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Abstract—Synthesizing safe sets for robotic systems oper-
ating in complex and dynamically changing environments is
a challenging problem. Solving this problem can enable the
construction of safety filters that guarantee safe control actions—
most notably by employing Control Barrier Functions (CBFs).
This paper presents an algorithm for generating safe sets from
perception data by leveraging elliptic partial differential equa-
tions, specifically Poisson’s equation. Given a local occupancy
map, we solve Poisson’s equation subject to Dirichlet boundary
conditions, with a novel forcing function. Specifically, we design a
smooth guidance vector field, which encodes gradient information
required for safety. The result is a variational problem for which
the unique minimizer—a safety function—characterizes the safe
set. After establishing our theoretical result, we illustrate how
safety functions can be used in CBF-based safety filtering. The
real-time utility of our synthesis method is highlighted through
hardware demonstrations on quadruped and humanoid robots
navigating dynamically changing obstacle-filled environments.

1. INTRODUCTION

Deploying robotic systems in real-world environments au-
tonomously requires that they operate in complex, dynamic en-
vironments while avoiding collisions with multiple objects of
arbitrary geometry. Achieving this level of dynamic safety ne-
cessitates a quantifiable description of the safety requirement,
i.e. a functional representation of the environment via a safety
constraint. Additionally, this representation must be integrated
with the dynamics of the system to produce safe inputs, i.e.,
inputs that ensure satisfaction of the safety requirements. To
achieve this, numerous methods for enforcing dynamic safety
constraints have been investigated, including Hamilton-Jacobi
reachability [1-3], Model Predictive Control [4, 5], Artificial
Potential Fields (APFs) [6, 7], and Control Barrier Functions
(CBFs) [8]. This paper seeks to fuse the synthesis of safety
constraints with controllers that yield safe behaviors, coupling
functional representations of dynamic environments with the
generation of safe controllers.

Safety constraints are typically synthesized using heuris-
tic approaches for simple environments, or through general
methods that are non-constructive. While heuristic methods
work for environments with simple geometries [9, 10], they
struggle when generalized to more complex environments.
Alternatively, for more complex geometries, signed distance
functions (SDFs) [11-13] have been proposed as a method
for generating safety descriptors in the context of collision
avoidance. However, SDFs possess gradient discontinuities
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Fig. 1: Safe set synthesis from perception data via Poisson’s equation.
Hardware experimental footage: https://youtu.be/fBRdkAJGixI.
which present challenges in synthesizing safe controllers.
Therefore, the synthesis of safety constraints is a challenging
problem in its own right—made even more challenging by the
need to couple safety constraints with system dynamics.
Given a description of the environment in the context of
a goal location subject to obstacles, a popular method for
enforcing safe behavior is the APE Originally introduced in
[6], APFs are a heuristic technique for achieving dynamic
safety by encoding “repulsive” gradients on obstacle surfaces
and “attractive” gradients to a desired goal. This coupling
between the dynamics of the system (via gradients) and
specifications (via attractive and repulsive potentials) allows
for the problem to be framed as one of constructing an
APE. One approach to constructing APFs is to frame them
as solutions to elliptic partial differential equations (PDEs)
[14, 15]. This has been employed in the context of navigation



and path planning [16-18] and is useful for complex geometry
[19]. Despite the success of APFs, this method assumes single
integrator dynamics, i.e., a kinematic model. Additionally,
APFs couple goal-reaching (stability) and collision avoidance
(safety), limiting their ability to provide a description of safety
that is independent of control objectives.

A decoupled approach to synthesizing safe controllers for
general nonlinear systems is through CBFs [8, 20]. In this
framework, safety constraints yield a safe set defined as the
superlevel set of a function, and this function is a CBF if
there exists inputs that render the safe set forward invariant.
CBFs have been shown to generalize APFs [7], in that they
decouple safety from stability, and apply to general nonlinear
systems. Specifically, given a CBF, one can synthesize a safety
filter [21, 22] framed as a quadratic program with the stability
objectives as a cost and safety objective as a constraint.
Methods such as [23-25] offer a systematic approach for
constructing CBF-based safety filters for robotic systems via
reduced-order models with real-time realizations on hardware.
However, for collision avoidance in complex environments, the
constructive design of functions encoding safety objectives,
i.e., the synthesis of safe sets and the corresponding CBFs,
remains a challenging task.

