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Fig. 1: Our demonstration will feature four different low-cost, open-source robotic hand designs, including a new model
introduced in this paper, LEAP Hand V2. (left) These hands are highly dexterous, easy to build, durable, and affordable.
We also provide a suite of open-source software tools, including motion capture teleoperation, human video-based learning,
and reinforcement learning capabilities. Building on our successful demonstrations at RSS 2023 and 2024, we aim to further
highlight the potential of low-cost, open-source robotic hands and strengthen our open-source robot hand community at RSS
2025. Please visit our website at https://leaphand.com for more details.

Abstract—Replicating human-like dexterity in robotic hands
has been a long-standing challenge in robotics. Recently, with the
rise of robot learning and humanoids, the demand for dexterous
robot hands to be reliable, affordable, and easy to reproduce has
grown significantly. To address these needs, we present LEAP
Hand v2, a $200 8-DOF highly dexterous robotic hand designed
for robot learning research. It is strong yet compliant, using
a hybrid rigid-soft structure that is very durable. Its universal
dexterous MCP joint provides exceptional finger mobility, enabling
a variety of different grasps. The parts are all 3D printed and
can be assembled very easily in under two hours using our
instructions. Importantly, we offer a suite of advanced open-
source software tools to support robot learning research. This
includes human video retargeting code from MANO and Vision
Pro, motion capture teleoperation code using the Manus Glove,
and a URDF with simulation examples for various simulation

engines. We will showcase LEAP Hand v2—designed specifically
for this demonstration—alongside our previous robot hands with
real robot interactive demos. Following our successful demos at
RSS 2023 and 2024, we will again offer an engaging opportunity
for attendees to get hands-on experience and information about
the accessibility of low-cost, open-source robotic hands. Please
visit our website at https://leaphand.com

I. INTRODUCTION

Think about activities such as typing on your keyboard,
hammering a nail, or using chopsticks, and you’ll realize
the pivotal role our hands play in manipulating the world.
With remarkable strength at the fingertips, capable of over 70
different pinching and grasping motions, our hands possess
unparalleled abilities to manipulate. This extraordinary sensing



and adaptability are orchestrated by both our hand “hardware”
itself as well as the impressive capabilities of our brains. The
development of our brains is often linked to the necessity of
manipulating our surroundings with our hands [1, 2].

In the realm of robotics, manipulation has predominantly
relied on claw grippers or suction cups for pick-and-place tasks
in factories. However, the collective aspiration is to witness
humanoid robots coexisting with humans, undertaking similar
tasks in similar environments. The absence of robot humanoids
with efficient and low-cost robotic hands raises the question:
Why haven’t they become a reality?

One major bottleneck is that while there are a few robot
hands are available today, the prevailing opinion is that they
are challenging to use, expensive, and difficult to acquire. The
belief has been that the human kinematic structure and strength
is difficult to produce in robot hands. Some robot hands are
too large, some have fewer degrees of freedom and other are
extremely difficult to produce and maintain. We believe this
isn’t necessarily an inherent flaw in robot hands but rather a
consequence of not designing them ideally for machine learning
research.

To break through this prevailing belief, we introduce LEAP
Hand V2: Low-cost Easy-to-Assemble high-Performance robot
hand for robot learning. LEAP Hand V2 is our latest robot hand
designed for this demonstration that has these characteristics:

1) Hybrid Rigid-Soft Hand: Combines flexibility and
compliance with exceptional strength and durability in
each finger.

2) Universal MCP Joint: This universal abduction-adduction
mechanism enables extreme dexterity for many tasks.

3) Extreme Low-cost and Reproducibility: At $200 and
with under an hour of assembly time, it makes the hand
readily available for many robot learning researchers.

Robot hands designed for machine learning require both a
physical design and advanced software tools to support research.
By developing open-source tools, the goal is to enable the
community to build upon and iterate these tools for a variety
of applications and reshare them with the community. Our
open-source tools serve as a solid foundation for advancing
machine learning research:

1) Motion Capture Teleoperation: Motion-capture tech-
nologies, such as the Manus Meta Glove, enable highly
precise teleoperation of the LEAP Hand v2 with any robot
arms.

2) Learning from Human Video: A wide range of freely
available human video sources can be used to teach robot
hands like LEAP Hand v2 to mimic human-like behaviors.

3) Simulation: A kinematically accurate simulator allows
us to perform both forward and inverse kinematics and
geometric grasping analysis.

