloads or disturbance. The controller enables the robot to perform smooth and natural skateboarding motions, with reliable mode identification and transitions

under disturbances.

Abstract—Hybrid dynamical systems, which include contin-
uous flow and discrete mode switching, can model robotics
tasks like legged robot locomotion. Model-based methods usually
depend on predefined gaits, while model-free approaches lack
explicit mode-switching knowledge. Current methods identify
discrete modes via segmentation before regressing continuous
flow, but learning high-dimensional complex rigid body dynamics
without trajectory labels or segmentation is a challenging open
problem. This paper introduces Discrete-time Hybrid Automata
Learning (DHAL), a framework to identify and execute mode-
switching without trajectory segmentation or event function
learning. Moreover, we embed it in a reinforcement learning
pipeline and incorporate a beta policy distribution and a multi-
critic architecture to model contact-guided motions, exemplified
by a challenging quadrupedal robot skateboard task. We validate
our method through sufficient real-world tests, demonstrating
robust performance and mode identification consistent with
human intuition in hybrid dynamical systems.

I. INTRODUCTION

In state space representation, systems that exhibit flow-
based continuous and jump-based discrete dynamics are

known as hybrid dynamical systems [1]. Such systems are
prevalent in many real-world environments, particularly those
involving discontinuities, contact events, or mode switching—
examples include legged robotics, power systems (e.g., ther-
mostat systems [2], DC-DC converters), and even neurobio-
logical models such as the integrate-and-fire neuron [3].

In robotics, the walking behavior of bipedal robots is
a quintessential example of a hybrid dynamical system. In
model-based control, the hybrid automata framework has been
proposed as a powerful tool to describe systems encompassing
discrete and continuous dynamics [4, 5]. This framework has
been widely adopted for behavior planning [6] and legged
locomotion. However, these approaches typically rely on sim-
plified dynamic models, and contact events are often pre-
defined, as in manually crafted walking gaits.

With the rise of data-driven paradigms and world models,
recent research has begun exploring learning-based approaches
for hybrid dynamics [7, 8, 9]. However, these efforts focus on
low-dimensional or single-trajectory scenarios, and inefficient

Fig. 2: The potholes on the downhill slope caused the robot dog’s right front leg to get stuck, preventing it from smoothly getting onto the board. Both of its
hind legs even lost contact with the board. Nevertheless, the policy could still guide the robot dog to jump back onto the board and complete the recovery
behavior.

training. Designing methods that can generalize to high-
dimensional systems, handle complex real-world dynamics,
and effectively identify discrete modes remains an open prob-
lem.

Towards this goal, we propose a generalized approach
for mode identification and prediction in hybrid dynami-
cal systems. We design a set of hybrid dynamics modules
that integrate discrete hybrid automata(DHA) with a vari-
ational autoencoder (VAE) framework, enabling the system
to learn mode identification and flow dynamics heuristically.
To demonstrate its effectiveness, we evaluated our approach
in contact-guided scenarios involving complex sequences of
contact events [10].

Designing such contact-rich scenarios is highly non-trivial.
Unlike model-based methods, model-free reinforcement learn-
ing (RL) has shown promise in solving optimal control prob-
lems (OCPs) by modeling dynamics as a Markov Decision
Process. Model-free RL requires minimal assumptions and
can be applied to various tasks across diverse dynamical
systems [11, 12]. We integrate a multi-critic architecture with
a Beta distribution policy to address contact-rich tasks and
embed our hybrid dynamics system into the RL pipeline.

We tackle the challenging task of enabling a quadrupedal
robot to skateboard. This task exemplifies a highly dynamic,
contact-guided, and hybrid underactuated system, requiring
precise handling of mode transitions and contact events. The
key contributions of this work are summarized as follows:

1) Discrete hybrid automata framework: We propose
a discrete hybrid automata framework that eliminates
the need for explicit trajectory segmentation or event
labeling in mode identification and dynamics learning.

2) Contact-guided task design: We combined the multi-
critic architecture and the beta distribution to effectively
address the contact-guided problem in hybrid systems.

3) Sim2Real of underactuated skateboarding motion:
We achieved agile and robust sim-to-real performance in
the highly underactuated and hybrid task of skateboard
motion.

II. RELATED WORK
A. Legged Robot Control

The Model Predictive Control (MPC) [13, 14, 15] with
simplified single rigid body has been successfully applied to
motion planning of legged robot [16, 17, 18, 19], achieving
robust locomotion on flat ground under diverse gait patterns.

Corbéres et al. [16], Grandia et al. [17] further integrated
motion planning and perception, enabling quadruped robots to
navigate complex terrains. However, such approaches depend
highly on accurate global state estimation, which poses limi-
tations in outdoor and long-range scenarios. Additionally, the
gait pattern of the model-based approach is designed manually,
which can not scale in complicated scenarios.

In contrast to the model-based approach, model-free rein-
forcement learning (RL) has demonstrated remarkable capabil-
ities in legged robot control, including high-speed locomotion
[20, 21, 22, 23], complex terrain traversal [24, 25, 26, 27],
manipulation, and interaction [28, 29, 30]. The primary focus
of RL-based quadruped control in recent years is on the
paradigm of sim-to-real transfer [31, 26], safe reinforcement
learning [22], and gait control [32, 33, 34]. In this paper,
we primarily focus on exploring sparse motion patterns and
embedding hybrid dynamics learning.

B. Contact-guided locomotion pattern

The hybrid nature of contact dynamics makes it challenging
to synthesize optimal motions for contact-rich tasks [35, 36,
37]. In model-based methods, the discontinuities introduced
by contact create obstacles for gradient-based optimization.
Kim et al. [38] and [39] address this issue by formulating it
as a linear complementarity problem (LCP) and relaxing the
complementarity constraints. In contrast, Westervelt et al. [4]
adopts a hybrid dynamic system combined with automata to
handle contact.

In the realm of reinforcement learning (RL), the specifica-
tion of sparse or contact-guided motion patterns has not been
widely investigated or solved, such as explicitly prescribing
contact-based motion [10] or relying solely on key frame tra-
jectory tracking [40]. Considering real-world robot collisions
and constraints, sparse reward design in a high-dimensional
sampling space severely limits effective exploration [10]. In
contrast, under a multi-critic framework [40] combined with
a Beta action distribution [41], this paper achieves contact-
specified skateboarding motion on a quadruped robot, with
on-the-fly adjustments of the gait pattern.

C. Hybrid Dynamics

Hybrid dynamic systems are employed to describe systems
that feature continuous states and discrete modes, and they are
widely used in model-based control and cyber-physical sys-
tems [42]. For instance, floating-base robots are often treated
as hybrid dynamic systems due to the discontinuities and

(a)

History Trajectory

Ot—lk:t Qi—f:it—1

(b)
Hybrid Dynamics Representation

Current Observation

Lo J{Ta

straight-through

gradients

Hybrid Dynamics

Non-activated
Dynamics Modules

Transition Dynamics

Non-activated
Dynamics Modules

[
Actjvate

One-Hot Non-activated

Dynamics Modules

(<]

ACTOR
(Controller)

Action
3

Beta Distribution

Fig. 3: Discrete-time Hybrid Dynamics Learning (DHAL) Framework: (a) During training, the network learns to select the mode and activate the corresponding
dynamics module (yellow-highlighted) to predict transition dynamics and contact. Here, P; represents the probability of the robot being in mode 7 at time ¢.
(b) The temporal features extracted by the encoder are combined with the current state and last action into the actor. The actor updates «, 8, which define
the probability density function of the Beta distribution, and then samples joint actions from the Beta distribution. (¢) In a real-world deployment, we use
different LED colors to indicate the active modes, showcasing smooth transitions and mode-specific behaviors.

jumps caused by contact. Recently, Ly and Lipson [7], Chen
et al. [8], Poli et al. [9], Teng et al. [43] have leveraged data-
driven approaches to construct either discrete or continuous
hybrid dynamic systems.

Unlike previous work, we integrate reinforcement learning
with hybrid dynamics, enabling the robot to learn a hybrid
dynamics automata for explicit mode switching and control
without requiring labels or segmentation.

IT1I. BACKGROUND AND PROBLEM SETTING

For clarity and reference, Table I provides an overview of
the key symbols and abbreviations used throughout this paper.

A. Markov Decision Process

We model the robot control problem as an infinite-horizon
partially observable Markov decision process (POMDP), com-
posed by tuple M = (S,0,A,p,r,v), with s; € S the
full states, o; € O the partial observation of the agents
from the environment, a; € A the action the agent can
take to interact with the environments, and p(s¢41|s¢, a:) the
transition function of state s;. Each transition is rewarded by a
reward function r : S x A — R with -y representing a discount
factor. The optimization objective of reinforcement learning is

to maximize the expected total return [E [ZtT:o ’ytrt].

