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Fig. 1: CRESTE learns a perceptual encoder':? and reward function® to predict structured bird’s eye view (BEV) feature
and reward maps for navigation. Our model inherits generalization and robustness from visual foundation models and learns
expert-aligned rewards using our counterfactual-guided learning framework. We integrate CRESTE in a modular navigation
system that uses coarse GPS guidance and rewards to reach navigation goals safely.

Abstract—We introduce CRESTE, a scalable learning-based
mapless navigation framework to address the open-world gener-
alization and robustness challenges of outdoor urban navigation.
Key to achieving this is learning perceptual representations that
generalize to open-set factors (e.g. novel semantic classes, ter-
rains, dynamic entities) and inferring expert-aligned navigation
costs from limited demonstrations. CRESTE addresses both
these issues, introducing 1) a visual foundation model (VFM)
distillation objective for learning open-set structured bird’s-eye-
view perceptual representations, and 2) counterfactual inverse
reinforcement learning (IRL), a novel active learning formulation
that uses counterfactual trajectory demonstrations to reason
about the most important cues when inferring navigation costs.
We evaluate CRESTE on the task of kilometer-scale mapless nav-
igation in a variety of city, offroad, and residential environments
and find that it outperforms all state-of-the-art approaches with
70% fewer human interventions, including a 2-kilometer mission
in an unseen environment with just 1 intervention; showcasing its
robustness and effectiveness for long-horizon mapless navigation.
Videos and additional materials can be found on the project page:
https://amrl.cs.utexas.edu/creste.

1. INTRODUCTION

Mapless navigation is the task of reaching user-specified
goals without high-definition (HD) maps and precise naviga-
tion waypoints. Mapless approaches plan routes using egocen-
tric sensor observations (e.g. RGB images, point clouds, GPS),
coarse waypoints from public routing services, and satellite
imagery. These solutions demonstrate promise as a scalable
alternative to conventional map-centric approaches: enabling
generalization to unforeseen factors (e.g. curb ramps and
foliage) and dynamic entities (e.g. pedestrians and strollers)
while reducing map maintenance overhead and reliance on

pre-defined routes.

Traditional geometric-only mapless solutions [3, 43] exhibit
robust generalization when it is only necessary to consider
costs for geometric factors like static obstacles. However,
open-world navigation demands perception systems that per-
ceive an open set of factors unknown apriori, ranging from
terrain preferences (grass vs. concrete) to semantic cues (Cross-
walks and crossing signs). Furthermore, it requires the ability
to identify the most salient features in the scene, and how they
influence the choice of paths.

Learning-based approaches are a scalable alternative that
considers factors beyond geometry, but must overcome data
scarcity, robustness, and generalization challenges to achieve
similar reliability. These approaches broadly consist of single-
factor perception, hand-curated multi-factor perception, end-
to-end learning, and zero-shot pre-trained large language
model (LLM)/visual language model (VLM) transfer. While
single-factor [20, 44, 43] and multi-factor [21, 33] methods
learn representations that consider relevant navigation factors
(e.g. geometry, terrain, semantics), they rely on a hand-curated
list of semantic classes and terrains that limit generalization to
unseen classes. End-to-end methods [34, 35, 36] alleviate this
by jointly learning the representation and policy from expert
demonstrations but are prone to overfitting without large-scale
robot datasets. While recent works [45, 22] demonstrate that
pre-trained LLMs and VLMs can reason about expert-aligned
behavior without large-scale robot datasets, we empirically
demonstrate that they are poorly attuned to urban navigation,
leading to brittle zero-shot transfer in complex scenes.

We address the aforementioned limitations with CRESTE,



Counterfactuals for Reward Enhancement with Struc-
tured Embeddings, a novel approach that learns open-set
representations and navigation costs/rewards for mapless ur-
ban navigation. To learn open-set representations, CRESTE
combines prior work on bird’s eye view (BEV) representation
learning [21] and visual foundation models (VFMs) [25, 30]
to learn BEV map representations with inherited real-world
robustness and open-set semantic knowledge. We unify priors
from multiple foundation models by distilling image features
from Dinov2 [25] and refining these features in BEV using
SAM2 [30] instance labels. CRESTE infers expert-aligned
navigation costs without large-scale demonstrations by lever-
aging counterfactuals to guide learning, where counterfactuals
hold all other variables constant except for the path taken
from the start to the end goal. Unlike conventional preference
learning, our proposed counterfactual inverse reinforcement
learning (IRL) objective explicitly minimizes rewards along
paths that exhibit undesirable behavior (e.g. veering off cross-
walks, driving off curb ramps, etc.), enabling operators to
correct robot behavior by providing offline counterfactual
feedback. We summarize the main contributions of our work
as follows:

« Representation Learning Through Model Distillation.
A new model architecture and distillation objective for
distilling navigation priors from visual foundation models
to a lightweight image to BEV map backbone.

« Counterfactually Aligned Rewards. An active learning
framework and counterfactual IRL formulation for reward
alignment using counterfactual and expert demonstra-
tions.

We demonstrate our approach’s effectiveness through real-
world kilometer-scale navigation experiments in urban envi-
ronments with off-road terrain, elevated walkways, sidewalks,
intersections, and other challenging conditions. In total, we
evaluate in 6 distinct seen and unseen geographic areas
and significantly outperform existing state-of-the-art imitation
learning, inverse reinforcement learning, and heuristic-based
methods on the task of mapless navigation.

II. RELATED WORK

In this section, we position our work within the broader
context of methods that perform mapless navigation by learn-
ing representations and policies for safe local path planning.
Underlying these methods are two key challenges: learning
robust perceptual representations that encode an open set of
navigation factors, and learning planning modules that can
identify and reason about the most important factors to plan
safe paths.

Single [14, 20, 39] and multi-factor [9, 21, 33] approaches
learn perceptual representations grounded in the planning
horizon with elevation, terrain, and semantic factors, and rely
on expert tuning to balance the relative costs of each factor.
While this enables joint reasoning about multiple factors, it
assumes the full set of semantic classes and terrains are known
apriori, generalizing poorly to unexpected semantic classes,
terrains, or other factors not seen during training. Furthermore,

they require expert tuning of complex multi-objective cost
functions for each environment.

End-to-end methods jointly learn a representation and policy
using either behavior cloning (BC), RL, or IRL. BC meth-
ods [15, 35] learn task-specific representations for reasoning
about how to mimic the expert policy. These approaches scale
effectively given large-scale datasets with expert demonstra-
tions, but are prone to overfitting otherwise. RL [11] and
IRL [47] methods also mimic the expert policy, but design
handcrafted reward functions (e.g. minimize vibrations [12]
and likelihood of interventions [13]) or preference rank-
ings [40, 7] to guide representation and policy learning. These
methods efficiently learn expert-aligned behaviors at the cost
of careful reward tuning or preference enumeration.

An emerging class of methods [22, 45] leverages pre-trained
factors present in VLMs and LLMs, large foundation models
pre-trained on internet-scale data, zero-shot for navigation.
These foundation models leverage geographic hints in the
form of satellite imagery and topological maps, along with
image observations and text instructions to predict safe lo-
cal waypoints for analytical planning and control methods.
While promising, it is not well understood how to best steer
VLMs/LLMs to reason about the most important navigation
factors for navigation tasks.

The aforementioned works either rely on large-scale robot
datasets for open-set generalization or complex reward de-
sign to learn expert-aligned behavior. However, constructing
large robot datasets and expressive multi-term objectives is
prohibitively difficult for open-world settings. In contrast,
CRESTE learns open-set representations by directly distilling
knowledge from VFMs, and expert-aligned reward functions
by using counterfactuals as a unified language for conveying
navigation constraints. Unlike counterfactual-based methods
like VRL-PAP [39], our counterfactuals specify arbitrary nav-
igation constraints beyond terrains and can be readily obtained
offline, enabling a data flywheel for continuous improvement
with additional deployments. Importantly, our reward learning
approach is distinct from preference-learning methods, as
counterfactuals are a more specific form of feedback than
preferences, which can be between any two trajectories.