In summary, we present a new robot hand designed specifi-
cally for this demo, LEAP Hand v2, that is affordable at under
$200 and incredibly easy to produce and assemble in under 1
hour. It is extremely dexterous, durable and with a human-like
size. In this RSS demo, we show its ability to handle a variety

of machine learning applications such as teleoperation and
real-world reinforcement learning. These tools are released on
our website for the community to use. These RSS demos have
played a crucial role in the success of open-source robot hands
and inspire attendees to incorporate open-source, dexterous
robot hands into their own manipulation projects. They have
captivated conference attendees, even those not interested in
dexterous manipulation. We look forward to the opportunity
of showcasing LEAP Hand V2 and our other robot hands at
RSS 2025 and on our website at https:/leaphand.com

II. RELATED WORK

Dexterous Robot Hands Many robotic hands have been
developed to mimic the capabilities of the human hand, with
varying degrees of success and accessibility. The MIT/Utah
Hand has an early tendon-driven design [4]. [5, 6, 7] used
variable stiffness actuators and soft materials in their IIT hands.
[8] used a novel compliant actuator and [9] developed this
area of tendon-driven hands further. [5, 10] use underactuation
similar to our hand to enable high dexterity without using
too many actuators which makes the hand large and heavy. A
dexterous all-soft hand, with palm articulations in a completely
soft structure, is presented in [11].

While these robot hands are very advanced, they are difficult
to reproduce and obtain for many research labs. There are
now a few robot hands for purchase. The Shadow hand,
as documented in [12, 13], has demonstrated remarkable
achievements such as in-hand reorientation of a Rubik’s cube
[14]. Despite its impressive performance, the Shadow hand
is widely acknowledged for its high cost (approximately
$150k) and challenging usability. Conversely, the Allegro
Hand [15, 16], has been historically recognized as a more
affordable option priced at $20k. However, it is often criticized
for its tendency to break down and the associated difficulties
in repair. Nevertheless, the Allegro Hand has showcased
commendable capabilities, including teleoperation from video
[17, 18, 19, 20, 21], as well as in-hand reorientation [22]. The
Psyonic Ability Hand, designed as a prosthetic with a robust
internal hard skeleton and soft exterior but only possesses
6 degrees of freedom (6DOF) [23]. Inspire Hand is lower
in costs but is not durable and often breaks[24]. The Faive
Hand [25] demonstrates noteworthy sim2real results in in-hand
reorientation but is not readily available yet.

A resurgence of interest in humanoid robotics from industry
players like Tesla Optimus [26], Figure [27], BD Atlas [28],
1x [29], Sanctuary Al [30], and Digit [31] has been observed.
These hands are designed for strength and mass production to
handle daily tasks for humanoids. However, they often feature
limited degrees of freedom and are not readily available for
purchase, evaluation, or research purposes.

The emergence of rapid-prototyping technologies, such as
3D printers and CNCs, has led to the development of a plethora
of low-cost, open-source hands tailored for academic research
purposes. The LEAP Hand, detailed in our papers [3, 32] is
easy to use and has been used by many research labs around
the world. The Robel suite, exemplified by D’Manus, offers



(A) LEAP Hand (ours) (B) LEAP-C Hand

(C) Allegro Hand

Fig. 3: In all of our LEAP Hands we introduce a MCP joint that allows for abduction and adduction in both flexed and extended positions.
In this figure we show LEAP Hand v1 on the left, where this dexterous kinematic structure is most apparent. In a conventional robot hand,
LEAP-C Hand, the finger can move side to side in the open-palm, but in the flexed position it only spins in place. In Allegro, there is a large

of motion at flexed but not in the extended position. [3]

large yet durable hands employed in tasks such as reorientation
[33] and grasping [34]. Other hands, such as Inmoov [35]
and DexHand [36], cater to hobbyists but may be limited by
inexpensive motors or fragile plastic components.

Rapid Manufacturing The traditional method for creating
robust components typically involves machining, such as with
aluminum, which can be costly. Plastic parts, on the other
hand, are generally produced through a process that includes
mold creation, casting, curing, and support removal, making it
suitable for large-scale production [37]. In contrast, 3D printing
has transformed small-scale manufacturing by enabling the
rapid, autonomous printing of individual parts [38, 39].