B. Discrete Hybrid Dynamical System

The hybrid dynamical system involves discrete and contin-
uous dynamics or states. The system has a continuous flow in
each discrete mode and can jump between these modes [44, 9].

Although using a set of ordinary differential equations (ODEs)
with transition maps modeled by neural networks has shown
some promising results [9, 8], the continuous integration is
computationally expensive and challenging to apply in real-
world robot control, which is a digital control system. In this
work, inspired by Borrelli et al. [45] and Ly and Lipson [7],
we adopt discrete hybrid automata to model the dynamics of
legged robots, which naturally exhibit hybrid behaviors.

For embedding discrete hybrid automata, we utilize the
concept of switched systems to model the hybrid dynamics
for legged robots. The dynamics of the legged robot in each
mode can be described as

see1 = f(st, ar), (D

where s; € R™ is the states, a; € R™ is the input, i; € 7 =
{1,2,..., K} is the modes at time step £, f% : R® x R" — R”
is the dynamics on mode i. The mode 7; is determined by
an extra mode selector. We assume that all system states are
continuous-valued, not considering any discrete-valued state.
Dynamics for each mode is unique, ie., f* # f7,Vi,j € T.
The maximum possible number of mode K is assumed to be
known.

In this work, we use neural networks to model both the
dynamics and the automata (mode selector), aiming to extract
a latent representation that informs the actor. To maintain
consistency with the stochastic nature of the MDP, we utilize
a §-VAE to model the state transition in equation (1). Unlike
hybrid systems described by continuous flow [44, 9], we omit
the explicit jump mapping between different modes, as it is

captured within the discrete-time dynamics (1).

C. Environment Design

To demonstrate the effectiveness of our approach, we aimed
to select a challenging environment that involves complex
mode transitions and contact-rich dynamics. Inspired by the
real-world example of dogs learning to ride skateboards, we
identified the task of a robotic dog skateboarding as a highly
demanding scenario. This task presents distinct hybrid dy-
namics challenges, such as the significant differences between
the gliding and pushing modes. We believe this represents
a worthwhile and meaningful challenge for validating our
method. Our method is not limited to the skateboarding task
but can also be expanded to other scenarios.

In this paper, we conducted experiments using the Unitree
Gol robot. The skateboard used in our experiments measures
800 mm X 254 mm x 110 mm. The Unitree Gol is equipped
with 12 actuated joints. Although it lacks the spinal degrees of
freedom in real quadrupedal animals, our experimental results
demonstrate that it can still effectively control skateboard
movement.

To simplify the design of the system, we connected the
end of the Unitree Gol left forelimb to the skateboard using
a spherical joint in simulation, providing passive degrees of
freedom along the x, y, and z axes. Unlike Chen et al. [46],
the wheels of the skateboard can only passively rotate around
their respective axes. Additionally, we simulated the truck
mechanism of the skateboard in the simulation using a position
PD controller to replicate its mechanical behavior.

IV. METHODS

We introduce DHAL, as shown in Fig. 3, to illustrate the
proposed controller [4] that leverages the model-based hybrid
dynamics. More specifically:

i. Discrete-time Hybrid Automata, a discrete mode se-
lector, to identify the one-hot latent mode of the system
at each time step.

ii. Dynamics Encoder, based on the mode z chosen from
discrete-time hybrid automata, the chosen dynamics
encoder will be activated and get a tight representation
of flow dynamics.

iii. Dynamics Decoder, to decode the representation and
predict transition dynamics o4 ; and contact event c; ;.

iv. Controller, based on the tight representation from the
dynamics encoder and observation at the current mo-
ment, controls the robot to perform skateboarding.

A. Discrete Neural Hybrid Automata

Previous research has explored modifications to the loco-
motion and manipulation framework, such as incorporating
estimators to predict transition dynamics [27, 47, 48, 49]. The
dynamics of legged robots inherently exhibit hybrid behavior
due to contact events, as illustrated in Fig. 4. We model
the contact as a perfect inelastic collision, which means the
velocity of the contact point instantaneously drops to zero
from a nonzero value. Consequently, the state also undergoes

TABLE I: Important symbols and abbreviations

Meaning Symbol
POMDP

Full State St
Partial Observation ot
Action at
State Space S
Action Space A
Discount Factor ¥

Hybrid Dynamics System

Discrete-time dynamics it
Mode index it
Number of modes K
Jacobian J
Probability of each mode P
mode indicator vector)

maximum number of modes K =|4|
Environment
. .. FL/FR/RL/RR
Joint Position q= qup/,Thi/gh,c/‘alf
. . . FL/FR/RL/RR
Joint Velocity 4= qup/,Thi/gh,c/‘alf
Gol Base Roll, Pitch, Yaw b, 0,1
Gol Base angular velocity Wy Wy, Wa
Gravity 9z,y,z
. _ [FL/FR/RL/RR
Action a= [Hip,Thigh,Calf]
Phase P
Command emd = [ez, Cyaw]
Proprioception o= [q7 qv Gx,y,25 ¢7 67 74)7 Wy Wy, wZ]
Contact c
Torque T

a discrete jump, resulting in a hybrid dynamics formulation.
To illustrate this, consider a simplified example of a single 3-
DoF leg attached to a fixed base. The velocity of the contact
point is given by

ve = Jo(9)d, 2

where v, € R3 is the linear velocity of the contact point,
Je(q) € R3*3 is the Jacobian, ¢ € R? is the joint angular
velocity. In most cases, J.(¢) is invertible, implying that a
discontinuity in v. directly induces a discontinuity in ¢. This
simple example highlights the inherent hybrid nature of legged
robot dynamics.

Swing lvg| =0
N vel # 0 Contact vt =0
7 7 7 7 7 77 7 7 7

Fig. 4: Switching of a hybrid system with inelastic collision. When the leg
contacts the ground, the linear velocity will abruptly drop to zero.

In this work, we aim to extract a latent representation of
the dynamics for the controller. To achieve this, we model
the dynamics for each mode and design a discrete-time hybrid
automata (DHA) to determine which dynamics is active at any

given time, as illustrated in Fig. 3. Since only partial observa-
tions o, are available in practice, we consider partial discrete-
time dynamics rather than the full state s;. As discussed in
Sec. 11I-B, we employ a 8-VAE instead of a deterministic
dynamics model to better align with the stochastic nature of
reinforcement learning. This process can be expressed by
iy = fDHA(Otfk:t; At —k—1:t—1; GDHA); 3)
0111, Cer1 = fioe © Slho(0rputs Grp—1:0-15 Ovac),
where i; € {1,2,..., K} is the mode for current time ¢, which
is determined by a state-action sequence (04—g.t, @t—k—1.4—1)-
ci+1 € S represents the contact information for each foot, see
(7). The maximal number of modes is pre-defined. The next
partial state o;11 and contact information c;4 1 are determined
by a S-VAE at mode i, taking the same input as the hybrid
automata. A key advantage of the S-VAE is that it directly
provides a latent representation of the dynamics. The hybrid
automata rely on multiple modules in conventional switched
affine systems [17]. In contrast, our approach simplifies it to
a single network with a window of past state-action as input.
Specifically, the hybrid automata are designed to output
a one-hot latent, making this an unsupervised classification
problem. We employ a combination of a softmax classifier
and categorical sampling to determine the mode. First, the
probability distribution over modes is computed as

“)

where p is the probability for each mode, f fiqax 1S the
softmax loss, fiogic is the logit function, Opya represents
the parameters of the DHA neural network. Next, categorical
sampling is applied to p to obtain a one-hot latent vector &,
which indicates the selected dynamics mode:

P = fsoftmax o fDHA_logit (Otfk:ta Gt k—1:t—1; GDHA);

T
§ ~ Categorical(p), 251- =1, & ¢€{0,1}, (O
i=1
where §; = 1 represents the mode is i; = i.

With the hybrid automata, we build K corresponding dy-
namics 5-VAEs for K modes. For each mode, the 5-VAE
encodes the historical trajectory and extracts the time-sequence
feature into a latent representation, which will be decoded into
the next partial state o;1. The latent representation in 3-VAE
encodes substantial dynamic information; hence, we use it in
the controller. For the encoder, we adopt a one-dimensional
CNN architecture due to its superior ability to capture temporal
dependencies, which can be expressed by

M
i .
Zp = E 8i - fot (0t—rit, Gt—k—1:4—1; enc),

=1

(6)

where z; € R™ is the latent representation, and the mode
selector is included using 6. The decoder then uses this
representation to predict o441, c;+1, Which can be expressed
by
M
b1, b1 = D0+ fita(2: faec), (7

1=1

where ¢; 11 € [0,1]™ is the probability that each leg is in
contact at time ¢+ 1. We include contact information to make
learning hybrid switching easier for the networks.