III. THE MAPLESS URBAN NAVIGATION PROBLEM

We now develop the mapless navigation problem for urban
environments. We first formulate the path planning problem
in this context in Sec. III-A and then discuss the problem
of learning general expert-aligned costs in Sec. III-B. Fi-
nally, Sec. III-C highlights key challenges in our problem
formulation that this work addresses. In this work, we refer to
costs as negated rewards and use them interchangeably.

A. Path Planning for Mapless Navigation

For each timestep, we assume the robot has access to
the current observation o; and pose z; € X in the global
frame, where the robot state space A lies in SFE(2) for
ground vehicles. The robot must plan a finite trajectory
Ts = [zt ..., Zre+ 5] from z; to goal G, either given by the



user or obtained from public routing services. I'g consists of S
current and future states x € X which minimize the following
objective function:

I's = argpmin||z; 15 — G|| + AT (1), (D

where ||z;:+5— G| is the distance between the final state x; g
and G, and J (T") is a cost function for path planning scaled by
a relative weight \. In mapless urban environments, the robot
pose x; and goal G may be highly noisy, causing J(I')’s
importance to vary dynamically across time.

B. General Preference-Aligned Cost Functions

To properly define our cost function J(T"), we first need
to introduce the notion of an observation function © : O —
T that maps observations o; to a joint embedding space T
that encapsulates a set of relevant factors for navigation in the
world. In general, the sufficient set of factors is unknown but
can be approximated for each environment. Let 7" : X — 7T be
a function that maps a robot pose = € X to a feature 7 € 7T,
where T captures the relevant set of factors necessary to reason
about 7 (I'). The relationship and set of relevant factors may
consist of geometric, semantic, and social costs as follows:

j(r) — U(tjgeometric (F); tjsemamic (F); tjsocial (F)) (2)

where o is a function that combines individual cost terms.

We assume the operator has an underlying true cost function
H : T — R mapping the sufficient set of factors to scalar
real-valued costs based on their preferences. Let H € H,
where H is the continuous space of underlying cost functions.
In general, H is unknown and often depends on the robot
embodiment, environment, and task. For mapless navigation,
we define this task to be goal-reaching.

C. Open Challenges

In this work, we are concerned with learning both © (o)
and J(T'). This is difficult as the sufficient set of factors
for navigating diverse, urban environments is unknown and
the relationship between factors may be highly nonlinear. Our
approach to learning O(o,) distills features from VFMs, which
provide a breadth of factors including but not limited to:
geometry, semantics, and entities. This promotes learning a
joint distribution 7 sufficient for mapless urban navigation.
Furthermore, we propose a counterfactual-based framework
for learning J(T"), which becomes important when dealing
with complex feature distributions 7 and nonlinear relation-
ships between factors .

IV. APPROACH

CRESTE is a modular approach with two key components
that can be trained end-to-end: 1) A perceptual encoder
O(Orgp, t» Odeprh, 1) that takes the robot’s current RGB and
sparse depth observation and predicts a completed depth
image Yqeph, ¢ and structured BEV feature map yuey, ; 2) A
reward function 4 (Yey, ) that takes ype,, ; and outputs a BEV
scalar reward map Yreward, - In the remainder of this section,
we describe the following: 1) Sec. IV-A - The CRESTE

model architecture and 2) Sec. IV-B - The CRESTE training
procedure, where Sec. IV-B1 presents our VFM distillation
objective for © and Sec. IV-B2 presents counterfactual IRL
and our active reward learning framework for learning r.

A. CRESTE Model Architecture

1) Perceptual Encoder Model Architecture: Our 25.5M
parameter perceptual encoder © draws inspiration from the
TerrainNet [21] backbone, which trains a RGB-D encoder fgpq
to predict a latent feature map zgpq using an EfficientNet-
BO [42] encoder and a completed depth map ygepm using a
depth completion head fepth (zrgba ). Like TerrainNet, we train
a lift-splat module fpiac(Zrgbd, Ydeptn ) to lift latent features to 3D
and “splat” them to an unstructured BEV feature map zyev, splat-
Finally, we pass 2y, spla t0 @ BEV inpainting backbone fi.,
that uses a shared U-Net [32] encoder and separate decoders
to predict a structured feature map consisting of separate
semantic and elevation layers.

Building on TerrainNet, we make two key architec-
tural modifications. Qur first modification, semantic decoder
Ssemantic, promotes learning semantic and geometric-aware fea-
tures by regressing image features from Dinov2 [25] using
latent image features zg,q. This design is analogous to model
distillation [29] and allows our RGB-D encoder frgpq to inherit
properties from VFMs like robustness to perceptual aliasing
and open-set semantic understanding.

Our second modification stems from the observation that
Dinov2 features alone lack the entity understanding needed
to backproject and inpaint features in heavily occluded urban
scenes with noisy depth predictions. Thus, we supplement
foey with two panoptic map decoders fuevstatic and fev.dynamic
to ensure that predicted BEV feature maps .y are con-
sistent with BEV instance maps from SegmentAnythingv2
(SAM2) [30]. We use Supervised Contrastive Loss [16] to
optimize Y., such that features belonging to the same instance
are closer in embedding space than features belonging to
different instances. Combined with fsemanic, our modifications
synergistically unify the strengths of Dinov2 and SAM2 to
learn open-set semantic, geometric, and instance-aware repre-
sentations grounded in the local planning horizon. Altogether,
our structured BEV feature map ., consists of three layers
stacked along the channel dimension: 1) Static panoptic feature
MapP Yoey, static> 2) Dynamic panoptic feature map Yuey, dynamics
and 3) Elevation map pey, elev-

2) Reward Function Model Architecture: To ensure our
reward function enforces spatial invariance and considers
multi-scale features, we implement 7y using a 0.5M parameter
Multi-Scale Fully Convolutional Network (MS FCN) first
used by Wulfmeier et al. [47]. We supervise ry using our
counterfactual IRL loss, which we describe along with our
training procedure for © in the next section.

B. CRESTE Training Procedure

We train CRESTE by first optimizing © and freezing the
parameters before training rg using our counterfactual-based
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Fig. 2: Model architecture and training procedure for the CRESTE perceptual encoder ©. Using a RGB and sparse depth image,
freba extracts image features zgpq and performs depth completion. Next, we lift and splat zgpq to an unstructured BEV feature
map before predicting continuous static panoptic, dynamic panoptic, and elevation features. Finally, we stack the predicted
features to construct a structured BEV feature map for our learned reward function. We supervise O using semantic feature
maps, completed depth, and BEV map labels generated by our SegmentAnythingv2 [17] and Dinov2 [25]-powered distillation
label generator. We define the dimensions for important feature maps in the Feature Dimension Legend on the bottom right.
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active reward learning framework. Altogether, our full learning
objective is:

3

where Ligpq and Ly, supervise © and Ly supervise rg.
Sec. IV-B1 breaks down the our training and label generation
procedure for supervising © and Sec. IV-B2 defines our
counterfactual IRL objective Ligy, and active reward learning
framework for training 7.

1) Training the Perceptual Encoder ©: We jointly train
freba via backpropagation from fiemantie and foepm. The se-
mantic decoder head fiemanic 18 supervised via an MSE loss
that minimizes the error between the predicted and ground
truth feature maps Ysemantic a0d Ysemantic- The depth completion
head fyepm is supervised using a cross-entropy classification
loss L¢g, where the ground truth depth fgepm is uniformly
discretized into bins. Empirically, this captures depth discon-
tinuities better than regression [31]. Altogether, the training
objective for the RGB-D backbone is:

LerestE = Ligvd + Loev + LrL

“)

Ergbd = a1l2(ysemamic; ?Jsemamic) + Oézﬁcg (ydepth; Qdepth)

where o1 and oy are tunable hyperparameters.