In this paper, we show that elliptic PDEs can be used
to synthesize safety functions—functional representations of
complex environments that characterize safety. We demon-
strate that the process of constructing safe sets can be formu-
lated as solving a Dirichlet problem for Poisson’s equation.
In particular, given an occupancy map, we solve Poisson’s
equation subject to Dirichlet boundary conditions, where the
solution, a safety function, characterizes a safe set, while
the boundary conditions encode desired level-set values on
obstacle surfaces. We propose several methods for constructing
the forcing function within Poisson’s equation, including an
average flux method and a guidance field method [26] that
provides additional degrees of freedom for defining safety.
The solution has desirable differentiability (i.e., regularity)
properties, which are critical in enabling their use in the
synthesis of safety filters.

The key observation of this paper is that safety functions
obtained from Poisson’s equation can be used to synthesize
CBFs and, therefore, safety filters. The main contributions are
threefold: (1) we present a constructive way of generating
safe sets for complex environments from perception data
via Poisson’s equation, (2) we illustrate and prove how the
resulting safety functions can be used to synthesize CBF-based
safety filters, and (3) we demonstrate the real-time efficiency
of our approach with hardware experiments on quadruped and
humanoid robots in static and dynamically changing environ-
ments. Importantly, we show that safety function synthesis
(1) can be done in real-time via perception data to enable
safe behaviors (2) on highly dynamic robotic systems (3).
Notation:

« A continuous function v : R — R is an extended class K,

K, (v € K&,) if v is monotonically increasing, ~(0) =
0, ims_oo 7(s) = 00, and lim,_, o, y(s) = —oc.

e For a function w : R®* — R where x — w(x) =
w(ry, -+ ,Ty), let Dw denote the gradient and DZw
denote the Hessian. More generally, for k& € Ng, D*w is
the collection of all partial derivatives of order k. Given
a multi-index £ = (&1, -+, &,) € N with |£] = k:
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« () is an open, bounded and connected set with smooth
boundary 9 such that 2 = QU 0 is the closure of 2.

o C*(Q) is the set of functions: {w : Q — R | w 18 k-times
continuously differentiable}.

o CH(Q) = {w € C*(Q)| Dfw is uniformly continuous
on bounded subsets of  for all |¢| < k}, that is, D*w
continuously extends to ).

o CF(OQR5g) = {w : Q — R20| w i k-times contin-
uously differentiable} with the similar respective defini-
tions for C*(Q; Rsq), C*(£; R<g), C¥(Q; R<p) and vec-
tor or matrix-valued functions C*(; R™), C*(£; R**").

o CF2(Q) for 0 < a < 1 denotes Hélder continuous
function spaces: see Appendix A.

DFw = {wa | €] =k}, Déw =

II. BACKGROUND: SAFETY-CRITICAL CONTROL

This section reviews safety for nonlinear systems in the con-
text of CBFs. We consider a nonlinear control-affine system:

D

where x € R™ is the state and u € R™ is the control input.
The function f : R™ — R™ denotes the drift dynamics and
g : R™" — R™**™ is the actuation matrix, both assumed to be
locally Lipschitz continuous. A locally Lipschitz continuous
controller k : R — R™ yields the closed-loop system:

x = fo(x) = f(x) + g(x)k(x). 2)

Because the functions f, g, and k are locally Lipschitz contin-
uous, (2) defines an ordinary differential equation such that for
any initial condition x(0) = xo € R", there exists a unique
continuously differentiable solution ¢ — x(¢) on the maximal
time interval Iy (x0) = [0, tmax(x0)) [27].

% — £(x) + g,

A. Control Barrier Functions and Safety Filters

The concept of safety can be formalized by requiring that
all system trajectories ¢ — x(¢) remain within a set S C R",
characterized by the notion of forward invariance.

Definition 1. (Forward Invariance) A set S is forward invari-
ant with respect to (2) if for every initial condition x3 € S,
the resulting trajectory ¢ — x(t) € S for all ¢ € Inyax(%0).