Typically, the ground truth for mode label and partial states
is required to train these two neural networks [9]; however,
the mode label is hard to obtain even in simulation. To
address this, motivated by Mitchell et al. [50], we utilize the
unsupervised learning method to train the mode selector. We
train the mode selector and the 5-VAE simultaneously as (3),
where the mode is self-determined by constructing the loss
function as

Loae = ZMSE(6t+1, 0t+1)+BCE(ét+1, Ct+1)+ﬁ£l€£); (8)
t
where 041, cs4+1 are the ground truth values, MSE represents
mean-square-error loss, BCE represents binary-cross-entropy
loss. The KL divergence prevents the encoder from fitting the
data too flexibly. It encourages the distribution of the latent
variable to be close to a unit Gaussian, while [is used to
control the trade-off scale. The hybrid automata is trained
by minimizing the prediction error of 0:41,ct11, where the
correct mode label will result in a lower prediction error.
Such unsupervised learning eliminates the need for ground
truth mode labels, which are often difficult to obtain in high-
dimensional systems. The discrete categorical sample results in
discontinuity of gradients, so we apply the straight-through-
gradient method [51] to realize backpropagation during the
training. Moreover, the gradient of the discrete-time automata
is independent of PPO, ensuring accurate mode identification.
However, the gradient backpropagates through the encoder to
extract useful temporal features.
In addition, we encourage the mode to be distinguished by
minimizing the information entropy of the mode probability
p, resulting in the final loss:

Lopa = Lyae + H(p); 9

where H represents information entropy, aiming to ensure that
the probabilities of modes are as distinct as possible and to
prevent confusion between modes.

We adopt a discrete-time formulation compared to [9] that
models hybrid dynamics using a continuous flow approach.
This formulation unifies mode switching and dynamics within
a single framework rather than treating them separately. Fur-
thermore, unlike [9] that requires pre-segmentation of the
trajectories to distinguish the mode, our method integrates
mode selection directly into the training process, streamlining
the entire workflow. The detailed network architecture and
hyperparameters can be found in the Appendix.

B. Multi-Critic Reinforcement Learning

Inspired by Zargarbashi et al. [40], Xing et al. [52], we adopt
the concept of multi-critic learning and apply it to the design of
multi-task objectives for different motion phases. Designing an
intuitive reward function for the robotic dog to perform skate-
boarding maneuvers is challenging. Therefore, we leverage
sparse contact-based rewards to guide the robot in executing

Gliding Critic Sim2Real Critic

W

|77
E Weighted normalized Advantage > PPO o¥y

ACTOR (Controller)

Fig. 5: Multi-Critic Skateboard Task

smooth pushing motions and gliding on the skateboard—two
distinctly different movement patterns. Unlike the approach
in Fu et al. [53], where minimizing energy consumption is
prioritized, we found that this approach struggles to induce
the gliding motion naturally. This difficulty arises because
skateboarding, compared to standard quadrupedal locomotion,
has a much smaller stability margin. As a result, the robot
tends to avoid using the skateboard altogether to minimize
energy loss rather than embracing it as part of the task.

To address this challenge, we design two distinct tasks
corresponding to different phases of the cycle: gliding and
pushing. During the pushing phase, the primary objective is
to track the desired speed, while during the gliding phase,
the goal is to maintain balance and glide smoothly on the
skateboard. Although we specify the motion phase transitions
using cyclic signals during training to ensure balanced learning
of both tasks, in real-world deployment, these cyclic signals
can be adapted on the fly or generated based on the velocity.
The cyclic signal is an indicator that informs the robot of
which movement pattern to adopt.

However, because the speed-tracking rewards and regular-
ization terms for sim-to-real adaptation are dense, while the
contact-related rewards are inherently sparse at the early stages
of exploration, using a single critic to estimate the value of all
rewards can lead to the advantages of sparse rewards being
diluted by the dense rewards during normalization, which
makes it difficult for the robot to learn the desired different
style behaviors [40].

To mitigate this and generate different style motions, we
introduce a multi-critic framework, as illustrated in Fig. 5. We
define three reward groups, each associated with a different
critic:

¢ Gliding Critic: Responsible for evaluating rewards re-

lated to gliding, such as speed tracking.

o Pushing Critic: Focused on sparse contact-related re-

wards during the pushing phase.

« Sim2Real Critic: Responsible for rewards related to sim-

to-real adaptation, such as action regularization.

Each critic is updated separately to estimate its value
function. When calculating the overall advantage, the outputs
of three critics are normalized and combined using weighted
summation. Similar to Zargarbashi et al. [40], advantage

TABLE II: Summary of Reward Terms and Their Expressions. Each term is
multiplied by its phase coefficient (dg1iqe OF dpusn) if it belongs to a specific
phase, and scaled by w. as listed in the text.

Gliding Critic Reward

Expression

Feet on board
Contact number

Feet distance
Joint positions

Hip positions

Oglide Z?:l(“pfeet,i — Pglide,i|| < 0~05>
églide Rcontact_num(zz)
églide eXp(f Z?:l Hpglide,j — Preet,j H)
lid
dglide eXp(*Zil(qz’ — ¢ e)2>
lid
Oglide eXp(*ZigHip(Qi —q e)2>

Pushing Critic Reward

Expression

Tracking linear velocity

Tracking angular velocity

Hip positions

Orientation

xz
(ngdfwz)Q
dpush GXP(* ﬁ)
h
dpush exp(*ZieHip(qi g)2>

épush ngyHQ

épush exp(fi chd — Vg H2>

Sim2Real Critic Reward

Expression

Wheel contact number

Board—body height
Joint acceleration

Collisions

Action rate

Delta torques

Torques

Linear velocity (z-axis)
Angular velocity (x/y)

(ZiEWheels Cje = 4)
eXp(74| (Zbody - Zboard) = 015|>

¢ (E—1) (8 2
12 [elip(alf P —¢t", ~10,10)
Zi:l (At)

eIl > 0.1)
[a® = at—D)|

|70 —]
(Eals

||clip(vz, —1.5, 1.5)|*
Hclip(u.::,;y7 -1, 1)”2

Base orientation \gzy\ 2

Cycle Calculation Expression

Cycle T

Phase ¢ <« sin(2wt/T)

Still Indicator Ostll

Glide Indicator Jgi)de = LPF([¢ <0.5] v 5sti11>
Push Indicator Jl(fu)sh = LPF([¢ >0.5] A —‘5sti11>
Low pass filter LPF

weights of each critic are treated as hyperparameters. This
approach reduces the sensitivity to reward tuning, simplifying
the reward design process. Specifically, the reward function is
presented in the Table. II and their values are in Appendix A.

C. Beta Distribution Policy

In quadrupedal locomotion tasks, the mainstream frame-
works typically assume a Gaussian distribution as the policy
distribution in PPO due to its intuitive parameterization and
ease of shape control [54]. However, when the action space has
strict bounds (e.g., joint position limits to prevent collisions in
quadrupedal robots), the Gaussian distribution can introduce
bias in policy optimization by producing out-of-bound actions
that need to be clipped [41]. While this issue has been noted
in prior work, it has not been widely addressed in the context
of robotic locomotion.

We observe that the Beta distribution offers a significant
advantage over the Gaussian distribution in effectively utilizing
the action space under sparse reward conditions. In contrast,

Gaussian policies may increase the variance excessively to
explore more action space and trigger potential sparse rewards.
This aggressive strategy can lead to suboptimal performance,
getting stuck in local optima, and even result in hardware
damage and safety hazards during real-world deployment.
Therefore, we introduce the Beta distribution as the policy
distribution for our framework.

In our implementation, the policy outputs the shape param-
eters (o, B) of the Beta distribution for each joint indepen-
dently. To ensure that the Beta distribution remains unimodal
(a > 1,8 > 1), we modify the activation function as follows:

SoftplusWithOffset(z) = log(1 +e*) + 1+ 107°. (10)
The standard Beta distribution is defined over [0, 1]:
Pla+B) a1 —1
o, f) = ———2z 1 —2)Y, «,8>0. (11)
I) T (a)T(5) (1—x)

To adapt this to the robot action space [—amax, Gmax| Where
amax > 0, we apply the following transformation:
a~ B(a, B), (12)

’
a = a- 20max — Amax-

In the expression, the a’ denotes the actual action that the
robot will execute. This approach enables the policy to produce
bounded, valid actions within the desired range, preventing
out-of-bound behaviors while entirely using the action space.
We provide a proof in the Appendix B demonstrating that
our method does not introduce bias or result in a variance
explosion.

V. EXPERIMENTS

In the experiment, we answer the following questions re-
garding the performance in hybrid robotics systems:

e QIl: Why is a hybrid dynamics system better than Single
Dynamics modeling?

e Q2: Can our method identify the skateboarding mode?

e Q3: Can our method achieve skateboarding in the real
world with disturbances?