We supervise fpey Wwith three losses, one for each BEV
decoder head, using ground truth static instance maps ey, statics
dynamic instance maps ey, dynamic> and elevation maps
Ubev, elev- We use Supervised Contrastive Loss [16] (Lconrastive)
for training frey, static and frey, dynamic to Ppredict continuous

feature maps from discrete instance labels Joey, static and

?Jbev, dynamic- We train fbev, elev to PfediCt ?Jbev, elev USing ll
regression loss. Our full training objective for fue, is:

Ebev = Bl ﬁco ntrastive (ystatic 3 ?Jstatic ) +

. . (%)
B2£contrastive(ydynamic; ydynamic) + BBll (yeleV; yelev)

where (31, 3o, and §3 are tunable hyperparameters. We refer
readers to Appendix Sec. X-B for additional training details.

To scalably obtain training labels for ©, we design a
distillation label generation module that leverages VFMs to
automatically generate training labels. As shown in Fig. 2,
our label generator only requires sequential SE(3) robot poses
and synchronized RGB—point cloud pairs (0, 1:t, Ocloud, 1:¢) tO
generate the training labels described next.

i) Label Generation for RGB-D Encoder femantic- We
generate training labels for the semantic decoder fiemanic DY
passing org, ¢ through a frozen Dinov2 encoder and bilinearly
interpolating the spatial dimension of our output feature map
to match the spatial resolution of Ysemaniic- We generate depth
completion labels faepn by projecting ocioud,: to the image
and applying bilateral filtering [28] for edge-aware inpainting,
producing a dense depth map that respects object boundaries.

ii) Label Generation for BEV Inpainting Backbone
Soev. To train fi,, we first generate fpey, dynamic by prompting
SAM?2 with bounding boxes of common dynamic classes
(e.g., vehicles, pedestrians), backproject the masks to 3D
using ogjoud, t» and apply DBSCAN [6] clustering at multiple
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Fig. 3: Framework for Active Reward Learning with Counterfactuals. Before reward learning, we train and freeze the perceptual
encoder © and use the output BEV feature map ypey With 7 to predict BEV reward maps yrewara- In phase I, we train ry using
our counterfactual IRL objective Lz using only expert demonstrations I'. In phase II, we plan goal-reaching paths using
Yreward aNd identify samples that align poorly with human preferences. We generate alternate trajectories for these samples and
query the operator to select counterfactual demonstrations I"® using orgp for context. In phase III, we retrain ry using Ligr.,
this time with I'” and I*°. We repeat phases II and III to iteratively improve T4 until it is aligned with human preferences.

density thresholds. The dynamic BEV map retains clusters
with sufficient IoU overlap with the SAM2 instance labels.
This procedure mirrors prior works [26] that leverage SAM?2
for learning instance-aware 3D representations. To generate
Ubev, satic» We query SAM?2 with a grid of points, filter out
overlaps with dynamic masks to isolate static segments (gen-
erating dynamic masks as before), and apply a greedy loU-
based merging strategy across frames to maintain instance
consistency across frames. The merged static masks are then
projected and accumulated in BEV using known robot poses.
We refer readers to the Appendix Sec. X-A for our algorithmic
formulation describing the merging procedure. Lastly, we
generate hey, eley Dy accumulating static 3D points across
sequential frames using robot poses (generating static masks
as before), assign each 3D point to a grid cell, and compute
each cell’s minimum elevation by averaging the N lowest 3D
points that fall into that cell.

2) Training the Reward Function rg4: After freezing ©,
we ftrain ry using our counterfactual-based reward learning
objective Liz;, where counterfactuals hold all other variables
constant with the expert except for the path taken to the
end goal. Lr;, optimizes the reward function such that the
likelihood of counterfactual trajectories is minimized and
the likelihood of expert trajectories is maximized, which we
observe improves the sample efficiency, expert alignment, and
interpretability of the learned rewards.

To understand Ly, we formally refer to counterfactuals
as suboptimal trajectories and define a state-action visitation
distribution to be the discounted probability of reaching a state
s under a policy m and taking action a: p™(s,a) = (1 —
v) S 'p(st = s,ar = a|m). We define each state s to be an
xy location on the local BEV grid and our actions a along the
8 connected grid. Under this formulation, the Counterfactual
IRL objective is simple: For each BEV observation .., given
state-actions sampled from the expert’s visitation distribution
p¥ and state-actions sampled from the suboptimal visitation
distribution p°; we obtain a reward function and policy by

solving the following optimization problem:

mﬂin max K,z 1y (s, a, Ypev)]

(6)

where p, denotes current policy visitation and « is a tunable
hyperparameter that balances the relative importance between
suboptimal and expert demonstrations.

Using the relationship defined in Eq. 10, we can
rewrite Eq. 6 in terms of the state-action visitation distribution
to obtain our Counterfactual IRL training objective:

LirL = pE(S, a) = (apS(S, (l) + (1 - Q)Eﬂ[pﬂ(sa a)])T¢) (N

Assuming non-trivial rewards, which can be enforced using
gradient regularization techniques [19], the above objective
learns a reward function such that the difference between the
expert’s return and agent policy’s return is minimized while
ensuring suboptimal counterfactuals have a low return. Next,
we describe our active learning framework for learning rg
from counterfactuals and how we generate these counterfactual
annotations. We conclude by deriving the reward learning
objective using the Bradley-Terry model of preferences and
show connections to Inverse Reinforcement Learning (IRL).

Active Reward Learning from Counterfactuals. Our
reward learning framework uses Counterfactual IRL to learn a
mapping from BEV features in ., to their scalar utilities. Our
framework trains r in multiple phases, iteratively prompting
expert operators for counterfactual annotations in underper-
forming scenarios until the learned rewards are sufficient for
planning trajectories similar to expert demonstrations. Fig. 3
illustrates this framework, which we describe next:

Phase 1: Warmstart We obtain a base reward function by
training 74 using only expert demonstrations. This can be done
simply by setting v equal to zero in Ly .

Phase II: Synthetic Counterfactual Generation We rollout
a policy using the learned rewards from phase 1 and select
training samples needing refinement using the Hausdorff dis-
tance between the policy rollouts and expert demonstrations.
For samples exceeding a distance threshold, we accumulate
RGB observations to BEV and generate candidate trajectories

- (aEps [T¢(Sa a, ybev)] + (1 - O‘)EP” [T¢(Sa a, ybev)])



sharing start/end points with the expert. A human annotator
using our counterfactual annotation tool in Fig. 8 to select
trajectories that violate their preferences (e.g., collisions, un-
desirable terrain) as counterfactuals, which are used in phase
III to retrain the reward function using Ly .

Phase HI: Counterfactual Reward Alignment We retrain 1,
using Lir;, using phase 1I's counterfactual annotations and the
original expert demonstrations. We set a to be nonzero to
balance their relative importance. We repeat phases II and 111
until the learned policy converges with expert behavior.

Counterfactual Generation Details. Counterfactual IRL
relies on being able to sample counterfactual trajectories that
visit a diverse set of states between the start and goal. To do
this, we propose a simple method of perturbing the expert
trajectory to obtain these counterfactuals. Given the expert
trajectory T'’, we sample a handful of “control” states at
regular intervals along I'F, excluding the start and goal states.
We perturb each control state according to a non-zero mean
Gaussian distribution centered at each control state N'(p+s, o)
before planning a kinematically feasible path that reaches
the start, goal, and perturbed control states. Practically, we
implement this using Hybrid A* [5] - however, any kinematic
planner will suffice. We repeat this process twice using positive
and negative ;. terms to sample paths (~ 10) on both sides
of the expert before passing these paths to the operator for
counterfactual labeling. For additional implementation details
regarding generating alternate trajectories, we refer readers to
Appendix Sec. X-C.