We consider a system safe with respect to a user-defined
safe set S if S is forward invariant. In particular, we consider
safe sets defined as the O-superlevel set of a continuously

differentiable function hg : R* — R:
S={xcR*|hs(x) > 0}. (3)

Forward invariance of such sets can be guaranteed by
Nagumo’s theorem [28], which requires the derivative of hg



along the trajectories of the closed-loop system (2) to be non-
negative on the boundary of S, that is:

hs(x) = Dhs(x) - £(x) + Dhs(x) - g(x) k(x) > 0, (4)

Lehs (x) Lahs (%)

for all x € OS. This ensures that on the set boundary 08,
the vector field of (2) points towards the interior of S or is
tangent to 0S. The condition Dhg(x) # 0 when hg(x) =
0 is necessary to ensure the existence of a locally Lipschitz
continuous controller k for the system (2) that satisfies (4).
CBFs are a tool for synthesizing controllers and safety filters
that enforce the safety of the system (1) on S.

Definition 2. (Control Barrier Function (CBF) [8]) Let S C
R™ be the O-superlevel set of a continuously differentiable
function hg : R™ — R satisfying Dhg(x) # 0 when hg(x) =
0. The function Ag is a Control Barrier Function (CBF) for
(1) on & if there exists v € K, such that for all x € R™:

sup {hs(x, ) = Lehs(x) + Lghs(x)u > f’y(hg(x))}. (5)
ucRm™

Given a CBF hg and v, the set of feasible point-wise control
values satisfying (5) is given by:

Konr(x) = {u € ™ [hs(x,u) > —1(hs(x)}  ©

such that any locally Lipschitz controller x +— k(x) €
Kepr(x) enforces the forward invaraince of S [8], estab-
lishing the safety of (1) on S. Given a desired (potentially
unsafe) nominal controller ko, : R™ — R™, the following
optimization-based controller filters kyon by minimally ad-
justing it to the nearest safe action:

[u— knom(x)Hg
Lghs(x) + Lghs(x)u = —y(hs(x)).

The next subsection discusses systems with properties that
enable a systematic approach to constructing CBFs.

k(x) =argmin
uckR™

s.t.

(Safety-Filter)

B. Outputs and Relative Degree

In this paper, we focus on systems for which safety spec-
ifications are expressed using a set of desired ourputs. To
facilitate the construction of CBFs, we recall the notion of
relative degree, which represents the layer of differentiation
at which the control inputs affects the outputs.

Definition 3 (Relative Degree r [29]). A function y : R™ —
RP has relative degree v € N for (1) if:

LeLiy(x) =0, Vic{0,...,r—2}, (7
rank(Lg Ly 'y(x)) =p, Vx € R™ (8)

Given an output y with relative degree r, we define a new
set of partial coordinates:

y(x) y(x)
B y (x) Ley(x)
yeo = | T = LT | err o
y Y (x) L y(x)

d

where y(") = d;i’, leading to the following linear dynamics:

d s o 0 Ip(?”fl) . 0
e P L i T
N —— N~
A B
w = Liy(x) + Lg L 'y (x)u, (11)

where (11) is an inRut to (10). When y has relative degree r,
the controller w = k(y) designed for (10) can be transferred
back to the controller for (1) as follows!:

u = LeLi 'y(x)" [k(¥(x) -~ Liy(x)] .

This partial coordinate transformation is a full coordinate
transformation if pr = n. The output dynamics (10) are a
chain of integrators, allowing for using techniques such as
[24, 25] and [30, 31] to construct CBFs, including for classes
of systems with outputs of nonuniform relative degree.
Given an output y, the success of the techniques in [24, 25,
30, 31] rely on knowledge of the function y — h(y) encoding
a safety specification for a desired safe set C. For simple
environments, one can often leverage analytical expressions to
characterize the safe set with a smooth function h; however,
for more complex environments, such as those with multiple
obstacles of aribtrary geometry, obtaining a single smooth £ is
challenging without introducing excess conservatism [10]. In
what follows, we demonstrate how Poisson’s equation can be
leveraged to overcome these challenges and generate a single
smooth function / for environments with arbitrary geometries.

(12)

III. SAFE SET SYNTHESIS VIA POISSON’S EQUATION

In this work, we consider systems with spatial safety
specifications, with outputs given by:

y =y(x)=(z,y,2) € R®. (13)

Our primary focus is the construction of safe sets purely in
spatial coordinates (13); therefore, our construction is geomet-
ric and independent of system dynamics (1). Given occupancy
data in the coordinates (13), we consider an open domain
) C R? representing unoccupied regions, with its boundary
01 corresponding to obstacle surfaces. Our goal is to design
a safe set defined as the O-superlevel set of a safery function.