A. Prediction of Dynamics

To answer Q1, we compare the dynamics prediction loss
between different maximal modes, corresponding to the di-
mension of the mode indicator |§|. Among these modes,
the condition where the number of modes |§| equals one
represents using one network to model the whole dynamics,
like [27]. We trained each condition three times with random
seeds for network initialization. The curve shows the average
reconstruction loss under different modes as shown in Fig. 7.
The loss is the highest when the maximum number of modes
is 1. After incorporating the hybrid dynamics idea, different
modes are switched to guide the conversion and mutation
of flow dynamics; the reconstruction loss is minor. Starting
from the maximum number of modes 2, the improvement in
prediction accuracy begins to plateau.

3 — FR_H(real)
-~ FR_H(predict)
— FR T(real)
-~ FR_T(predict)
— FR_C(real)
— FR Cpredict)

z

Joint Position

At

[200 400 600 800 1000 1200 1400

Time Steps

Fig. 6: Trajectory Prediction Visualization: The comparison between the actual
position trajectory (solid line) and the predicted position trajectory (dashed
line) for the right front leg joint motor of the physical Gol robot during
skateboarding is shown. We selected the right front leg joint, which exhibits
the largest range of motion, as the visualization target. During deployment,
the system utilizes the mode selection results from the automata to choose the
corresponding decoder for prediction, consistent with the training process.

This is consistent with our assumption that building the
system as a hybrid dynamics system in a system with mutation
and other properties is more reasonable. Considering that the
two primary states of the skateboard are the skateboard up and
the skateboard down, when |§| > 2, there is a marginal effect
of improvement. When |§| > 4, the prediction accuracy can
hardly be improved and converges to the state of mode=3. It
is worth noting that we only set the maximum number
of modes to 3, rather than requiring that all three modes
must be present. Therefore, in subsequent experiments, we
believe that a mode count of three is the reasonable maximal
number of modes for this system, corresponding to three
motion modes: on the skateboard, pushing the skateboard
under the skateboard, and being in the air between the two.
We will showcase the mode identification in section V-B.

To validate the accuracy of the predicted dynamics, we
deployed our DHAL algorithm on the physical robot and
recorded both the predicted and actual dynamics in real time.
In this experiment, we applied a clock signal with a fixed
period of 2.5 seconds to the controller, alternating the upward
and downward movements of the skateboard. Notably, this
clock signal differs from the one used during the training
phase (4s), providing an additional test for the accuracy of
the predicted dynamics under new conditions. As shown in
Fig. 6, the representation can accurately predict the trajectory
and jumps of the states. In the next section, we will evaluate
the capability of the method for mode identification and its
ability to adjust phases on the fly.

B. Mode Identification

To answer Q2, we collected real-world trajectories of the
robot skateboarding along with the modes selected by the
controller for visualization, as shown in Fig. 8. Additionally,
we used different RGB LED colors to represent the dynamic
modules selected by the hybrid automata. The figure shows
that when the robot is in the gliding phase, with all four
feet standing firmly on the skateboard, the hybrid automata
classify this state as mode 3 (red). When the right front foot
starts lifting off the ground and entering the swing phase, the

TR ——————

o
%
o

£
N
w

&W\W/J\ Y

Dynamics Prediction Loss
=
(=]
o

—— max_mode = 1
—— max_mode = 2

0.25 —— max_mode = 3
max_mode = 4
0.00
0 1000 2000 3000 4000 5000 6000
Iteration
Fig. 7: Dynamics Prediction Loss: The dynamics prediction loss

MSE(6¢41, 0¢+1) during training is shown in the figure, where the thick line
represents the average loss, and the shaded regions indicate the confidence
intervals across different seeds.

automata naturally transition to mode 1 (green). This brief
transition corresponds to the sharp change in joint angles
shown in the figure. Once both the right legs are entirely in
contact with the ground, the automata switch to mode 2 (blue).

This sequence of mode selections and transitions is smooth
and explicitly aligns with the decomposition of skateboarding
motion: (1) gliding phase, (2) airborne phase transitioning on
and off the skateboard, and (3) pushing phase. These results
demonstrate that our hybrid automata make mode selections
highly consistent with physical intuition.

Additionally, we applied t-distributed stochastic neighbor
embedding (t-SNE) to reduce the dimensionality of the hidden
layer outputs from the controller. As illustrated in Fig. 9,
the latent space exhibits a clearly defined distribution across
different modes. Interestingly, the resulting latent structure is
remarkably similar to that reported in [S0]. Specifically, the red
region primarily corresponds to the data collected during the
movements on the skateboard, the blue region represents states
where the right two legs are in contact with the ground during
pushing, and the green region corresponds to the airborne
phases when transitioning on and off the skateboard.

This observation highlights two key points: (1) our con-
troller effectively handles motion control tasks across different
modes, and (2) our DHAL module can distinctly and accu-
rately differentiate between various modes.

C. Performance on Skateboarding

To answer Q3, this section presents ablation studies and
real-world experiments to evaluate our method. The analysis
is divided into the following parts: (1) Comparison of training
returns, (2) Comparison between the single-critic method, and
(3) Experiments in real-world scenarios with disturbances,
including success rate statistics.

Comparison of training returns: Since the skateboarding
task is designed to be contact-guided, the training process ex-
hibits significant randomness, leading to considerable variance
in training curves even for the same method. Therefore, the
primary goals of this experiment are: (1) to identify the key

factors driving successful training, and (2) to evaluate whether
our method can approach optimal performance.

For a comparative evaluation, we compared the following
algorithms with access to proprioception only:

1) PPO-oracle-beta: Training a policy with full privileged

observations and the Beta distribution.

2) DreamWagq [27]: Training a dynamics module to esti-
mate velocity and future observation.

3) PPO-curiosity [54, 10]: Training directly with only
proprioception and following the curiosity reward
design[10].

As shown in Fig. 10, our method could achieve comparable
performance with PPO-oracle-beta, which has privileged ob-
servation about skateboard information. Notably, for the meth-
ods with the Gaussian distribution, the robot cannot learn how
to do skateboarding, even leading to dangerous motion, which
makes real-world deployment infeasible. The result aligns
with the discussion in Section IV-C: in environments with
high exploration difficulty, the Gaussian distribution tends to
prioritize increasing variance to expand the exploration range,
thereby randomly encountering “reward points”. However,
due to the physical constraints of the robot, this exploration
strategy introduces bias, causing Gaussian distribution policies
to favor movements closer to the constraints and ultimately
leading to failure [41].

Comparison with single-critic: We trained our multi-critic
method and the single-critic method for comparison. Since our
multi-critic approach normalizes the advantages of different re-
ward groups and combines them through weighted summation,
while the single-critic approach lacks this weighting advantage
mechanism, we evaluated two configurations of the single-
critic method:

« Single-critic-w-transfer: A single-critic setup with the
same reward configuration as the multi-critic method,
but with new reward weights transferred based on the
advantage weights

« Single-critic-wo-transfer: A single-critic setup with the
same reward configuration and weights as the multi-critic
method

As shown in Fig. 11, for the single-critic approach without
transferred weights, the robot exhibited aggressive and erratic
movements, making it challenging to handle disturbances.
During forward motion, excessive hyperflexion at the foot
caused it to get stuck, and when mounting the skateboard,
the hind legs often slipped off. In contrast, the single-critic
approach with transferred weights successfully mounted the
skateboard. However, during the pushing phase, the robot pri-
marily relied on its hind legs, leaving the front legs suspended
for extended periods, resulting in an unnatural gliding posture.

With our multi-critic training scheme, the robot achieved a
smooth and natural motion, efficiently executing rapid pushing
and demonstrating significantly more stable and graceful tran-
sitions on and off the skateboard. We obtained results similar
to Mysore et al. [55], proving that the multi-critic approach is
well-suited for multi-style learning.

A Joint Position

Acceleration Stage

MODE 1

MODE 2
MODE 3
FR_H
FR_T
FR_C
FL_H
m—FL_T|
FLC

=14

-2 4

=3

;;

RARVNLRY

————— ——

RR_H
RR_T
RR_C
RL_H
RL_T

\ RL_C

Time Step

0 50 100

150 200 250

Fig. 8: Effectiveness of mode identification. In the real-world deployment, we light up different RGB light bar colors according to the mode to show the
switching between different modes. The following figure shows the change in joint position relative to time in the test, and the different background colors
represent different corresponding modes. [H, T, C] denote the Hip, Thigh, and Calf Joints, respectively.

t-SNE of Hidden Layer Output

100 A

Dim 2

=50 A °

—100 A

T T T T
-100 =50 0 50 100

Fig. 9: Visualization of hidden layer of the controller: Scatter points in
different colors correspond to the different modes identified by the system,
consistent with Fig. 8. Specifically, [green, blue, red] represent [mode 1, mode
2, mode 3], respectively.