Counterfactual IRL Derivation Ligy. IRL methods [50,
23] allow for learning reward functions r, parameterized by
¢, given expert demonstrations. However, they provide no
mechanism to incorporate suboptimal trajectories. Suboptimal
trajectories are easy to obtain and enable a data flywheel for
navigation; the BEV observations obtained from expert runs
can simply be relabeled with suboptimal or unsafe trajectories
offline without any more environmental interactions. Moti-
vated by this idea, we derive Lr1, a general and principled
way to learn from suboptimal and expert trajectories jointly
under a single objective.

Our approach builds on the ranking perspective of imitation
learning [40] which uses visitation distributions to denote
long-term behavior of an agent. We denote p™ (s, a), p”(s, a),
p7(s,a) to be the agent, expert, and suboptimal state-action
visitation distributions respectively. We assume the reward
function is conditioned on .., as before, but drop it from the
derivation for conciseness. Under this notation the problem of
return maximization becomes finding a visitation induced by
a policy 7 that maximizes the expected return given by:

max J"(ry) = maXIEpw(Sya)[T(j)(s,a)]. &)

The reward function of the expert should satisfy the ranking
p™(s,a) = pP(s,a), which implies that the expert’s visitation
distribution obtains a return that is greater or equal to any

other policy’s visitation distribution in the environment:

pﬂ(sa a) = pE(Sa a) - IEp”(S,a) [T¢(Sa a)]
S EPE<57Q) [T¢(S, a)] (9)

This property extends to any suboptimal visitations, and as
a consequence of linearity of expectations, to any convex
combination of the current policy’s visitation and any other
suboptimal visitation distribution. Mathematically, this is:

ap™(s,a) + (1 — a)p®(s,a) < pP(s,a) Ya € [0,1]. (10)

Thus, given suboptimal visitation distributions, we can create
a number of pairwise preferences by choosing a suboptimal
visitation and a particular . We turn to the Bradley-Terry
model of preferences to satisfy these pairwise preferences
which assumes that preferences are noisy-rational and that the
probability of a preference can be expressed as:

P(pE(Sa (l) = O[pﬂ(sa (l) + (1 o a)ps(sa (l)) -
eJE<r<f>)
el P (re) 4 ead™(rg)+(1—a)J8(ry)
1
- 1 4 ea(J5(re)=JE(re N+ (1—a)(J™ (re)—J P (re))

(1

Finding a reward function implies maximizing the like-
lihood of observed preferences while the policy optimizes
the learned reward function. Since, the convex combination
holds for all values of o € [0,1], we consider optimizing
against the worst-case to obtain the following two-player
counterfactual IRL objective, where the reward player learns
to satisfy rankings against the worst-possible a:

mdz}xminP (pE(S, a) = ap™(s,a) + (1 — a)p”(s, a)) (12)

and the policy player maximizes expected return:

max J" (r4). (13)

kis

In practice, optimizing for worst-case « for each BEV
scene Ype, can quickly make solving the optimization objective
challenging due to the large number of scenes we train the
reward function on. We make two mild approximations that we
observed to make learning more efficient and tractable: First,
we replace the worst-case o with a fixed «, and second, we
consider maximizing a pointwise monotonic transformation
to the Bradley Terry loss function that directly maximizes
alJ¥(ry) — JE(ry)) + (1 — a)(J™(ry) — JF(ry)) instead of
its sigmoid transformation. With these changes, we can rewrite
our practical counterfactual IRL objective as:

(14)

kis

minmgx (JE(T¢) - (OZJS(M)) +(1— Q)Jﬂ(%))) .

This objective reveals a deeper connection between ap-
prenticeship learning (Eq 6 [1]) obtained by setting o to 0
and learning from preferences [4] obtained by setting « to
1. The loss function goes beyond the apprenticeship learning
objective that only learns from expert by incorporating sub-
optimal demonstrations. Second, it goes beyond the offline



nature of prior algorithms that learn from preferences alone
by instead learning a policy that attempts to match expert
visitation making use of the suboptimal demonstrations.

V. IMPLEMENTATION DETAILS

In this section, we cover implementation details for our
local planning and control modules depicted in Fig. 1. For
additional information regarding model training hyperparame-
ters and generating counterfactual annotations, please refer to
Appendix Sec. X.

1) Global and Local Planning and Controls: Our global
planning module plans a global path and identifies the next
local subgoal for our local planner to plan local paths.
Given a user-specified GPS end goal G, we use Open-
StreetMap [24] to obtain a semi-dense sequence of coarse
GPS goals G = [G4,...,Gn]| spaced 10 meters apart. To
select the next GPS subgoal, we compute the set of distances
D = {|lg — Gnll | ¢ € GU{G:}}, where D contains the
distance of the robot GG; from G and the distance of each
GPS subgoal in G from G . From the set of subgoals with a
smaller distance to Gy than G, we select the farthest subgoal
to use as the next subgoal. We project this subgoal on the edge
of the local planning horizon, a 6 meter circle around the robot,
giving us a carrot for local path planning.

We adopt a DWA [8] style approach to local path planning,
where we enumerate a set of constant curvature arcs (31 in
our case) from the egocentric robot frame. We compute learned
cost for each trajectory by sampling points along each each
arc and computing the discounted cost at each point using
our predicted reward map. We simply invert and normalize
our reward map to the range [0, 1] to convert it to a costmap.
Finally, we compute the distance between the last point on
the arc with the local carrot to obtain a goal-reaching cost.
We multiply the learned and goal-reaching costs by tunable
weights before selecting the trajectory with the lowest cost.
Finally, we perform 1D time optimal control [27] to generate
low-level actions to follow this trajectory. Empirically, we find
that sampling 30 points and using a discount factor of 0.95 is
sufficiently dense. We find that that tuning the goal-reaching
cost to be 1/10th the importance of the learned cost achieves
good balance between goal-reaching and adhering to operator
preferences.

VI. EXPERIMENTS

In this section, we describe our evaluation methodology for
CRESTE and answer the following questions to understand
the importance of our contributions and overall performance
on the task of mapless urban navigation.

e (1) How well does CRESTE generalize to unseen urban
environments for mapless urban navigation?

e (()2) How important are structured BEV perceptual rep-
resentations for downstream policy learning?

e (Q)3) How much do counterfactual demonstrations im-
prove urban navigation performance?

e (Q4) How well does CRESTE perform long horizon
mapless urban navigation compared to other top state-
of-the-art approaches?

We investigate Q; by com-
paring CRESTE’s performance
against other methods in unseen
environments. Additionally, we
evaluate the relative performance
between different input modali-
ties and observation encoders for
CRESTE. To answer Qs and
@3, we conduct ablation stud-
ies that isolate the methodological
contribution in question. Finally,
we evaluate Q4 by conducting a
kilometer-scale experiment com-
paring CRESTE against the top-
performing baseline.
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Mobile Robot Testing |
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Fig. 6: Mobile robot test-
ing platform for real-
world experiments. We
annotate the locations of
the monocular camera,
3D LiDAR, and cellu-
lar phone (not visible) on
our testing platform, the
Clearpath Jackal.

A. Robot Testing Platform

We conduct all experiments us-
ing a Clearpath Jackal mobile
robot. We observe 512 x612 RGB
images from a 110° field-of-view
camera and point cloud observa-
tions from a 128-channel Ouster LiDAR. We obtain coarse
GPS measurements and magnetometer readings from a cellular
smartphone. We use the open source OpenStreetMap [24]
routing service to obtain coarse navigation waypoints. Our
onboard compute platform has an Intel i7-9700TE 1.80 GHz
CPU and Nvidia RTX A2000 GPU. We run CRESTE at 20
Hz alongside our mapless navigation system, which operates
at 10Hz.

B. Training Dataset

We collect a robot dataset with 3 hours of expert navigation
demonstrations spread across urban parks, downtown centers,
residential neighborhoods, and college campuses. Our dataset
consists of synchronized image LiDAR observation pairs and
ground truth robot poses computed using LeGO-LOAM [3§],
a LiDAR-based SLAM algorithm. We train all methods on the
same dataset for 150 epochs or until convergence.