In recent years, the 3D printing industry has made substan-
tial progress in material innovation. Flexible materials like
TPU/TPE from Ninjatek and Filaflex have introduced new
possibilities for creating more adaptable components [40, 41].
Foaming materials such as Colorfabb Varioshore and Recreus
Filaflex [42, 41] allow for the adjustment of material properties
by modulating the flow rate. Additionally, the use of materials
like Nylon and carbon fiber in 3D printing has resulted in
components with enhanced strength and durability. As a result,
consumer-friendly multimaterial 3D printers have become both
affordable and widely accessible.

Learning for Dexterous Manipulation Because of the high
dimensionality of dexterous manipulators, it is different to used
traditional model-based controls or planning methods to achieve
dexterous results. [43, 44] In robot learning Andrychowicz et al.
achieved in-hand rotation for various objects using a Shadow
hand and Sim2real techniques. [45, 14]. Simulation-based
training that scales to thousands of objects is explored in
works such as [46, 47, 48, 32, 22] which shows promise in
robot learning. D’Hand is utilized by Nair et al. to reposition a
valve [49]. Other notable instances of dexterous manipulation
include Baoding Balls’ in-hand rotation using the Shadow Hand
trained exclusively in the real world [50].

Recent studies highlight the importance of supervising
robot hand policies based on human actions, such as those
derived from MANO [51] human hand parameters. Related

work includes teleoperating robot hands through real-time
video [18, 17], which can assist in learning [20, 52, 53]. Hand
poses extracted from online video data are utilized for learning
manipulation policies [52, 54]. Large-scale pre-training using
internet videos has proven effective for training robot hands
efficiently for downstream tasks with minimal task-specific
demonstrations [20, 55, 56], and this approach extends to non-
dexterous manipulation tasks [57, 58].

II1. LEAP HAND V2

The LEAP Hand v2 is a low-cost, highly dexterous robotic
hand designed specifically for robot learning. It combines
soft and rigid materials through multi-material 3D printing to
achieve human-like compliance and durability, while keeping
the design simple and easy to reproduce. With underactuated
joints, a novel MCP mechanism, integrated tactile sensing, and
an intuitive assembly process, the hand is purpose-built for
machine learning workflows. This section details the hardware
innovations that enable LEAP Hand v2 to serve as a practical
and accessible platform for robotic manipulation research.

A. 3D printed Hybrid Rigid-Soft Hand

The flexibility of human hands enables them to adapt to
objects and their surroundings during interactions like grasping
[59, 60]. For example, when reaching for a fragile object, the
hand molds around it and applies gentle pressure. Similarly,
when encountering an obstacle like a table, our fingers bend
away without breaking. To replicate this, the soft robotics
field often employs a casting method to create soft robots
[61, 62]. However, this approach can result in robot hands being
excessively compliant in under-actuated directions, which is not
ideal. This makes the hand weak and objects can slip out. In
contrast, some robot hands, like the LEAP Hand V1 or Shadow
Hand, consist entirely of rigid joints. While these hands can
impart a lot of force, they lack the ability to conform to their
environment as a human hand does. This leads to brittleness
and a tendency to snap upon contact. Finally, other designs,
such as those in [25, 63], attempt to replicate the softness



of human hand joints but are highly complex and difficult to
reproduce.

Our goal is to fabricate conformal fingers with stiffness
properties closely resembling those of a human finger, aiming
to replicate both its softness and rigidity. We aim to ensure our
robotic hand is durable and capable of withstanding the rigors
of manipulation while also being easy to produce. The careful
selection of materials and a suitable 3D printer is essential to
achieve this hybrid rigid soft hand finger as seen in Figure 4.

For the soft outer skin, Recreus Filaflex Foamy is chosen due
to its strong restitution and its ability to foam up buy taking in
air from the environment when leaving the nozzle. This enables
one to adjust the TPU rubber density based on the flow rate and
temperature of the 3D printer nozzle. [42] Underneath the skin
and within the fingers, we opt for PLA, known for its rigidity
and smooth texture. The 3D printer used is an Independent Dual
Extrusion (IDEX) printer, specifically the $1000 Snapmaker
J1S [64]. This printer allows for the simultaneous use of two
materials automatically in one seamless print. The realization
of these materials together in one seamless print includes
intricately intertwining the soft and rigid materials in CAD
and the slicer software.