Definition 4. (Safety Function) Let y = (z,y,2) € R?
represent three-dimensional spatial coordinates. We call a
function i : @ C R3 — R a safety function of order k on
Q) if h is k-times differentiable, Dh(y) # 0 when h(y) = 0
and the O-superlevel set of & defines a safe-set C satisfying:

C={y eQ|h(y) >0}, (14a)
9C = {y € Q|n(y) =0}, (14b)
int(C) = {y € Q| h(y) > 0}. (14¢)

Specifically, let © C R3 be an open, bounded and connected
set with piecewise smooth boundary 0f2. That is, we assume

'Condition (8) implies the right psuedo-inverse Lngfly(x)T exists.



O£ to be a finite union of closed, smooth obstacle surfaces:

90 ~ nU ar;,

=1

(15)

where each I'; is an open, bounded and connected set defining
an obstacle interior, and OI'; is its smooth boundary. The
term nops denotes the total number of obstacles, i.e., isolated
occupied regions, in the environment.

We propose a method for synthesizing safe sets from envi-
ronmental boundary data by solving a boundary value problem
for Poisson’s equation, a second-order linear elliptic partial
differential equation (PDE). In particular, we consider safe
sets characterized by safety functions which satisfy Poisson’s
equation subject to Dirichlet boundary conditions:

{Ah@) =/y) inQ,

hy)=0 on 091, (16)

where A = 33—; + 66_;2 + % is the Laplacian and f : Q) — R
is a given forcing function. From classical elliptic regularity
stated in Theorem 4 in Appendix A, a sufficient condition for
(16) to admit a twice continuously differentiable solution, i &
C?(Q), is that f is Holder continuous, that is, f € C*(Q) for
some k € Ny and 0 < o < 1. Furthermore, a smooth forcing
function, f € C°°(Q), implies a smooth solution, h € C*(£),
to (16). To assist the reader, we review key concepts from
elliptic PDEs, including Hélder continuity, in Appendix A.
From the weak minimum principle in Theorem 3, a function
h € C?*(9) attains its minimum on 9% if it is superharmonic,
ie., Ah(y) <0, in the interior €. To ensure A is not a constant
function, a sufficient condition is that the strict inequality
Ah(y) < 0holds in 2. Then, from Hopf’s lemma, (Lemma 2),
the outward directional derivatives on the boundary satisfy:

Dh(y)-n(y) < 0 on O£ (17

A function h satisfying Ah(y) < 0 in Q can be obtained by
solving (16) with a negative forcing function, i.e., f(y) < 0 for
all y € €. In particular, if f : 2 — R is Holder continuous
on (), we obtain the following theorem.

Theorem 1. (Poisson Safety Function) Let ) be an open,
bounded and connected set with piecewise smooth boundary
Q. Suppose f € C*(Q;R.g) for some k € Ny and o €
(0, 1). Then the solution h : Q — R to the Dirichlet problem
for Poisson’s equation (16) is a safety function of order 2+ k.

Proof: From the minimum principle and classical elliptic
regularity presented in Theorem 3 and 4 respectively, we have
that f € C**(Q;R.q) implies that h € C*H%(Q; Rsg),
which defines a compact 0-superlevel set satisfying (14) with
C =Q,0C = 09 and int(C) = Q. Given that the boundary is
piecewise smooth as in (15), the interior sphere property i.e.,
Def. 6 in Appendix A holds. Thus from Hopf’s lemma, we
have that (17) holds, implying Dh(y) # 0 when h(y) = 0.
Thus, & is a safety function of order 24 k as in Def. 4. H

The above theorem provides conditions to ensure a solu-
tion h to (16) characterizes safe regions. Unsafe regions are

typically defined by regions where h(y) < 0. By letting T';
(i.e., occupied region corresponding to the interior of each
obstacle) define an unsafe region, one can verify from the
weak maximum principle in Theorem 3, that solving Poisson’s
equation (16) on I'; with f € C*%(I';;Rs) ensures the
solution A is subharmonic in each I';, resulting in A(y) < 0
for all y € I';. Combining this with Theorem 1, the safety
function characterizes both safe and unsafe regions.