C. Testing Methodology

We evaluate all questions through physical robot experi-
ments performing the task of mapless urban navigation in
urban environments. We present aerial images in Fig. 4
depicting the urban environments where we perform short
horizon (~100m) quantitative experiments. These consist of
six challenging seen and unseen environments with trails, road
crossings, narrow pathways, different terrains, and obstacle
hazards. For locations 1-5, we repeat the same experiment
twice for each approach. For location 6, we repeat the same
experiment five times for each approach. We evaluate the
highest performing methods on a long-horizon quantitative
experiment, which we conduct at a 2-kilometer urban trail
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Fig. 4: Satellite image of testing locations for short horizon mapless navigation experiments. We evaluate baselines across 2
seen (green) and 4 unseen (red) urban locations. Our testing locations consist of residential neighborhoods, urban shopping
centers, urban parks, and offroad trails. In each location, each baseline must start from an endpoint on the annotated blue

trajectory and navigate to the opposite end of the trajectory. We denote each location’s ID with a numerical superscript.
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Fig. 5: Satellite image of our 2 kilometer long-horizon testing area, with examples with front view RGB image observations
and CRESTE’s predicted BEV costmap (converted from the predicted BEV reward map). We annotate successful examples in
green with a brief description of the situation. We annotate unsuccessful examples in red, present the observation right before
the intervention, and provide a brief description of the cause of failure.

shown in Fig. 5. We pre-emptively terminate the long-horizon
experiment if the baseline is unable to complete the mission
within a predefined time. Next, we explain evaluation metrics
1 to 3, which we use for the short-horizon experiments, and
evaluation metrics 4 and 5, which we use exclusively for the
long-horizon experiments.

Our evaluation metrics are defined as follows: 1) Average
Subgoal Completion Time (AST) - the average time to complete
each subgoal where all subgoals are evenly spaced 10 meters
apart 2) Percentage of Subgoals Reached (%S) - the percentage
of subgoals reached by the end of the mission 3) Normalized
Intervention Rate (NIR) - the number of operator interventions
required for every 100 meters driven 4) Total Distance Driven
(Dist. (m)) - the total distance driven before mission failure or
completion 5) Total Interventions (Total Int.) - the total number
of interventions required per mission. During evaluation, we

only consider interventions that were incurred by the method
(e.g. overrides performed to give right of way to vehicular
traffic are not considered interventions).

D. Baselines

We supplement all baselines with the same analytical ge-
ometric avoidance module to prevent catastrophic collisions.
Even with this module, operators preemptively intervene when
the baseline deviates from general navigation preferences
(e.g. stay on sidewalks, follow crosswalk markings, etc). All
baselines, with the exception of PIVOT [22], perform all
computations using onboard compute to fairly evaluate real-
time performance. Next, we describe our evaluation baselines.

For questions 1 and 3, we compare CRESTE against
four existing navigation baselines and six variations of the
CRESTE architecture. We first describe the existing baselines:



In Distribution Out of Distribution

Location Sherlock North Woolridge Square Sherlock South Trader Joes Hemphill Park
Method AST | | %ST | NIR | | AST | | %St | NIR | | AST || %St | NIR] | AST | | %St | NIR ] | AST | | %St [ NIR |
Geometric Only 1764 |61.60 | 1121 | 18.56 | 86.36 | 9.50 1556 |92.50 | 7.80 1522 | 94741 12.05 | 14.21 | 95.00 | 13.21
PACER+G [20] 2579 196.15]9.42 26.51 |90.90 | 8.83 22.11 |95.00 | 7.67 2438 | 87.14|17.93 |23.94 | 9285|947
ViNT [35] 2038 | 65.51 1036 | 17.85 |90.36 | 7.94 17.06 |92.30 | 7.19 2210 | 84.21 | 1836 |23.92 |95.00 | 10.96
PIVOT [22] 46.56 | 83.33 |26.03 | 5736 | 84.11 [2022 | 4541 |75.00 2191 |41.77 |7444 |40.67 |33.85 | 85.00 | 28.36
CRESTE - cfs - st | 21.26 | 96.15 | 1299 | 20.53 | 91.66 | 9.79 21.13 9280 | 5.65 2317 | 9375|1487 |26.85 |94.11 ]| 11.11
CRESTE - cfs 2586 |96.29 | 9.20 19.84 [90.90 | 6.12 1327 9230 | 241 2539 |91.66 | 1049 | 2843 | 83.33 | 8.57
CRESTE - st 19.09 |[96.29 | 6.10 17.80 |92.90 | 3.03 12.88 | 94.65 | 2.04 2201 |9285]7.83 1632 | 9342|216
CRESTE (ours) 14.01 | 96.60 | 4.60 14.70 | 100.0 | 0.00 12.60 | 95.23 | 0.86 15.28 | 95.65 | 3.73 15.42 | 100.0 | 0.00

TABLE I: Quantitative evaluation comparing CRESTE against existing navigation baselines for short horizon mapless
navigation experiments. In distribution locations are present in the training dataset while out-of-distribution locations are
absent from the training data. We bold the best performing method for each metric in each location, and annotate each metric
with an up or down arrow to indicate if higher or lower numbers are better. We define the following evaluation metrics in the
evaluation metric section of this work and denote their abbreviations as: AST - average subgoal completion time (s), %S -
percentage of subgoals reached in mission, NIR - Number of interventions required per 100 meters driven.

TABLE II: Quantitative evaluation comparing the impact
of different input modalities and observation encoders on
CRESTE. All baselines are evaluated on the same experiment
area. We compute the mean and standard deviation over 5
trials and bold the best performing method for each metric in
each location. We annotate each metric with an up or down
arrow to indicate if higher or lower numbers are better.

1) VINT [35] - a foundation navigation model trained on goal-
guided navigation 2) PACER+Geometric [20] (PACER+G) - a
multi-factor perception baseline that considers learned terrain
and geometric costs in a dynamic window [8] (DWA) style
approach 3) Geometric-Only - a DWA style approach that
only considers geometric costs 4) PIVOT [22] - a VLM-
based navigation method that uses the latest version of GPT4o-
mini [2] to select local goals from image observations.

We test six variations of CRESTE to evaluate the effect of
different observation encoders and sensor modalities. These
consist of 1) CRESTE-RGB, the same RGB encoder but
using only monocular RGB images, 2) CRESTE-STEREQ,
the same RGB encoder with a stereo processing backbone
that fuses features from stereo RGB images, 3) CRESTE-
RGB-Frozen, the same depth prediction head but with a
frozen Dinov2 [25] encoder that only uses monocular RGB
images. The remaining variations ablate our methodological
contributions: 4) CRESTE-cfs, our model trained without
counterfactual demonstrations, but otherwise identical to the
original, 5) CRESTE-st, our model trained without the BEV
inpainting backbone, but otherwise identical to the original,
6) CRESTE-cfs-st, our model trained without counterfactual
demonstrations or the BEV inpainting backbone. For archi-
tectures 5 and 6, we directly pass the unstructured BEV
feature map zpey, splar t0 the reward function 7y and train the
splat module fp,; using expert demonstrations. We still freeze
the RGB-D backbone frgpa When training rg. For additional

Out of Distribution Location Mueller Loop
Location Blanton Museum Method AST | | %ST | NIR | | Dist. (m) 1 | Total Int. |
Method AST | %St NIR | PACER+G [20] | 15.8 61.53 | 3.56 1345.07 48
CRESTE-RGB-FROZEN | 17.14+£2.51 | 97.91£2.59 | 1.69+£0.96 CRESTE (ours) | 12.94 99.45 | 0.052 | 1919.44 1
CRESTE-RGB 17.254+3.83 | 97.384+2.43 | 1.384+0.90
CRESTE-STEREO 17.72+5132 | 97.43+1.88 | 1.07=0.49 TABLE III: Quantitative evaluation for long horizon mapless
CRESTE (ours) 13.81+2.38 | 98.36:-1.55 | 0.76:0.48 navigation experiments. All baselines are evaluated on the

same 1.9 kilometer urban area. We bold the best performing
method for each metric in each location, and annotate each
metric with an up or down arrow to indicate if higher or
lower numbers are better. We define the following evaluation
metrics in the evaluation metric section of this work and denote
their abbreviations as: AST - average subgoal completion time
(s), %S - percentage of subgoals reached in mission, NIR -
Number of interventions required per 100 meters driven, Dist.
(m) - total distance driven in meters, Total Int. - total number
of interventions required for the entire mission.

details regarding the CRESTE architecture variations, we refer
readers to Appendix Sec. X-D2. Next, we will describe high-
level implementation details for each non-CRESTE baseline.