These material properties are used in a few key areas. The
exterior layer of the palm’s skin is crafted with denser material
to resist cuts and bruises. The exterior of the fingers are
created using denser high-flow Foamy material which makes
them resistant to bruises. The interior of the finger between
the flexure joints is printed with PLA bones which resist
undesirable twisting and compression of the fingers as seen
in Figure 4. This makes the fingers very strong. The internal
flexure joints themselves are created with lower-density soft
material to enable easy flexure actuation. The strength of each
flexure joint in the fingers (MCP, PIP, DIP) are carefully tuned
relative to each other by modulating the density as explained
in the next section.

1) Underactuated Curling

A key factor in designing a robot hand is determining
the appropriate number of underactuated and fully actuated
degrees of freedom (DOF) the robot hand should have. Many
works such as [65, 10] use underacted DOF to extend the
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Fig. 4: Finger Analysis We show the key dimensions that create
our soft-hard hybrid flexure joint as described in Section III-A. The
flexure joint is soft material that lies between the hard skeleton. It is
governed by the flexure joint width, the clearance angle, the hysteresis
compensation angle and the size of the hard skeleton. The darker

portions in the finger is the hard tendon channels and rigid structure.

The blue material encompassing that is the soft material of the finger
itself.

capabilities of these manipulators. Recent hands designed for
humanoids keep the number of motors very small to make
the hands light and durable [24]. LEAP Hand V2 is designed
with 8 motors, two for each finger—one for curl and one
for abduction—which contributes to the hand’s light weight
and simplicity in construction. This configuration results in
substantial underactuation, with a single motor controlling
three curling joints (MCP Forward, PIP, DIP) on each finger
simultaneously as shown in Figure 5. However, after further
analysis, we have identified methods to manage and adjust the
underactuated behavior to improve its suitability for grasping.

Consider this example: when the curl motor activates the
pulley, it shortens the tendon to a new length, applying a force
I on the finger to achieve this movement. The flexure joints
in the finger then deform to distribute this force from the
motor. An important characteristic of these flexure joints is
that they are initially easy to close, but as they approach their
fully closed position, they increasingly resist additional force
making it harder and harder to curl.

Suppose each joint in the finger is treated equally. In this
scenario, each joint would experience the same amount of
movement, with one-third of the tendon shortening force
being distributed to each joint. As the finger curls, the motor
increasingly exerts more effort to achieve the motion. However,
this uniform motion is not ideal. In manipulation studies of
the human hand, the MCP joint typically curls with a greater
magnitude than the PIP and DIP joints to grasp over the palm
and around objects

To replicate this behavior, our key insight is that each joint
in the robot hand can be designed with different strengths.
For instance, a weaker joint will generate less resistive force
throughout its range of motion and will therefore actuate more.
This means that a weaker joint will move further with the
same tendon force compared to a stronger joint that is coupled
with it. As the actuation force increases through the range of
motion, the stronger joints will still actuate, but to a lesser
extent relative to the weaker joint. The ratio of strength between
the weaker and stronger joints determines the proportion of
actuation across the different finger joints.

There are various ways to weaken a joint, one of the most
straightforward being to print it thinner. However, thinning the
joint makes it more vulnerable to twisting and compression,
which are undesirable movements that reduce the finger’s
manipulation capabilities. Instead, we opt to adjust the flow
rate of each hinge in the finger. By modifying the flow rate, we
can easily control the relative density of the joints which affects
strength of the joints while minimizing the risk of twisting and
compression.

The MCP joint is designed using the lowest density material,
followed by the PIP joint, and then the DIP joint. This design
ensures that the MCP joint experiences the greatest actuation,
with progressively smaller amounts of actuation for the PIP
and DIP joints. By carefully selecting materials with varying
densities for each joint, we can fine-tune the actuation behavior
to better replicate natural human finger movement, where the
MCP joint typically curls more significantly than the PIP and
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Fig. 5: A cross-section of the 3D printed finger showing the soft
rubber joints, hard PLLA bones, and resilient, dense outer skin. The
MCP side rotates using an embedded motor, and the PIP and DIP
joints are actuated together by a tendon connected to a pulley.

DIP joints.

A potential drawback is that a weaker joint is more
compliant or less strong in the actuated direction, as an external
disturbance allows the joint to move further with the same
amount of force. This effect is particularly noticeable when the
finger is open, as the flexure joint and tendon are not under
tension. Wen the finger is curled, the tension still means that
the DIP joint requires more force to actuate and becomes the
most resistant to the applied force.