Quantitative Experiments: We conducted quantitative ex-
periments in real-world scenarios to evaluate whether our
method can complete the skateboarding task under real-world
noise and disturbances. These disturbances include, but are
not limited to, sensor noise, skateboard property variations,
terrain irregularities, and dynamics noise [26]. Using the
trained model, we tested the following scenarios: (1) smooth
ceramic flooring, (2) soft carpeted flooring, (3) disturbance, (4)
slope terrain, (5) single-step terrain, (6) uneven terrain. Each
scenario was tested ten times, with each test containing at least

2009 ours
1751 ppo-oracle-beta U y

B Dreamwaq't me.hﬁ«mmwmmmmw‘
150 ppo-curiosity M e e

4 S

Mean Return
=
(=]
o

75
50
25
0
0 1000 2000 3000 4000 5000 6000 7000 8000
Iteration

Fig. 10: Comparison of Training Rewards: Comparison of mean reward during
training is shown in the figure, where the thick line represents the average
return, and the shaded regions indicate the maximal and minimal reward across
different seeds. Each method was trained using four random seeds to evaluate
performance.

one full cycle of mounting and dismounting the skateboard.
The test terrain is shown in Fig. 1 and success rate statistics
are shown in Table. III. More extreme terrain experiments and
validation in another task could be found in Appendix E-D.

VI. LIMITATIONS AND DISCUSSION

1. Perception Limitations: To connect the robot’s left
front foot to the skateboard (only one foot), we assumed
a spherical joint to prevent the skateboard from completely
detaching from the robot. The transition from walking to skate-
boarding presents a significantly greater challenge, requiring
hardware modifications, such as adjusting the camera layout

Over-react

Slipped from board

-5

Limping gait

Limping gait

Up board
€3 .

Natural

Natural Up board

Fig. 11: Comparison between single-critic policy and multi-critic policy:
Single-critic-wo-transfer (Al ~ A3), Single-critic-w-transfer (B1 ~ B3),
ours (C1 ~ C3).

TABLE III: Success Rate Comparison: We deployed each method on a real
robot to evaluate the success rate. Each method was tested five times per
scenario. Success was defined as completing at least one full up-board and
down-board motion, traversing over a distance of more than 5 meters, and
avoiding abrupt movements or detachment from the skateboard. X indicates
complete failure (Massive torque caused the joints protection state; for
hardware protection, we first test the torque value in simulation to ensure
it will not exceed the safety range).

Method Ceramic Carpet Disturbance
Ours 100% 100% 100%
Our-wo-MC(transferred) 100% 100% 60%
Our-wo-MC 60% 60% 40%
Ours-wo-Beta X X X
DreamWagq[27] X X X
Method Slope Single-step Uneven
Qurs 80% 100% 60%
Our-wo-MC(transferred) 60% 40% 60%
Our-wo-MC 0% 40% 40%
Ours-wo-Beta X X X
DreamWagq[27] X X X

and incorporating multiple cameras to locate the skateboard.
Furthermore, we did not consider obstacle avoidance during
skateboarding using perception-based methods. Initially, we
attempted to use the RealSense T265 for state estimation, but
later determined it was unnecessary for this task. However, for
future work, when the foot is not fixed to the board, the state
estimation methods [56, 57, 58, 59, 60] need to be carefully
integrated.

2. Complex skill Generalization: Our method cannot
generalize to extreme skateboarding techniques equivalent to
those of human athletes, such as performing an ollie. The
current simulation setup cannot accurately replicate the motion
and contact dynamics of passive wheels in such challenging
scenarios. Instead, we relied on approximations and alterna-
tive techniques to simulate these dynamics as realistically as
possible.

3. Limitations in Dynamics Learning: The learned dy-
namics are not yet precise enough for model-based control.
Furthermore, the coupling between the controller and the
dynamics predictor prevents iterative optimization, such as that
used in MPC, limiting the flexibility and efficiency of our

approach.

4. Non-Trivial Environment Design: The environment
setting and design for robot skateboarding is non-trivial. This
part requires manual design and inspection. We believe that
in the future, integrating environment generation with large
models [61] could potentially help address this challenge.

VII. CONCLUSION

We proposed the Discrete-time Hybrid Automata Learning
(DHAL) framework to address mode-switching in hybrid
dynamical systems without requiring trajectory segmentation
or event function modeling. By combining a multi-critic ar-
chitecture and a Beta distribution policy, our method demon-
strates robust handling of contact-guided hybrid dynamics,
as validated through the challenging task of quadrupedal
robot skateboarding. Real-world experiments showed that our
approach achieves smooth and intuitive mode transitions,
effectively balancing gliding and pushing behaviors. While
limitations remain, such as terrain generalization and coupling
between the controller and dynamics predictor, DHAL offers
a promising step toward learning-based control for hybrid
systems in robotics.

ACKNOWLEDGMENTS

M. Ghaffari was supported by AFOSR MURI FA9550-
23-1-0400. We appreciate the valuable discussions, hardware
guidance, and constructive feedback from Yulun Zhuang and
Yi Cheng. We also extend our gratitude to Lingi Ye for the
initial brainstorming and insightful suggestions.

APPENDIX A
MULTI-CRITIC

A. Multi-Critic PPO Loss design

Motivated by Zargarbashi et al. [40], we define P, G, and S
to represent the “Pushing,” “Gliding,” and “Sim2Real” tasks,
respectively. Consequently, rp,r¢g,rs denote the weighted
sums of the specific reward groups, while Vp, V¢, Vs corre-
spond to the respective value networks. The overall value loss
is given by L3 = L+ Lg+ Ls, where each term is defined
as:

Lp =By [[rp. + WVp(sen) — Vels)?], (13)
Lg = ¢ [lIr. + Walsern) = Va(sl], 4
Ls =By [[rse +9Vs(sen) ~ Va(s)l’] . (19)

Here, v is the discount factor, and s; represents the state at
time ¢. Each value loss minimizes the temporal difference (TD)
error of the corresponding reward group.

For advantage estimation in PPO, each reward group and its
associated critic calculate the advantage separately based on
the TD error. Taking “Pushing” as an example, the TD error
is defined as:

dpr=rps+v(1 —d)Vp g1 — Vpy, (16)

ST

Fig. 12: Real-world Experiments in Skateboard Park. For additional demonstrations, please refer to our website, where more result videos are available.

where d; is an indicator variable denoting whether the episode
terminates at time ¢. The advantage is then calculated recur-
sively as:

Apt=06ps + (1 — de)MAp s i1. (17)

Here, A\ is the Generalized Advantage Estimation (GAE)
parameter, which balances the trade-off between bias and vari-
ance in advantage estimation. After calculating the advantage
for “Pushing”, it is normalized as follows:

5 Apt — pap,

Ap i — , 18
Pt N (18)

where j14, , and o 4, , are the mean and standard deviation of
the advantage values for the “Pushing” task, and € is a small
constant added for numerical stability. This process is repeated
for both “Gliding” and “Sim2Real”, resulting in normalized
advantages Agyt and flgyt. Finally, the weighted sum of all
normalized advantages is computed as:

At = 1wy * Apyt —+ w9 * Agyt + w3 * Agyt. (19)

The surrogate loss is then calculated as in the standard PPO
process:

surrogate IE, |:mjn (Oét;lt; Clip(Oét, 1—¢ 1+ E)At)} , 20)

where oy is the ratio between the new and old policy proba-
bilities. Finally, the overall PPO loss is computed as:

LPPO _ Lvalue 4 surogate . H(Trg). (21)

Here, H(rmy) represents the entropy of the policy my, en-
couraging exploration, and c is a weighting coefficient. This
formulation integrates the value loss, the surrogate loss, and
an entropy regularization term to achieve robust and efficient
policy optimization.

B. Reward Detail

The contact number reward for the gliding phase is ex-
pressed as:

R=2. Rskateb - Pgrounda (22)

where R.jq:ep Tepresents the reward for maintaining correct
contact with the skateboard, and Pgy;,ynq is the penalty for
undesired ground contact.

The skateboard contact reward is given by:

4 4
Rskatab = 5glide' (Z 1 (Cskateb,i)+4']1 (Z 1 (Cskateb,i)

=1 1=1

= 4))’

(23)
where §414. 1S a scaling coefficient for the gliding phase,
T (¢skaten,;) indicates whether the i-th foot is in contact with
the skateboard, and an additional reward is provided if all four
feet maintain contact.

The ground contact penalty is expressed as:

Pground - 5glide'(Z]l(N Cskateb,i)+ Z]l(cground,i));

1€{0,2} 1€{0,2} 4)

where 1(~ Cspatens) penalizes the lack of skateboard contact
for specific feet, and 1 (Cground,i) penalizes unintended ground
contact.

This reward design encourages the agent to maintain sta-
ble contact with the skateboard while avoiding unnecessary
ground contact, ensuring smooth and efficient gliding behavior.
The detailed reward weights are shown in Table IV.