Since ViINT is pre-trained for image goal navigation, we
are unable to deploy this model in unseen environments where
image goals are not known apriori. Thus, we finetune VINT by
freezing the pre-trained VINT backbone and changing the goal
modality encoder to accept 2D xy coordinate goals rather than
images. We follow the same model architecture and match the
training procedure from the original paper for reaching GPS
goals. We reproduce the PACER and PIVOT models faithfully
to the best of our abilities as no open-source implementation
is available.

E. Quantitative Results and Analysis

We present the quantitative results of the short horizon and
long-horizon experiments in Table 1, Table 1I, and Table III
respectively, and analyze these results to answer Q; - Q4 in
the following section.

1) Evaluating Generalizability to Unseen Urban Environ-
ments.: Comparing CRESTE against all other baselines in Ta-
ble I, we find that our approach achieves superior performance
in all metrics for both seen and unseen environments. We
present qualitative analysis for each learned baseline in Ap-
pendix Sec. X-D. Quantitatively, PACER+G, the next best ap-



proach, requires two times more interventions than CRESTE
in seen environments and five times more interventions in
unseen environments. Furthermore, we find that PIVOT, our
VLM-based navigation baseline, performs poorly relative to
other methods, corroborating our claim that VLMs and LLMs
are not well attuned for urban navigation despite containing
internet-scale priors. We hypothesize this is because naviga-
tion requires identifying which priors are most important for
navigation, a task seen rarely by VLMs and LLMs during
pre-training. Notably, we achieve an intervention-free traversal
in one unseen environment (Hemphill Park), a residential
park with diverse terrains, narrow curb gaps, and crosswalk
markings. From these findings, we conclude that CRESTE is
remarkably more generalizable for mapless urban navigation
than existing approaches.

In Table II, our approach performs most favorably us-
ing RGB and LiDAR inputs, followed by stereo RGB and
monocular RGB respectively. This occurs because LiDAR
offers robustness to severe lighting artifacts like lens flares
that affect costmap prediction quality. We present qualitative
examples of this in Fig. 10. Interestingly, we find that distilled
Dinov2 features perform favorably compared to frozen Dinov2
features. Prior works corroborate this observation [48, 49]
and verify that Dinov2 features contain positional embedding
artifacts that disrupt multi-view consistency. We postulate that
our distillation objective enables our RGB-D encoder frgpa
to focus on learning artifact-free features while the semantic
decoder femanic learns how to reconstruct these artifacts. For
additional analysis comparing these architectural variations,
we refer readers to Appendix Sec. X-DI.

2) Evaluating the Importance of Structured BEV Percep-
tual Representations.: We assess the impact of structured
perceptual representations by evaluating CRESTE-cfs-st and
CRESTE-st against CRESTE in Table I, where the only dif-
ference is whether structured representations and counterfac-
tuals are used. Without structured representations, CRESTE-
st incurs 28% more interventions on average across all envi-
ronments. Performance further deteriorates without structured
representations or counterfactuals, incurring 41% more inter-
ventions on average across all environments. We hypothesize
that this occurs because structured representations encode
higher-level features that are more generalizable and easier
for policies to reason about compared to lower-level features
that capture less generalizable high-frequency information.

3) Evaluating the Importance of Counterfactual Demon-
strations.: We compare CRESTE against CRESTE-cfs, the
exact same approach but without using counterfactuals to train
the reward function. On average, we find in Table I that using
counterfactuals reduces the number of interventions by 70%
in seen environments and 69% in unseen environments. Both
of these baselines distill the same features for navigation from
VEMs, thus vindicating our claim that even with sufficiently
informative perceptual representations, it is important to lever-
age our counterfactual-based objective to properly identify and
reason about the most salient features for navigation.

4) Evaluating Performance on Kilometer-Scale Mapless
Navigation.: Table III compares CRESTE against the top-
performing baseline from Table I, PACER+G, on long hori-
zon mapless navigation. Fig. 5 show qualitative examples of
CRESTE’s predicted BEV costmaps along the route. While
PACER+G still drives over a kilometer before timing out, it
requires significantly more interventions to do so. We observe
that the majority of PACER+G failures that occur result from
either not adequately considering geometric factors like curb
gaps or predicting poor costmaps due to differences in lighting
and weather compared to the conditions from which the train-
ing dataset was collected. Contrastingly, CRESTE is robust to
perceptual aliasing from lighting and weather variations and
predicts accurate costmaps even during failures. From this,
we conclude that CRESTE achieves superior performance in
long-horizon mapless urban navigation as well.

VII. LIMITATIONS AND FUTURE WORK

While CRESTE inherits some viewpoint-invariance from
VFMs, it does not allow reward maps to be conditioned
on embodiment-specific constraints, such as the traversabil-
ity differences between quadrupeds and wheeled robots. An
interesting future direction is applying existing research on
cross-embodiment conditioning [35] to our architecture. Fur-
thermore, CRESTE infers reward maps using observations
from a single timestep, limiting multi-step horizon reasoning
tasks, such as recovering from dead ends or negotiating
paths in constricted environments. Extending CRESTE with
memory and counterfactual IRL for reasoning about object
dynamics are promising directions for addressing these issues.
In addition, reward learning with counterfactuals is a potential
bottleneck, as it requires humans for counterfactual labeling.
Automated counterfactual generation with VLMs/LLMs is an-
other promising direction to further improve scalability. Lastly,
our counterfactual IRL objective can further be extended to
incorporate preferences following the same derivation from
the ranking perspective. This would not only allow the reward
to reason about what paths are best but allow is to learn how
to discriminate between two suboptimal paths should the need
arise.

VIII. CONCLUSION

In this paper, we introduce Counterfactuals for Reward
Enhancement with Structured Embeddings (CRESTE), a scal-
able framework for learning representations and policies that
address the open-set generalization and robustness challenges
of open-world mapless navigation. CRESTE learns robust,
generalizable perceptual representations with internet-scale
semantic, geometric, and entity priors by distilling features
from multiple visual foundation models. We demonstrate that
our perceptual representation encodes a sufficient set of factors
for urban navigation, and introduce a novel counterfactual-
based loss and active learning framework that teaches policies
to hone in on the most important factors and infer how they
influence fine-grained navigation behavior. These contributions
culminate to form CRESTE, a local path planning module



that significantly outperforms state-of-the-art alternatives on
the task of long-horizon mapless urban navigation. Through
kilometer-scale real-world robot experiments, we demonstrate
our approach’s effectiveness, gracefully navigating an unseen
2 kilometer urban environment with only a handful of inter-
ventions.
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X. APPENDIX

We organize the appendix into the following sections: 1)
Details for training CRESTE and other baselines in Sec. X-B,
2) Details regarding generating counterfactual annotations
in Sec. X-C, and 3) Qualitative analysis for the short horizon
experiments in Sec. X-D.