This effect is mitigated in two ways. First, since the tendon
remains at approximately the same length from the motor when
an external disturbance is applied, pushing on the MCP joint

causes the PIP and DIP joints to curl more in compensation.

This behavior is actually beneficial, as it enables the finger
to curl and conform more effectively around the object being
grasped without crushing it.

Secondly, the motor’s controller is adjusted. A simple
approach is to use current control, which enables the motor to
apply a constant force to the robot’s finger. However, this
method has a drawback: it allows for greater compliance
because the motor doesn’t pull hard to maintain tendon length

when external forces are applied. This weakens the grip.

Position-based PID control offers a better solution by enabling
the motor to resist external disturbances. This approach allows
the motor to actively reduce compliance, applying more force
when the tendon is pulled. As a result, the position controller
stiffens the finger joints, improving the finger’s ability to grip
heavier and larger objects.

While it is possible to incorporate external position sensors
and set position targets for the fingertips directly, this approach
is costly and challenging to implement on a low-cost, easily
produced 3D-printed hand. Furthermore, the inclusion of
such sensors and their control policy could result in reduced
compliance for the fingers, potentially counteracting the desired
flexibility.

B. Dexterous MCP Joint

Off-the-shelf motors impose limitations on kinematic struc-
ture choices, making it challenging to accurately replicate the
MCP ball joint of the human hand. As a result, it is typically
approximated using two motors (MCP-1, MCP-2) positioned
close together [66]. Previous work has proposed two designs
for this configuration (Fig. 3). However, both the Allegro and
LEAP C-Hand designs sacrifice one degree of freedom either
in the extended or closed position. Consequently, the Allegro
hand is less dexterous when extended, while the LEAP C-Hand
(similar to the C-Hand in [66]) is less dexterous when closed.

The reason for the lost dexterity in both LEAP C-Hand and
Allegro is that the axis of the motor responsible for adduction-
abduction (MCP-2) is fixed to the palm of the hand. In LEAP
C-Hand, the axis is perpendicular to the plane of the palm,
whereas, in Allegro, it lies in the plane of the palm. Thus, when
the finger becomes parallel to this axis, that DoF is ineffective.
Please see Figure 3 for a visualization of this deficiency for
these baseline hands.

In LEAP Hand v2, a universal abduction-adduction
mechanism is used for the fingers, ensuring that dexterous
motion is maintained at every MCP position. Rather than
fixing the MCP-2 axis to the palm (i.e., the motor responsible
for adduction-abduction), the key innovation is to align the
axis after the first finger joint and orient it so that it remains
perpendicular to the finger at all times. This design enables the
finger to achieve adduction-abduction across all positions as
shown more visibly on LEAP Hand V1 in Fig. 3. As a result,
LEAP Hand V2 provides the best of both worlds and has both
adduction-abduction in the extended position (similar to the
LEAP C-Hand) and pronation/supination in the flexed position
(similar to the Allegro).

C. Purpose built for Robot Learning

For machine leamning research, a robot hand must not only
be easy to assemble, maintain, and modify but also designed
with flexibility in mind to accommodate rapid iterations and
experimental changes. Given the iterative nature of machine
learning development, having a hand that is low-cost and
robust is crucial to minimize the barrier to entry and enable
frequent updates without significant downtime or expense.
Moreover, a highly dexterous design ensures the hand can
perform a wide range of tasks, making it adaptable to various
learning scenarios. Achieving these goals requires a thoughtful
balance between functionality and simplicity, ensuring the
system remains reliable while offering the versatility needed
for research.

To start, we have reduced the total number of parts and
ensured that all components used are easy to source. By
utilizing a multi-material printer, we can create complex
parts with multiple integrated components in a single print.
For instance, the palm piece combines a soft top, a rigid
undercarriage, tendon channels, motor mounts, the MCP
forward joint, and an attachment for the MCP side servo
horn—all in one simple, easy-to-print part. Similarly, the finger
is printed as a single piece, incorporating the PIP and DIP



Fig. 6: The multi-material components, shown on the left, are fabricated using a dual-extrusion 3D printer and are designed for straightforward
assembly in only 1 hour. The eight actuators are inserted into designated slots within the palm and fingers, followed by basic tendon routing
and wiring to complete the setup. To facilitate widespread adoption, we release all print files, assembly instructions, and accompanying
software as open-source materials at https://leaphand.com, enabling rapid replication by the research community. Additionally, off-the-shelf
tactile sensors can be affixed to the fingertips to enhance sensing capabilities. (right)

joints, tendon channels, and motor mounts. This streamlined
design reduces the overall part count (fewer than 10 3D-printed
parts in total) and simplifies the assembly process, making it
more manageable for the end user as seen in Figure 6.