APPENDIX B
BETA DISTRIBUTION

A. Why Gaussian distribution policy introduces bias

Based on Chou et al. [41], when a Gaussian policy ma(a |
s) = N(ugp,03) is employed in a bounded action space
[P, h](whatever because of environment manually design or
physical constraints of robots), any action a exceeding these

TABLE IV: Reward weights and Advantage weights for skateboarding envi-

ronment design

Gliding Critic Reward Weight
Feet on board 0.3
Contact number 0.3
Feet distance 1.8
Joint positions 12
Hip positions 12
Pushing Critic Reward Weight
Tracking linear velocity 1.6
Tracking angular velocity 0.8
Hip positions 0.6
Orientation -2
Sim2Real Critic Reward Weight
Wheel contact number 0.8
Board-body height 1

Joint acceleration -2.5e-7
Collisions -1
Action rate -0.22
Delta torques -1.0e-7
Torques -1.0e-5
Linear velocity (z-axis) -0.1
Angular velocity (x/v) 0.01
Base orientation -25
Advantage Weight
Gliding Critic Advantage 0.35

Pushing Critic Advantage 04
Sim2Real Critic Advantage

limits is clipped to clip(a) € [—h,h]. Ideally, the policy
gradient should be computed as

Vod(19) = Eqmry [Valogma(a | s) A™(s,a)].

However, if the update uses the clipped action in the value
function,

geiip = Vg log ma(clip(a) | s) A™ (s, clip(a)),

then integrating over all a reveals a discrepancy whenever
|a| > h. Specifically,

Elgetip] — VoJ (7)) =

E, [flal>h mo(als)(Velogma(£h|s)AT (s, £h)

—Vylogmy(al|s)A™(s,a)) da| # 0.

Because a Gaussian often places non-negligible probability
mass outside +A, this mismatch fails to cancel out, producing
a biased gradient that nudges the policy to favor actions
beyond the valid range. The Policy Gradient of the Gaussian
distribution policy is shown below.

1 kis
Voo d (0) = ?anm [((a — /,Lg)z — O'g) A7 (s, a)] .
]
Moreover, bias in the policy may tend to produce actions
outside the valid range. Increasing the variance becomes a

direct consequence of this tendency. This forms a positive

feedback loop: the more the policy variance grows, the more
out-of-bound actions are sampled, and the larger (a — ug)?
becomes in the gradient, even though the actions are physically
clipped. Unlike the Beta policy, a Gaussian distribution can
increase . indefinitely. That is why the Gaussian policy needs
a more cautious reward design.

B. Why Beta distribution does not introduce bias

For Beta distribution, we first need to rescale it from
[0,1] to [—h,+h]. Suppose Z ~ Beta(ag(s), Bg(s)), which
is supported on [0, 1] and define @ = ¢(Z) = 2h(Z — 1). Thus
a € [—h,h].

Because ¢ is a smooth, bijective function from [0, 1] —
[—h, h], we can define the policy pdf as:

d

mela | s) = Beta,, (s), 30 (s) ((;Sfl(a)) . %Qﬁfl(a) .
Concretely,
1 a+th d 4 B i
R e R |
Hence,
a—+h 1
7T9((l | S) = Betaa%ﬁe (T) . %, a < [*h,h]

Let us verify the critical zero-integral property for the Beta
policy:

+h +h
/ mo(a | s)Vylogmp(a | s)da = Vomo(a | s) da.

~h ~h
But
+h
/ mg(a | s)da =1 (all the mass is inside [—h, h]).
~h
Thus,
+h
Vg/ mg(a | s)da = Va[l] = 0.
~h
Hence,
+h
Voro(a | s)da =0,
~h
ie.,

+h
/ mo(a | s)Valogma(a | s)da = 0.
—h

No boundary terms appear, because mg(a | s) is zero outside
[—h, h].Thus, if plug 7 from above into the standard policy
gradient formula (1), we could get an unbiased estimator:

+h

E[Vg logmg(a | S)Q’T(S,a)] = Vg/ mo(a | $)Q7 (s,a) da,

—h
which equals to Vy.J(m). A Beta(a, 5) distribution on
[0,1] has a well-known finite variance:
of
(a+ B (a+B+1)

After rescaling the beta range for action [—F, A],

Var(Z) =

TABLE V: Network Architecture and Training Hyperparameter

Network Hyperparameters value

DHA Architecture MLP

DHA Hidden Dims [256, 64, 32]
VAE Encoder Architecture 1-D CNN
VAE Encoder time steps 20

VAE Encoder Convolutional Layers
VAE Encoder Convolutional Layers
VAE Decoder Hidden Dims

VAE Latent Dims

VAE KL Divergence Weight([3)
Actor Hidden Dims

Gliding Critic Hidden Dims
Pushing Critic Hidden Dims
Sim2Real Critic Hidden Dims

Input channel = [30, 20]
Kernel=(6,4), Stride=(2,2)
[256, 128, 64]

20

le-2

[512, 256, 128]

[512, 256, 128]

[512, 256, 128]

[512, 256, 128]

PPO HyperParameters Weight
Environments 4096
Collection Steps 24
Discount Factor 0.99
GAE Parameter 0.9
Target KL Divergence 0.1
Learning Rate Schedule adaptive
Number of Mini-batches 4
Clipping Paramete 02

Var(A) = 4h? Var(Z) < 4h* - max Var(Z).
ZcCBeta

And we already know Var(Z) < 5 (f o = 5 = 1,
uniform). So:
h2
Var(A) < —.
3
The variance of a rescaled Beta cannot exceed 1? /3, for all
a, > 1 (we assume the control policy should be unimodal).

C. Realization Detail

We assume the control policy for the locomotion scenario
is unimodal; therefore, o, 3 > 1. We define the activation
function for the output layer of the actor as shown below:

SoftplusWithOffset(z) = log(1 + €*) + 1 + 10~ °.

During training, the action is sampled from a beta distribu-
tion and scaled to [—h, h]. For deployment, we directly use
the mean of distribution a/(« +) as the output.

APPENDIX C
NETWORK ARCHITECTURE AND TRAINING
HYPERPARAMETER

In Table VI, we outline the hyperparameters for DHAL.
Notably, the DHA is decoupled from both the encoder and
the actor when PPO loss propagation and is only updated
using the dynamics loss. During the PPO update, the PPO
loss backpropagates through the actor and the encoder.

TABLE VI: Randomization and Noise

Property Randomization value
Friction [0.6,2.]
Added Mass [0, 3]kg
Added COM [-0.2, 0.2]
Push robot 0.5m/s per 8s
Delay [0, 201ms
Sensor Noise Weight
Euler Angle N %0.08
Angular Velocity N x0.4
Projected Gravity N %0.05
Joint Position N % 0.05
Joint Velocity N x0.1
APPENDIX D

ENVIRONMENT SETTING AND SIM2REAL DETAIL
A. Rolling Friction

We observed that in Isaac Gym, the simulation of rolling
objects, particularly wheels, is not highly accurate. This is
primarily reflected in the discrepancies between simulated
and real-world rolling friction, as well as imprecise collision
detection. To address this, we applied a compensation force
during training to roughly approximate the effects of rolling
friction on different terrains for the forward and backward
motion of the skateboard. The following formula defines the
compensation force:

Eand; if Uskate, x > 0.3
Fpush,a: - *Frand; if Uskate,x < —0.3
0, otherwise

Frana ~ U(10,25)

Uskate,z = quat_rotate_inverse (¢skate, Uskate)

Where o, is the applied push force along the x-
axis, U(10,25) is the randomly sampled
force, and vgye, 1S the skateboard velocity in its lo-
cal frame, computed using the inverse quaternion rotation
quat_rotate_inverse(gskate, Uskate)-

B. Skateboard Truck model

To simulate a realistic skateboard, we incorporated a bridge
structure into the robotic skateboard, consisting of a front and
rear bridge. Each bridge is modeled using a position-based
PD controller to emulate spring dynamics, with the desired
position and velocity set to zero at all times.

£ rand ~

C. Contact Detection

We found that in Isaac Gym, the collision calculations
for skateboard motion are imprecise. This is evident in the
inaccuracies of the collision forces for passive rolling wheels
as well as the collision forces between the robot and the
skateboard. To address this, we designed the reward function
to combine relative position error with collision forces to
determine whether contact has occurred. This logic requires
manual design and implementation.