A. Perceptual Encoder Label Generation Details

In this section, we provide additional details regarding
generating BEV instance maps for training the perceptual
encoder ©. We observe that the default SAM2 model set-
tings perform well for generating instance labels without
significant hyperparameter tuning. When merging sequential
SAM?2 instance labels to generate static BEV instance maps,
it is important to ensure that instance IDs remain temporally
consistent when merging cross-view instances. We ensure this
by greedily merging BEV instances between frames with the
highest intersection over union (IoU). Instances that do not
exceed an IoU of 0.2 are treated as unique instances and are
merged into the aggregated BEV instance map as such. We
repeat this procedure from the first to the last observation in
the horizon.

When generating dynamic BEV instance maps, we back-
project the image instance labels to 3D and cluster the point
cloud using DBSCAN with three density thresholds (0.1, 0.2,
0.3) and require a minimum of (5, 3 5) points in each cluster,
respectively. We observe that these thresholds work well across
environments for identifying clusters within a 12.8m sensing
range. To match SAM?2 instance labels to cluster IDs, we use
an loU threshold of 0.2 to determine if the label and cluster
IDs should be matched. All unmatched clusters are discarded
and the matched clusters are used to construct the dynamic
BEV instance map.

B. Model Training Details

In this section, we supplement the implementation details
for CRESTE and each baseline described in Sec. VI-D.

1) CRESTE: We provide specific architecture and train-
ing hyperparameters settings in Table IV and Table V, and
supplement the CRESTE training procedure in Sec. IV-B1
with additional details for training our observation encoder ©.
We warm-start the RGB-D backbone for 50 epochs or until
convergence. We set oy and o, the loss weights for semantic
feature regression and completion, to 1 and 0.5 respectively
and keep this fixed for the rest of training. After this, we
freeze the RGB-D backbone and train the fi., using the
BEV inpainting backbone loss Ly, for five epochs before
unfreezing the RGB-D backbone and training end-to-end for
another 45 epochs or until convergence. This enables faster
convergence by stabilizing fuey before joint training. We set
B1, B2, and B3 to 1, 2, and 3 for Ly, but find that training
remains stable for any reasonable combination of values.
Finally, we empirically find that replacing the Supervised
Contrastive loss [16] with Cross Entropy loss while training
the dynamic panoptic head fiey, dynamic €mpirically improves

Fig. 7: Qualitative Example of context images provided to
PIVOT [22], our VLM-based navigation baseline. We annotate
satellite images with the robot GPS and heading (red) and
current GPS goal (blue). Additionally, we annotate the front
view image with potential subgoals from which we prompt
the model to choose from.

overall performance. Thus, we use this model for our long-
horizon navigation experiments presented in Table III

As mentioned in Sec. IV-B2, we train our reward function
T4 in two phases. During both phases, we freeze O, thus only
training r4. During initialization (Phase I), we train for 25
epochs, setting o = 0 only to use expert demonstrations.
During finetuning (Phase III), we initialize ry from scratch,
train for 50 epochs, setting oo = 0.5 and a reward regularization
term [19] a,.cq = 1.0. Empirically, we find that our objective
is stable for a range of o values and benefits from a larger
reward regularization penalty to encourage more discrimina-
tive rewards. In total, we train the perceptual encoder © and
reward function rg for a combined 150 epochs.

2) ViNT [35]: To modify VINT to follow XY goal guidance
instead of image goal guidance, we follow the architecture



design details in the VINT paper for adapting the backbone to
GPS goal guidance. We only train the XY goal encoder and
freeze the remaining model parameters. We sample XY goals
from future odometry between § to 10 seconds to generate
training data.

3) PIVOT [22]: We condition PIVOT using an annotated
satellite view image, annotated front view image, and text
instructions. As shown in Fig. 7, we annotate a satellite image
containing the robot’s current position, heading, and next goal
GPS coordinates. Fig. 7 also presents the annotated front view
RGB image with each numbered circle indicating a potential
goal that our VLM must choose from. Finally, we provide the
text prompt below:

I am a wheeled robot that cannot go over objects.
This is the image I'm seeing right now. 1 have
annotated it with numbered circles. Each number
represents a general direction I can follow. I have
annotated a satellite image with my current location
and direction as a red circle and arrow and the goal
location as a blue circle. Now you are a five-time
world champion navigation agent and your task is
to tell me which circle 1 should pick for the task of:
going forward X degrees to the Y? Choose the best
candidate number. Do NOT choose routes that go
through objects AND STAY AS FAR AS POSSIBLE
AWAY from untraversable terrains and regions. Skip
analysis and provide your answer at the end in a json
file of this form: “points™: []

where X is replaced by the degrees from the goal computed
using the magnetometer heading and goal GPS location, and
Y is either left or right depending on the direction of the
goal. During testing, we use our geometric obstacle avoidance
module to safely reach the current goal selected by PIVOT.

4) PACER [20]: PACER is a terrain-aware model that
predicts BEV costmaps from BEV images. It requires pre-
enumerating an image context that specifies the preference
ordering for terrains. In all environments, we would like the
robot to prefer traversing terrains in the following preference
order: sidewalk, dirt, grass, rocks. Thus, we condition PACER
on this preference order for all environments.

C. CRESTE Counterfactual Generation Details

We supplement Sec. IV-B2 with additional details regard-
ing the hyperparameters used for generating counterfactual
demonstrations. To encourage generating diverse counterfac-
tuals that explore more of the state space, we perturb 3
control points along the expert trajectory according to a non-
zero Gaussian distribution. More specifically, for half of the
generated trajectories, we sample control points according to
a positive mean g = 1 with standard deviation o = 0.5 to
perturb these trajectories to one side of the expert trajectory.
We repeat this for the other half, setting 4 = —1 and 0 = 0.5
to generate trajectories on the opposite side. Additionally, we
empirically find that replacing the Hybrid A* path planner
by fitting a polynomial line on the control points provides
comparable performance gains and is more robust when it is

TABLE IV: Architecture Hyperparameters for CRESTE.

Hyperparameter Value

RGB-D Encoder ( fighq)

Base Architecture EfficientNet-BO [42]
Number of Input Channels 4

Input Spatial Resolution 512 x 612
Output Spatial Resolution 128 x 153
Output Channel Dimension 256
Semantic Decoder Head ( fsemantic)

Input Spatial Resolution 128 x 153
Input Channel Dimension 256
Output Spatial Resolution 128 x 153
Output Channel Dimension 128
Number of Hidden Layers 4
Depth Completion Head ( faepm)

Input Spatial Resolution 128 x 153
Input Channel Dimension 256
Output Spatial Resolution 128 x 153
Number of Depth Bins 128
Number of Hidden Layer 2
Depth Discretization Method Uniform
Number of Intermediate Layers 2

Lift Splat Module (fpi.)

Total Input Channel Dimension 288
Input Semantic Channel Dimension 256
Input Depth Channel Dimension 32
Map Cell Resolution 0.1m x 0.1m X 3
Output Channel Dimension 96

Output Spatial Resolution 256 X 256
BEV Inpainting Backbone (fyey)

Base Architecture ResNetl8 [10]

Input Channel Dimension 96
Input Spatial Resolution 256 X 256
Qutput Static Panoptic Channel Dimension 32
Output Dynamic Panoptic Channel Dimension 32
Output Elevation Channel Dimension 1

Reward Function (rg)
Base Policy Architecture Value Iteration Network [41]
Base Reward Architecture MultiScale-FCN [46]
Input Spatial Resolution 256 X 256

Input Channel Dimension 65

Prepool Channel Dimensions [64, 32]
Skip Connection Channel Dimensions [32, 16]
Trunk Channel Dimensions [32, 32]
Postpool Channel Dimensions [48]
# Future Actions 50

# Actions Per State 8
Discount Factor 0.99

difficult to find a kinematically feasible path between control
points.