For motor selection, we opted for Feetech Bus-Based Current-
Limited control servos. These servos are cost-effective (under
$30 each) and easily accessible. They are simple to program,
and their internal PID loop parameters can be customized for
both position-based current-limited control and current-control
modes. Additionally, the built-in sensors provide useful data,
such as current and position readings. This functionality is
comparable to the more expensive Dynamixel servos used in
previous versions of the LEAP Hand and other robotic hands,
but at a significantly lower cost and in more suitable sizes for
this robot hand.

A common challenge with tendon-based robot hands is
the need for frequent retensioning and replacement of worn
tendons. However, our design uses only one tendon per finger,
and the pulleys are securely housed within channels in the
palm, preventing the tendons from slipping off the motors.
Unlike designs like the Shadow Hand [12] or DASH Hand
[21], which require tensioning of tendon pairs, our system
simplifies calibration, allowing it to be easily adjusted through
automated software.

The assembly process is designed to be simple, with no
complicated steps or hard-to-reach components. The motors
are easily accessible and can be installed with just a screwdriver
and a basic knot on the fishing line. Thanks to the intricate
multi-material 3D-printed parts, the number of screws needed
for assembly is minimal. While LEAP Hand v1 requires nearly
300 screws, LEAP Hand V2 uses fewer than 50 screws.

We make this comprehensive documentation available on our

website at https://leaphand.com It includes an updated shopping
list, detailed assembly instructions, and all the example code
necessary to build LEAP Hand V2. This will enable anyone
to easily replicate the robot hand and quickly begin working
on their own projects.

D. Tuactile Sensors

Since LEAP Hand v2 is user-friendly and affordable, we
aim to ensure that the tactile sensors are equally easy to use,
cost-effective, and capable. However, there is a significant
challenge. Vision-based sensors like Gelsight or Digit, which
rely on cameras and a gel-based touch surface, are too large
for our needs. Similarly, sensors such as ReSkin, AnySkin,
and Xela are designed for larger fingers. While they could
theoretically be miniaturized, they often face interference issues
when placed too closely together, as in a smaller hand.

For our hand, we have chosen resistive-based sensors similar
to STAG [67] or 3D-ViTac [68]. These sensors are affordable
($2 each), and a LEAP Touch control board ($20) can be
mounted on the palm of the hand. While they provide only
a single continuous force reading per finger, this is adequate
for many machine learning applications. Additionally, these
sensors can be mounted on Manus glove [69] to collect data
both hand tracking and touch data in a format that closely
mirrors what the robot hand will encounter.

IV. SOFTWARE FOR ROBOT LEARNING

LEAP Hand V2 is designed specifically for robot learning,
both in terms of the aforementioned hardware and the software
which we describe below. The software package we release on
our website includes all the essential tools that researchers need
to get started quickly. First, teleoperation using motion capture



Fig. 7: We will demonstrate real robot hands doing teleoperation from VR glove and teleoperation from human video as
developed in [3, 17, 32] Attendees will be able to teleoperate a variety of low-cost robot hands such as LEAP Hand V1 shown

in this figure or LEAP Hand v2 as discussed in the paper.

gloves is a key feature for collecting high-quality data for
behavior cloning and related approaches. Retargeting human
video data, easily captured with web cameras or the Apple
Vision Pro, is useful for control and enhancing autonomous
policy training. Finally, we offer simulation tools for forward
and inverse kinematics as well as kinematic geometric analysis.
These software tools are crucial for LEAP Hand V2 which
designed for machine learning. These tools are available on
our website at https://leaphand.com.

A. Learning from Human Mocap Glove Demonstrations

In conventional 2-finger gripper manipulation many teleoper-
ation setups have worked successfully to collect demonstrations
for use in behavior cloning. Kinesthetic Methods such as
ALOHA [70], GELLO [71] or Da Vinci machines [72] can
work accurately. With VR or camera-based hand tracking,
methods such as [73, 74] work reasonably accurately. However,
it is unclear how to scale these methodologies to robot hands.