Remark 1. (Smooth Boundary) By assuming a smooth bound-
ary 02 in (15), where each 01'; is smooth for all ¢, any sharp
corners on obstacles are assumed to be smoothed out. This
ensures that the regularity properties (see Appendix A) in
the interior of the domains I'; and €2 can be extended to the
boundaries. Qur results still hold for non-smooth boundaries,
provided that they satisfy the interior sphere property in
Def. 6 with the appropriate (possibly non-classical) definition
of the boundary derivative [32-36]. We present Theorem 1
for smooth boundaries to avoid technical details beyond the
scope of this paper, and (as will be discussed later) due to the
observed benefits in the performance of synthesized safety-
filters near smooth corners.

In summary, the differentiability (i.e., regularity) of f in
(16) ensures that the solution A to (16) inherits the desired
regularity properties which provide the necessary differentia-
bility guarantees for /. Furthermore, the negativity of f in 2
guarantees that A characterizes the safe set (14) and satisfies
(17), by enforcing the superharmoniticity of A in 2. Thus,
h is a safety function on  with guaranteed differentiability.
The next section provides methods of constructing forcing
functions that satisfy these conditions, facilitating the practical
implementation of the resulting safety functions.

IV. FORCING FUNCTION CONSTRUCTION

In this section, we present methods of designing forcing
functions that ensure the solution to the boundary value
problem for Poisson’s equation (16) is a safety function.

A. Direct Assignment

1) Distance Metric: An approach to constructing a Holder
continuous forcing function f € C%%(Q;R.q) for o € (0, 1)
is based on the distance to obstacles:

diSt(y,aﬂ) :ymiG%QHy*YObsHa (18)
o dist(y, 092) \“
o= (|dist(y,am|oo) ’ (19)

for all y € Q. One can verify that (19) is Holder continuous
on {} by leveraging [37, Proposition 1.1.2]. Following from
Theorem 1, the forcing function (19) yields a safety function
h € C?*(Q;R>g) that lacks orders of differentiability higher
than 2. This limitation makes this choice of f unsuitable for
control design for systems with outputs of relative degree
7 > 1 as defined in Def. 3.



Poisson Safety Function:
Hslder Continuous (Example) Forcing Function

Poisson Safety Function:
Average Flux Forcing Function
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Fig. 2: [From left to right] Solutions to Poisson’s equation (16) with the following forcing functions: [left] a Holder continuous function

(19) with o = 0.1; [mid-left] an average flux forcing function with b = —1 in (23); [mid-right] a smooth forcing function (29) constructed

using the guidance field (26) under a uniform boundary flux b(y) =
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—1 for all y € 0%; and [right] the same forcing function with a

non-uniform boundary flux b : 92 — R, allowing different flux values across regions of the boundary, corresponding to different obstacles.

2) Constant Value: An alternative, straightforward choice
of a forcing function is a constant negative value f € R,
which guarantees that h € C*°(£%;R>q). However, this ap-
proach indirectly assigns arbitrary flux values (encoding the
magnitude of “repulsive” gradients) on 02 without precise
knowledge of the resulting flux magnitude. The notion of flux
is detailed in Appendix A. While this approach yields the
desired safe set properties (14), it may be beneficial to relate
the flux on 0f) to the geometric properties of the domain.
One way to achieve this is by designing a forcing function that
enforces a desired average flux on 0€2. To do this, we leverage
Gauss’s divergence theorem presented in Appendix A, which
dictates that all forcing functions must satisfy’:

JILserav = JJ[ ancyav
= Dh

= (y) - a(y) dA,
o)

where dV := dxdydz denotes the volume element of € and
dA is the surface element of Jf). Let b € R.( denote the
desired average flux on 02, defined as:

= 1

b= ———

Area(0) Jf5a

where Area(0€2) denotes the surface area of 02, representing
the surface area of all obstacles. Assuming f € R, we define:

¢hyq Dhly) - a(y)dA Area(0£)
Mg dv Vol(2)

where Vol({2) denotes the volume of the domain . It then
follows that the forcing function (23) is a constant negative
value that yields a smooth solution, h € C*°(Q;Rsg), to
(16) with the average flux b on 95). Fig 2 shows the resulting
Poisson safety functions leveraging the above methods.