TABLE VII: Reward weights for two single-critic method(w-transfer/ wo-
transfer)

Gliding Critic Reward Weight Weight(Transfer)
Feet on board 0.3 0.35%0.3
Contact number 0.3 0.35%0.3

Feet distance 1.8 0.35%1.8

Joint positions 1.2 0.35%1.2

Hip positions 1.2 0.35%1.2
Pushing Critic Reward Weight Weight(Transfer)
Tracking linear velocity 1.6 04x1.6
Tracking angular velocity 0.8 0.4x0.8

Hip positions 0.6 0.4x0.6
Orientation -2 0.4 —2
Sim2Real Critic Reward Weight Weight(Transfer)
Wheel contact number 0.8 0.25 % 0.8
Board-body height 1 0.25x1

Joint acceleration -2.5e-7 0.25%—2.5e—7
Collisions -1 0.25 % —1

Action rate -0.22 0.25 %« —0.22
Delta torques -1.0e-7 0.25% —1.0e — 7
Torques -1.0e-5 0.25%—1.0e—5
Linear velocity (z-axis) -0.1 0.25 %« —0.1
Angular velocity (x/y) -0.01 0.25 % —0.01
Base orientation -25 0.25 % —25

Fig. 13: Validation on other hybrid tasks and mode Identification.

APPENDIX E
EXPERIMENTAL SUPPLEMENTARY NOTES

A. Training Cost

We train policy on an NVIDIA RTX 3090; each iteration
takes 3 ~ 4 sec. Training a policy deployable in the real world
costs 6 ~ 7 hours.

B. Terrain setting

We trained our policy on flat ground, yet it demonstrated the
ability to generalize to challenging terrains such as skateboard
parks in real-world scenarios. At first, we also tried training it
on complex terrain by including stairs and slopes. We observed
no obvious advantage, while the training time increased.
Therefore, the policies are all trained on flat ground.

C. Single-Critic Reward

In the experimental section, we compared the performance
of single-critic and multi-critic approaches. To help readers un-

derstand the differences between the two single-critic setups,
we list their reward configurations in the Table. VIL

D. Extreme Terrain Experiments

As shown in Fig. 12, we tested our robot in a skatepark
specifically designed for extreme skateboarding, featuring
challenging multi-level stair sets, U-shaped bowls, and ter-
rain with cliff-like characteristics. Surprisingly, our algorithm
remained relatively stable across these complex terrains. Al-
though the robot occasionally deviated from the skateboard
due to terrain disturbances, it could still recover and maintain
a graceful skating posture.

E. Hybrid Dynamics automata Validation in other tasks

We apply the proposed framework to more tasks to demon-
strate its effectiveness. 1) Robot Hand-stand Locomotion, 2)
Dexterous Manipulation Hand-over, 3) Switching Linear
Dynamical System shown in Fig. 13. (1-2) aim at contact-
rich problems, and 3) is a classic textbook example in hybrid
dynamical systems with verifiable ground truth. In 1), we
can identify the gait or contact mode. In 2), we can identify
different stages of the object-handover task: in the air, pushed
by the right hand, and caught by the left hand. In 3), we can
compare our identification with the analytical solution.

Switching Linear Dynamical System (SLDS) is a hybrid
system with multiple linear continuous systems. We consider
the following SLDS [8]:

gA+[0 2] ifzy >2

d
di”: [-1 —1] ifzg>0andz <2 , (25
t [1 —1] ifzg<0andz <2
where 1 = [19, 71] € R? and
0 1
A [1 0] . (26)

This system will switch between three linear systems when
the state reaches the guard.

REFERENCES

[1] Michael S Branicky. Introduction to hybrid systems. In
Handbook of networked and embedded control systems, pages
91-116. Springer, 2005.

[2] Rajeev Alur, Thao Dang, and Franjo Ivanci¢l. Counter-example
guided predicate abstraction of hybrid systems. In International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 208-223. Springer, 2003.

[3] Jonathan Touboul and Romain Brette. Spiking dynamics of
bidimensional integrate-and-fire neurons. SIAM Journal on
Applied Dynamical Systems, 8(4):1462-1506, 2009.

[4] E.R. Westervelt, J.W. Grizzle, and D.E. Koditschek. Hybrid

zero dynamics of planar biped walkers. IEEE Transactions on

Automatic Control, 48(1):42-56, 2003. doi: 10.1109/TAC.2002.

806653.

Koushil Sreenath, Hae-Won Park, and Ioannis Poulakakis. A

compliant hybrid zero dynamics controller for stable, efficient

and fast bipedal walking on mabel. The International Journal

of Robotics Research, 30(9):1170-1193, 2011.

Mostafa Khazaee, Majid Sadedel, and Atoosa Davarpanah.

Behavior-based navigation of an autonomous hexapod robot

[5

[hub]

[6

—_

(7]

(8]

(9]

(101

(11

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

using a hybrid automaton.
Systems, 102(2):29, 2021.
Daniel L. Ly and Hod Lipson. Learning symbolic represen-
tations of hybrid dynamical systems. Journal of Machine
Learning Research, 13(115):3585-3618, 2012. URL http://jmlr.
org/papers/v13/lyl2a.html.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Learn-
ing neural event functions for ordinary differential equations. In
International Conference on Learning Representations.
Michael Poli, Stefano Massaroli, Luca Scimeca, Sanghyuk
Chun, Seong Joon Oh, Atsushi Yamashita, Hajime Asama,
Jinkyoo Park, and Animesh Garg. Neural hybrid automata:
Learning dynamics with multiple modes and stochastic
transitions. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
PS. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34,
pages 9977-9989. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper_files/paper/2021/file/
5291822d0636dc429e80e953c58b6a76-Paper.pdf.

Chong Zhang, Wenli Xiao, Tairan He, and Guanya Shi. Wococo:
Learning whole-body humanoid control with sequential con-
tacts. arXiv preprint arXiv:2406.06005, 2024.

Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey
Levine, Glen Berseth, and Koushil Sreenath. Reinforcement
learning for robust parameterized locomotion control of bipedal
robots. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 2811-2817. IEEE, 2021.

Yandong Ji, Zhongyu Li, Yinan Sun, Xue Bin Peng, Sergey
Levine, Glen Berseth, and Koushil Sreenath. Hierarchical
reinforcement learning for precise soccer shooting skills using a
quadrupedal robot. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1479-1486.
IEEE, 2022.

Sangli Teng, William Clark, Anthony Bloch, Ram Vasudevan,
and Maani Ghaffari. Lie algebraic cost function design for
control on lie groups. In 2022 IEEE 61st Conference on
Decision and Control (CDC), pages 1867-1874. IEEE, 2022.
Sangli Teng, Ashkan Jasour, Ram Vasudevan, and Maani Ghaf-
fari. Convex geometric motion planning of multi-body systems
on lie groups via variational integrators and sparse moment
relaxation. The International Journal of Robotics Research,
page 02783649241296160, 2024.

Sangli Teng, Ashkan Jasour, Ram Vasudevan, and Maani Ghaf-
fari Jadidi. Convex Geometric Motion Planning on Lie Groups
via Moment Relaxation. In Proceedings of Robotics: Science
and Systems, Daegu, Republic of Korea, July 2023. doi:
10.15607/RSS.2023.XIX.058.

Thomas Corberes, Carlos Mastalli, Wolfgang Merkt, loannis
Havoutis, Maurice Fallon, Nicolas Mansard, Thomas Flayols,
Sethu Vijayakumar, and Steve Tonneau. Perceptive locomotion
through whole-body mpc and optimal region selection, 2024.
URL https://arxiv.org/abs/2305.08926.

Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshid-
1an, and Marco Hutter. Perceptive locomotion through nonlinear
model-predictive control. [EEE Transactions on Robotics, 39
(5):3402-3421, 2023. doi: 10.1109/TRO.2023.3275384.
Sangli Teng, Dianhao Chen, William Clark, and Maani Ghaffari.
An error-state model predictive control on connected matrix lie
groups for legged robot control. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
8850-8857. IEEE, 2022.

Sangli Teng, Yukai Gong, Jessy W Grizzle, and Maani Ghaffari.
Toward safety-aware informative motion planning for legged
robots. arXiv preprint arXiv:2103.14252, 2021.

Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and
Pulkit Agrawal. Rapid locomotion via reinforcement learning.
The International Journal of Robotics Research, 43(4):572-587,

Journal of Intelligent & Robotic

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(301

(31

(32]

[33]

(34]

[35]

[36]

2024.

Srinath Mahankali, Chi-Chang Lee, Gabriel B. Margolis,
Zhang-Wei Hong, and Pulkit Agrawal. Maximizing quadruped
velocity by minimizing energy. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 11467—
11473, 2024. doi: 10.1109/ICRA57147.2024.10609983.
Tairan He, Chong Zhang, Wenli Xiao, Guanqgi He, Changliu Liu,
and Guanya Shi. Agile but safe: Learning collision-free high-
speed legged locomotion. In Robotics: Science and Systems
(RSS), 2024.

Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine,
Glen Berseth, and Koushil Sreenath. Reinforcement learning
for versatile, dynamic, and robust bipedal locomotion con-
trol. The International Journal of Robotics Research, page
02783649241285161.

Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak.
Extreme parkour with legged robots. In 2024 [EEE Interna-
tional Conference on Robotics and Automation (ICRA), pages
11443-11450. IEEE, 2024.