Our key insight is to take inspiration from the motion-capture
community. The motion capture community has been using
gloves for accurate tracking for movie production or game
production. These motion capture gloves often rely on EMF
sensors and are relatively not bulky to the user. However, the
data returned is in the human hand morphology which is not
the same as the robot hand kinematics.

If the robot hand’s kinematic structure is roughly similar to
that of a human, one approach is to map the joint angles from
human fingers to the robot’s. While gloves can calculate these
human hand angles using an inverse kinematics solver, differ-
ences in finger size and proportions can lead to misalignment,
especially with the complex human thumb and the differing
kinematics that robot hands have. This can cause inaccurate
pinch grasps which makes accurate fine-manipulation difficult.

Previous work has addressed this by optimizing joint
positions for consistent pinch grasps between human and robot
hands. [75, 18, 76] We employ Manus gloves [69] with an
inverse kinematics approach to ensure accurate pinch grasps and
proper thumb positioning, improving manipulation reliability.

We have collaborated with Manus Meta on our full-featured
open-source Python/ROS?2 repository that converts the MANUS
data to any robot hand that has a URDE. We have examples for

all LEAP Hands and are the main repository for these motion
capture gloves for robotics.

Using this software to collect data, behavior cloning policies
can be trained to complete a variety of different tasks that during
the event such as tool use or deformable manipulation. We
will show these policy rollouts, augmented with human-video
pretraining on our robot hands. However, teleoperation data
does not scale to novel environments so it must be collected
in large quantities in many different environments. Our key
insight is to leverage data from the web to enable further
generalization which we will explain in the next section.

B. Learning from Human Video

Collecting teleoperated demonstrations is both costly and
time-consuming, and it is impossible to capture all potential
scenarios the robot may encounter. This leads to a distribution
shift, where the robot’s testing environments will inevitably
differ from its training environments. While one might suggest
that robots can adapt or generalize to unseen scenarios, this
is not guaranteed. Therefore, a key question is how can
we effectively expand our training set without resorting to
additional laborious teleoperated data collection?

Given that robot hands share a similar embodiment and
kinematic structure with the human hand, they both will
naturally interact with the world and perform tasks in much
the same way. By utilizing this similarity, we can learn from
extensive human motion data, such as video and motion capture
datasets. However, converting from human hand demonstrations
to robot hand demonstrations is a non-trivial problem.

This conversion to the robot hand is particularly challenging
due to the under-constrained nature of the problem, as robot
hands and human hand possess numerous degrees of freedom
(DOF) and exhibit substantial differences in shape, size,
and joint structure. The retargeting process must cater to
any human operator attempting to execute various tasks in
diverse environments. Additionally, an essential criterion is the
efficiency of the solution, demanding a real-time performance
at a rate exceeding 30 Hz. Unlike the glove data, this data can
be exceptionally noisy and difficult to use. To handle these
issues, we develop a video-to-robot hand retargeting system
that is trained from a corpus of rich and diverse human hand



Fingertip Strength (N) | Curled | Open | Side
Allegro Hand [15] 8.5 10.5 7.5
Inmoov Hand [35] 58 2.5 -

Bauer et. al [39] 374 - -

DASH Hand [21] 34.5 8.4 6.2
LEAP Hand [3] 27.5 19.5 16.2
LEAP Hand V2 | 322 | 205 | 172

TABLE 1I: Strength Test: We apply force to both the curled and
open parts of the finger, as well as the side of an open finger. The
force is measured when the angle error exceeds 15 degrees. LEAP
Hand V2 is highly powerful in all directions, thanks to its rigid MCP
side joint, internal rigid bone structure, and efficient power transfer
from robust servo motors.

videos. The system understands human hands and retargets the
human video stream into a robot hand-arm trajectory that is
smooth, swift, safe, and semantically similar to the guiding
demonstration. This methodology has a few stages. First, we
detect the human hand in the image by using a state of the
art hand detector such as FrankMocap. [77] Then, we retarget
this robot hand pose using a NN trained on an energy function
and human data. This ensures that the retargeted robot hand
poses are human like and semantically similar to the human
hand demonstration. These elements are combined together to
teleoperate the robot hand and arm in Robotic Telekinesis [17]
from RSS 2022. See Figure 7 for an example.