(20)

2L

Dh(y) - a(y)dA, (22)

=b

f= (23)

2Note 9% is the 0-level set, so Dh is normal (i.e., perpendicular) to 9.
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B. Indirect Assignment — Variational Approach

Another approach of constructing a forcing function is by
designing a guidance vector field v : Q — R3, which
encodes the desired flux on 0f2, and seeking a function h
whose gradient approximates v in (2. Specifically, let A be the
minimizer of the cost functional:

1 =[] 510 v av,

among all functions h :  — R with prescribed boundary
conditions ~(y) = 0 on 0f). This infinite-dimensional min-
imization problem provides a solution & whose gradient is
the least-squares approximation to the guidance field v. A
twice differentiable minimizer of (24), h € C?(f), satisfies
the associated Euler-Lagrange equation, given by:

{Ah(Y) =V-¥(y) inQ,

(24)

h(y)=0 on 0§}, @)
where f(y) = V-V(y) denotes the divergence of the guidance
field, defining the forcing function. We provide a discussion
on Euler-Lagrange equations and the fact that solutions to
Poission’s equation can be realized as unique minimizers of
variational problems in Appendix A, specifically, Theorem 5.



A smooth guidance field, v € C°°(£}; R?), implies V - v €
C*>(Q) in (25), and following from Theorem 4, this leads to
a smooth solution, h € C°°(£)). We obtain a smooth guidance
field by solving Laplace’s equation—the homogenous version
of Poisson’s equation. Specifically, consider the vector field
V = (Ug,vy,v,) : @ — R3, with each component satisfying
Laplace’s equation subject to Dirichlet boundary conditions:

{Avi(y) =0 in Q,

26
on 0§, (26)

vi(y) = b(y)ni(y)

for i € {x,y, z}. The terms n,,n,,n, represent the compo-
nents of the outward unit normal vector i = (ng, ny,n.) :
0Q — R3 such that v(y) = b(y)i(y) on 9Q. The term
b : 080 — R prescribes the outward directional derivative
encoding the desired boundary flux:

# V(y)-ily)dA = ¢b b(y)aly) aly)dA
oQ oQ

- ﬁgg b(y) dA.

Following from the mean value theorem, solutions to (26) are
smooth [38], meaning v belongs to the set of functions:

27

V ={vc C®(R?) |v(y) =b(y)i(y) on 9Q}. (28)
Fig. 3 depicts an example a guidance field generated via (26).

Due to the decoupled nature of its components, v may not
be conservative, meaning it may not correspond to the gradient
of a scalar potential function [39, 40]. To address this, (25)
ensures we find h € C°°(£)) whose gradient best approximates
v by using the divergence, V - v, as the forcing function. The
boundary flux error is given by Dh(y) - a(y) — b(y) on Of).
However, the condition V-v(y) < 0 may not necessarily hold
for all y € Q, which is sufficient to guarantee A(y) > 0 in .
To remedy this, we introduce the forcing function® :

=3 (14 e VWA, (29)

B
with 8 > 0. This defines a smooth, negative forcing function
[ € C°°(Q;R.y), which yields a solution 1 € C°°(Q; Rx)
to (16) as established in Theorem 1. It further follows from
Theorem 5 that this solution is the unique minimizer of the
variational problem (dropping dependency on y for brevity):

. A Lin2 P v
min {J[h]///g2|Dh| Bm(ue )dV}, (30)

H={hcC®%Q)|h=0o0nd0} (31)

Example safety functions generated with the approach are
depicted in Fig. 2. Our next goal is to establish the forward
invariance of the safe set C, characterized by the safety
function A as in (14), for time-parameterized curves ¢ — y(t)
describing the evolution of a dynamical system.

3Inspired by the softplus function, this preserves the smoothness and
negativity of f, ensuring the solution to (16) remains superharmonic in €.

V. SAFETY-CRITICAL CONTROL VIA POISSON SAFETY
FUNCTIONS

In this section, we show that a safety function & constructed
from Theorem 1 can be used to define a CBF. We establish
that C can be rendered forward invariant for first-order systems
while a subset of C can be rendered forward invariant for
high-order systems. We focus on systems defined by integrator
chains as (10), with the input appearing at the last layer—note
that our method can be extended to classes of systems with
outputs of nonuniform relative degree, such as those in [24,
25]. For the spatial outputs (13), we have p = 3 in (10). We
begin by discussing forward invariance for first-order systems.

A. First Order Systems

Consider the following system of relative degree r = 1:

(32)

y=w,

where the state ¥ = y € R3. The following proposition
establishes the forward invariance of C with respect to (32).