Yi Cheng, Hang Liu, Guoping Pan, Houde Liu, and Linqgi
Ye. Quadruped robot traversing 3d complex environments with
limited perception. In 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 9074-9081.
IEEE, 2024.

Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi,
Yanjiang Guo, Yichen Liu, and Jianyu Chen. Advancing
humanoid locomotion: Mastering challenging terrains with de-
noising world model learning. arXiv preprint arXiv:2408.14472,
2024.

I Made Aswin Nahrendra, Byeongho Yu, and Hyun Myung.
Dreamwagq: Learning robust quadrupedal locomotion with im-
plicit terrain imagination via deep reinforcement learning. In
2023 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5078-5084, 2023. doi: 10.1109/ICRA48891.
2023.10161144.

Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-
body control: learning a unified policy for manipulation and
locomotion. In Conference on Robot Learning, pages 138-149.
PMLR, 2023.

Minghuan Liu, Zixuan Chen, Xuxin Cheng, Yandong Ji, Rizhao
Qiu, Ruihan Yang, and Xiaolong Wang. Visual whole-body
control for legged loco-manipulation. The 8th Conference on
Robot Learning, 2024.

Yandong Ji, Gabriel B Margolis, and Pulkit Agrawal. Dribble-
bot: Dynamic legged manipulation in the wild. In 2023 IEEE
International Conference on Robotics and Automation (ICRA),
pages 5155-5162. IEEE, 2023.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik.
Rma: Rapid motor adaptation for legged robots. arXiv preprint
arXiv:2107.04034, 2021.

Gabriel B Margolis and Pulkit Agrawal. Walk these ways:
Tuning robot control for generalization with multiplicity of
behavior. In Conference on Robot Learning, pages 22-31.
PMLR, 2023.

Yuxiang Yang, Tingnan Zhang, Erwin Coumans, Jie Tan, and
Byron Boots. Fast and efficient locomotion via learned gait
transitions. In Conference on robot learning, pages 773-783.
PMLR, 2022.

Gijeong Kim, Yong-Hoon Lee, and Hae-Won Park. A learning
framework for diverse legged robot locomotion using barrier-
based style rewards. arXiv preprint arXiv:2409.15780, 2024.
Haoru Xue, Chaoyi Pan, Zeji Yi, Guannan Qu, and Guanya
Shi. Full-order sampling-based mpc for torque-level locomotion
control via diffusion-style annealing, 2024. URL https://arxiv.
org/abs/2409.15610.

Wanxin Jin. Complementarity-free multi-contact modeling
and optimization for dexterous manipulation. arXiv preprint

[37]

(38]

(391

(401

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

arXiv:2408.07855, 2024.

Tao Pang, HJ Terry Suh, Lujie Yang, and Russ Tedrake. Global
planning for contact-rich manipulation via local smoothing of
quasi-dynamic contact models. /[EEE Transactions on robotics,
39(6):4691-4711, 2023.

Gijeong Kim, Dongyun Kang, Joon-Ha Kim, Seungwoo Hong,
and Hae-Won Park. Contact-implicit model predictive control:
Controlling diverse quadruped motions without pre-planned
contact modes or trajectories. The International Journal
of Robotics Research, 0(0):02783649241273645, 0. doi:
10.1177/02783649241273645. URL https://doi.org/10.1177/
02783649241273645.

Wanxin Jin and Michael Posa. Task-driven hybrid model
reduction for dexterous manipulation. [EEE Transactions on
Robotics, 2024.

Fatemeh Zargarbashi, Jin Cheng, Dongho Kang, Robert Sumner,
and Stelian Coros. Robotkeyframing: Learning locomotion with
high-level objectives via mixture of dense and sparse rewards.
arXiv preprint arXiv:2407.11562, 2024.

Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Im-
proving stochastic policy gradients in continuous control with
deep reinforcement learning using the beta distribution. In
International conference on machine learning, pages 834-843.
PMLR, 2017.

Anxing Xiao, Wenzhe Tong, Lizhi Yang, Jun Zeng, Zhongyu
Li, and Koushil Sreenath. Robotic guide dog: Leading a human
with leash-guided hybrid physical interaction. In 2021 IEEE
International Conference on Robotics and Automation (ICRA),
pages 11470-11476. IEEE, 2021.

Sangli Teng, Kaito Iwasaki, William Clark, Xihang Yu, Anthony
Bloch, Ram Vasudevan, and Maani Ghaffari. A generalized
metriplectic system via free energy and system identification via
bilevel convex optimization. arXiv preprint arXiv:2410.06233,
2024.

Rafal Goebel, Ricardo G Sanfelice, and Andrew R Teel. Hybrid
dynamical systems. /EEE control systems magazine, 29(2):28—
93, 2009.

Francesco Borrelli, Alberto Bemporad, and Manfred Morari.
Predictive control for linear and hybrid systems. Cambridge
University Press, 2017. Chapter 16.3.

Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil
Sreenath. Feedback control for autonomous riding of hov-
ershoes by a cassie bipedal robot. In 2019 IEEE-RAS 19th
International Conference on Humanoid Robots (Humanoids),
pages 1-8. IEEE, 2019.

Ziang Lin, Genggeng Zhou, Jeft He, Tobia Marcucci, Li Fei-
Fei, Jiajun Wu, and Yunzhu Li. Model-based control with
sparse neural dynamics. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.
net/forum?id=ymBG2xs9Zf.

Haonan Chen, Yilong Niu, Kaiwen Hong, Shuijing Liu, Yixuan
Wang, Yunzhu Li, and Katherine Rose Driggs-Campbell. Pre-
dicting object interactions with behavior primitives: An applica-
tion in stowing tasks. In 7¢h Annual Conference on Robot Learn-

[49]

(501

(51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

ing, 2023. URL https://openreview.net/forum?1d=VH6WIPF4S;.
Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun
‘Wau. Robocook: Long-horizon elasto-plastic object manipulation
with diverse tools. arXiv preprint arXiv:2306.14447, 2023.
Alexander Luis Mitchell, Wolfgang Xaver Merkt, Mathieu
Geisert, Siddhant Gangapurwala, Martin Engelcke, Oiwi Parker
Jones, Ioannis Havoutis, and Ingmar Posner. Vae-loco: Versatile
quadruped locomotion by learning a disentangled gait represen-
tation. /EEFE Transactions on Robotics, 39(5):3805-3820, 2023.
doi: 10.1109/TR0O.2023.3297015.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Esti-
mating or propagating gradients through stochastic neurons for

conditional computation. arXiv preprint arXiv:1308.3432, 2013.
Jiaxu Xing, Ismail Geles, Yunlong Song, Elie Aljalbout, and

Davide Scaramuzza. Multi-task reinforcement learning for
quadrotors. IEEE Robotics and Automation Letters, 2024.
Zipeng Fu, Ashish Kumar, Jitendra Malik, and Deepak Pathak.
Minimizing energy consumption leads to the emergence of gaits
in legged robots. In 5th Annual Conference on Robot Learning.
Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter.
Learning to walk in minutes using massively parallel deep
reinforcement learning. In Conference on Robot Learning, pages
91-100. PMLR, 2022.

Siddharth Mysore, George Cheng, Yunqi Zhao, Kate Saenko,
and Meng Wu. Multi-critic actor learning: Teaching rl policies
to act with style. In International Conference on Learning
Representations, 2022.

Sangli Teng, Mark Wilfried Mueller, and Koushil Sreenath.
Legged robot state estimation in slippery environments using
invariant extended kalman filter with velocity update. In 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 3104-3110. IEEE, 2021.

Xihang Yu, Sangli Teng, Theodor Chakhachiro, Wenzhe Tong,
Tingjun Li, Tzu-Yuan Lin, Sarah Koehler, Manuel Ahumada,
Jeffrey M Walls, and Maani Ghaffari. Fully proprioceptive slip-
velocity-aware state estimation for mobile robots via invariant
kalman filtering and disturbance observer. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 8096-8103. IEEE, 2023.

Zijian He, Sangli Teng, Tzu-Yuan Lin, Maani Ghaffari, and
Yan Gu. Legged robot state estimation within non-inertial
environments. arXiv preprint arXiv:2403.16252, 2024.

Sangli Teng, Harry Zhang, David Jin, Ashkan Jasour, Maani
Ghaffari, and Luca Carlone. GMKF: Generalized moment
kalman filter for polynomial systems with arbitrary noise. arXiv
preprint arXiv:2403.04712, 2024.

Maani Ghaffari, Ray Zhang, Minghan Zhu, Chien Erh Lin, Tzu-
Yuan Lin, Sangli Teng, Tingjun Li, Tianyi Liu, and Jingwei
Song. Progress in symmetry preserving robot perception and
control through geometry and learning. Frontiers in Robotics
and Al, 9:969380, 2022.

Genesis Authors. Genesis: A universal and generative physics
engine for robotics and beyond, December 2024. URL https:
//github.com/Genesis- Embodied- Al/Genesis.