We also show that these internet videos can directly support
the learning of autonomous policies, rather than just assist with
teleoperation. To achieve this, we can apply this Telekinesis
retargeting pipeline to the EpicKitchens dataset [78] to extract
actions performed by human hands and arms to the robot
embodiment. This process transforms human data into a format
compatible with robot embodiment data. Then, this enables us
to efficiently teach robot behaviors from these human videos
using behavior cloning and co-training with teleoperation data.
Details of this system is available on our website at https:
/Neaphand.com

C. Simulation Tools

In robot learning applications, a simulation model of these
hands is useful in a variety of applications. The kinematic model
of the hand enables forward/inverse kinematics calculations for
retargeting approaches such as for teleoperation from human
video. It also enables geometric methods such as for grasping.

V. ANALYSIS

A common question when starting out in robot learning is,
”Which robot hand should I use?” While there are quite a
few choices, many robot hands are not easy to acquire [25, 2].
There are others which are easier to acquire but still very
expensive [12, 15, 24]. There are even fewer that are open
source as well as being easy to produce for machine learning
research. Selecting a robot hand involves more than simply
considering performance metrics. In our live demo this year,
we will showcase these robot hands so that attendees can
have hands on experience with all of these robot hands.
This will help demystify this choice and is a key enabler
of driving the open-source robot hand community.

Hand Grasp Type LEAP V2 LEAP

Pickup Dice Power 1.0 1.0
M&M Pinch 0.4 0
Hammer Hook 1.0 0.8
Wooden Cylinder Cigarette 1.0 0.8
Egg Pinch 0.8 0.8
Pringles Can Power 1.0 1.0
Pan Handle Hook 1.0 0.6
Bin Picking Pinch 1.0 0.8

TABLE II: We teleoperate LEAP Hand V2 and LEAP Hand V1 on
various different tasks and evaluate their success rate over 5 trials. We
find that our new hand can still complete these grasps successfully.

A. Strength Test

Many soft hands, while strong in the actuated direction,
often have undesirable degrees of freedom in other directions,
such as twisting or compression. This makes them less suitable
for a human-like robotic hand. For effective manipulation of
the environment, robot hand fingers need to exhibit strength at
the fingertips across all actuation directions.

In this test, we apply a force gauge to the fingers to measure
how much force they can withstand without failing to hold
their desired position. Some hands lack certain articulations or
are too delicate to undergo the test, which is why some data
points are missing.

As shown in the results in Table I, LEAP Hand V2 stands
out as one of the strongest hands despite its small size and
compliant nature, making it highly versatile for a wide range
of tasks. The powerful motors beneath the palm enable the
hand to curl with substantial strength. Meanwhile, the internal
bone structure in the fingers and palm ensures rigidity, and the
MCP-side motors, positioned directly on the fingers, provide
efficient, high-strength power transfer.

B. Teleoperation from Motion Capture

Oftentimes we would like teleoperation to be as accurate as
possible for robot hands. To do this the user wears two motion
capture gloves and moves naturally to complete everyday
dexterous tasks. The gloves captures accurate finger tracking
to map motions naturally to the robot hands. The GELLO
[71] inspired arm tracking accurately tracks the human wrist
position and joint angles for the robot arm. The data collected
by the system can be used to train effective policies using
imitation learning, after which the bimanual robot system can
perform the task autonomously. In Table II we find that LEAP
Hand V2 can consistently perform well due to its small size
and high levels of dexterity. Its soft construction makes is
very durable to bumps and scrapes with the environment. We
release videos of our results and instructions to recreate the
setup on our website at https://leaphand.com Demo attendees
will have the opportunity to teleoperate a live robotic hand
system and ask questions about how to build a similar
setup themselves.



V1. CONCLUSION

In conclusion, we introduce LEAP Hand v2, an affordable,
highly dexterous, and easy-to-assemble robotic hand designed
specifically for robot learning research. Priced at just $200
and with an assembly time of under one hour, it combines
a hybrid rigid-soft structure for durability and strength, a
universal MCP joint for exceptional dexterity, and a human-
like size. Alongside the hand, we offer a suite of open-source
software tools, including motion capture teleoperation, learning
from human video, and reinforcement learning capabilities, all
aimed at advancing machine learning applications. Through
previous demonstrations at RSS 2023 and 2024, we have
shown the potential of low-cost, open-source robotic hands
to inspire and support the robotics community, and we look
forward to showcasing these tools again at RSS 2025 to further
encourage the use of open-source dexterous robot hands in
various manipulation tasks.
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