In total, we generate 10 alternate trajectories for each
training sample. On average, we find that providing just
1-5 counterfactual annotations for each non-expert-aligned
sample significantly improves reward learning for r,. Fig. 8
presents our counterfactual annotation tool showing qualitative
examples of the front view and BEV image observation pre-
sented to the human annotator when selecting counterfactual
trajectories. We use a fixed set of criteria for annotating
counterfactuals, including but not limited to: driving on un-
desirable terrains, irrecoverable failures like driving off curbs,
and unsafe behaviors like colliding into objects and veering
off crosswalks.

D. Qualitative Short Horizon Experiment Analysis

In this section, we present a qualitative analysis of the short
horizon experiments for each location. For each experiment



TABLE V: Training Hyperparameters for CRESTE.

Hyperparameter Value
RGB-D Backbone Training ( figpq)

Semantic Loss Weight () 2.0
Depth Completion Loss Weight (c2) 0.5

# Training Epochs 50
Batch Size 12
Optimizer AdamW [18]
Adam Bq 0.9
Adam S2 0.999
Learning Rate 5% 1073
Learning Rate Scheduler Exponential
Learning Rate Gamma Decay ~ 0.98
GPU Training Hours 10 Hours

GPUS Used 3 Nvidia H100 GPUs
BEV Inpainting Backbone Training (fye,)

Static Panoptic Loss Weight (1) 1.0
Dynamic Panoptic Loss Weight (32) 2.0
Elevation Loss Weight (53) 3.0
Warmup Epochs 5

# Training Epochs 50
Batch Size 24
Optimizer AdamW [18]
Adam Bq 0.9
Adam S2 0.999
Learning Rate 5x 1074
Learning Rate Scheduler Exponential
Learning Rate Gamma Decay ~ 0.98
GPU Training Hours 24 Hours

GPUS Used 3 Nvidia H100 GPUs
Reward Function Training (rg)

Batch Size 30
Optimizer AdamW [18]
Adam Bq 0.9

Adam S2 0.999
Learning Rate 5x 1074
Learning Rate Scheduler Exponential
Learning Rate Gamma Decay ~ 0.96

Reward Learning Weight Liry, 1.0

Reward Smoothness Penalty Weight 4.0

GPU Training Hours 2 Hours
GPUS Used 3 Nvidia H100 GPUs

area illustrated in Fig. 4, we compare the planned path for
each learned baseline in approximately the same location.
We will first compare CRESTE against existing navigation
baselines in Sec. X-D1 before comparing different variations
of the CRESTE architecture in Sec. X-D2.

1) Comparing CRESTE Against Existing Baselines: Fig. 9
provides additional context to understand the inputs given
to each baseline and the planned path, which we describe
as follows: 1) CRESTE - The input RGB and sparse depth
image (not shown) and predicted BEV cost map where
darker regions correspond to low cost, 2) PACER+Geometric
(PACER+G) [20] - The input BEV image and predicted BEV
cost map where darker regions correspond to lower cost, 3)
PIVOT [22] - The annotated satellite image with the robot’s
current location (blue circle), heading (blue arrow), and goal
location (red circle). The front view RGB image annotated
with numbered circles for prompting the VLM along with the
chosen circle highlighted in green, 4) VINT [35] - The front
view image annotated with the local path waypoints predicted
by ViNT.

Analyzing each model, we find that PACER+G struggles
to infer the cost for terrains that are underrepresented in the

Trajectory Ranking Tool

Next Sample | [ Regenerate Trajectories |[ Save Labels |
[GoTo e

Sample Index: 7057 Sequence: 14, Frame: 2650

BEV Plot

BEV Trajectories

Trajectory 0 -
Trajectory 1 -
Trajectory 2 -
Trajectory 3 -
Trajectory 4 -

Trajectory 5 -

Trajectory 6 -

Trajectory 7 -

Trajectory 8 -

Trajectory 9 - suboptimal
Trajectory 10 - optimal

Front View

Fig. 8: Counterfactual annotation tool used for labelling coun-
terfactuals for training the reward function ry. We provide the
front view RGB image and BEV RGB image to the human
annotator for context. In the image below, the trajectories
annotated in red are counterfactuals and the trajectories in
green are considered acceptable.

training dataset, such as dome mats. Furthermore, when two
terrains look visually similar, such as the sidewalk and road
pavement for the Trader Joes location, PACER infers the
costs incorrectly. PIVOT can select the correct local waypoint
in scenes with a large margin for error, but struggles at
dealing with curb cuts (Hemphill Park, Sherlock North) and
narrow sidewalks (Trader Joes). Long latency between VLM
queries negatively impacts the model’s ability to compensate
for noisy odometry. This effect is particularly apparent in
narrow corridors or sidewalks where even minor deviation
from the straight line path results in failure. VINT can suc-
cessfully maintain course in straight corridors and sidewalks,
but struggles to consider factors like curb cuts and terrains. We
hypothesize this is because our dataset is not sufficiently large
for learning generalizable features from expert demonstrations
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Fig. 9: Qualitative comparison of local paths planned by different learned baselines in different geoegraphic locations: Hemphill
Park, Sherlock North, Sherlock South, Trader joes, Woolridge. We visualize each chosen path either in bird’s eye view (BEV)
or on the front view RGB image in aqua blue. For PACER+Geometric [20], we provide the BEV image used by the model.
For PIVOT [22], we show the annotated satellite image and front view image used to prompt the VLM. For VINT [35], we
front view RGB image given as input. For more information regarding each baseline, we refer readers to Appendix Sec. X-D1.

alone. Furthermore, demonstrations with straight line paths
dominate our dataset, making it difficult for behavior cloning
methods like VINT to learn which factors influence the expert
to diverge from the straight line path.

2) Comparing Different Variations of CRESTE: We eval-
uate four variations of CRESTE in the same geographic
location under adverse lighting conditions in Fig. 10. Our
monocular RGB only model, CRESTE-RGB, is identical
to the original model but does not process sparse depth
inputs. In CRESTE-RGB-FROZEN, we replace the original

RGB-D encoder with a frozen Dinov2 encoder (VIT-S14),
a 2IM parameter pre-trained model, and downsample the
input images from 512x612 to 210x308. This is essential
for performing real-time inference using the onboard GPU.
CRESTE-STEREOQO uses an EfficientNet-B0O [42] encoder to
extract features from a rectified stereo RGB pair and the
MobileStereoNet [37] backbone to classify the depth of each
pixel. For CRESTE-STEREO, we backproject image features
from the RGB backbone zy, from the left image only to
maintain a consistent field-of-view with other variations.
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Fig. 10: Qualitative comparison of different CRESTE architecture variations in geographic location 6, Blanton Museum. These
variants consist of: 1) CRESTE-RGB-FROZEN (top left), our model but only using monocular RGB inputs and a frozen
Dinov2 [25] encoder, 2) CRESTE-RGB (top right), our model but only using monocular RGB inputs with a distilled RGB
encoder, 3) CRESTE-STEREO (bottom left), our model but only using stereo RGB inputs and an additional stereo RGB
backbone [37] for depth prediction, 4) CRESTE (bottom right), our original model using monocular RGB and sparse depth
from LiDAR as inputs. We visualize the predicted bird’s eye view (BEV) costmap and front view RGB image with the chosen
trajectory in aqua. For more information regarding each baseline, we refer readers to Appendix Sec. X-D2.

We find that CRESTE-RGB and CRESTE-RGB-FROZEN
are adversely affected by heavy lighting artifacts. While they
are robust to most perceptual aliasing, heavy aliasing (e.g.
lens flares) degrades costmap quality. As shown in Fig. 10,
the monocular RGB only models inflate low cost regions
beyond the traversable area under heavy perceptual aliasing.
We find that CRESTE-STEREQ, our stereo RGB architecture
variation, performs more robustly than the monocular RGB
only models, but still predicts low cost regions incorrectly
at the boundaries between traversable regions. In contrast,
CRESTE, which fuses monocular RGB and sparse depth
from LiDAR, predicts accurate costmaps even under adverse
lighting conditions. We believe this occurs because LiDAR
is unaffected by lighting artifacts, allowing the model to
compensate for degraded image features.