Proposition 1. (Forward Invariance for First-Order Systems)
Let @ C R> be an open, bounded and connected set with
piecewise smooth boundary 0X). Consider the system (32) and
a safe set C defined as the O-super level set of a function
h : Q — R. Suppose that h is the solution to (16) with f €
CY(8; Rep) for some o € (0, 1). Then given y(0) = yo € C,
there exists a locally Lipschitz continuous controller w = k(y)
such that for any v > 0:

My) = Dh(y) -k(y) = —7h(y) VyeC.
Thus, C is forward invariant and h is a CBF for (32).
Proof: From Theorem 1, we have that f ¢ C%*(Q; R.q)
implies that 1 € C%%*(Q;R>g) defining a safe set C = 0 as
described in (14). Furthermore, we have that Dh(y) # 0 when
h(y) = 0, that is, when y € 90 = 9C. Given the system (32)
with initial condition y(0) = ¥y € C, the following locally
Lipschitz continuous controller [41, 42]:
k(y) = k(y, h(y), Dh(y))
= Avh(y), IDh(y)II)Dh(y) "
0 b=0
A(aab) - {,a 2 oh?
S

(33)

; (34)

with ¢ > 0 satisfies (33) for all ¥y € C such that when
h(¥) = 0, we have k(y) = o2 Dh(y)" yielding in h(y) =
o2||Dh(y)||?> > 0. Thus, from Nagumo’s theorem, the set C
is a rendered forward invariant and A is a CBF for (32). W

B. CBF Backstepping

Given a safety function /o satisfying Theorem 1, we now
establish safety for high-order systems (10) of relative degree
7 > 2 by leveraging finite-dimensional backstepping to con-
struct a CBF [43]. CBF backstepping is a design technique that
recursively constructs auxiliary controllers for each layer of the
full-order system dynamics, providing a systematic approach
to designing CBFs for linear systems modeled as integrator



chains [24]. For convenience, we begin by considering systems

of relative degree r = 2. These results can be extended to

relative degree r € N, as demonstrated in Appendix B.
Consider the state ¥ = (y, )'f) € RS and dynamics:

-1

Specifically, let h € C?*t%2(Q)) be the solution to (16)
satisfying Theorem 1. Define the following function:

(35)

hs(3) = hly) - iuy ~Ki(y.h(y). DhY)[Z  (36)

with 11 > 0 where ky € C?(R3 x R x R?;R?) is an auxiliary
controller satisfying:

Dh(y) - ki(y, h(y), Dh(y)) > —vh(y),

for all y € C and some ~ > 0 such as (34). The O-superlevel
set of the function hp defines the shrunken set:

(37

Cp={y € R®|hp(y) 2 0} CC xR’ (38)

Since hp(y) < Rh(y) for all y € C, we can ensure that all
trajectories that start in Cg also remain in C by rendering Cp
safe. This is possible because y € Cg N OC implies that y =
ki(y, h(y), Dh(y)) and therefore, the condition (37) ensures
that fz(y, y) = DRh(y)-y > 0 at this point ¥. Taking the time
derivative of (36) yields:

. 1 .
ha(y,w) = Dh(y) -y — Z(y —ki)' (w—ki), (39
where ki(-) = §%(.)y = ®1(y,y, Dh(y), D*h(y)) with:

dkq, Oh
Tonay b 2
i€{z,y,z}

ok,

Oki O(D:h)
Oy '

8(8ih) dy

Jk,
=%y
To construct a locally Lipschitz continuous controller w =
k(y) that enforces safety, we require the second partial
derivatives of /, denoted by the Hessian D?h to be Lipschitz
continuous i.e., D?h € C%1(Q;R3*3). The following lemma
establishes conditions for this property to hold.

Lemma 1. (Lipschitz Regularity of D"h) Let v € N and [ €
CH(Q) for some o € (0,1) and k € Ny. If r < k—+1, then the
solution h € C*%:2(Q)) to (16) satisfies D"h € CO1(Q; R3").

Proof: From Theorem 4, one can verify that the r-th
partial derivatives D"h € C>*tE=m(Q;R3"). For the case
when r = k + 1, we have that C* C C%'. Thus, it follows
that C2+k=me  C%1 for r < k + 1, which implies that D"h
is Lipschitz continuous on the set Q. [ |

The above lemma relies on the inclusion of continu-
ously differentiable functions in Lipschitz continuous function
spaces [44]. Leveraging the above result, it follows from [43,
Theorem 4] that there exists a locally Lipschitz continuous
controller that renders Cg forward invariant. Specifically, if
Yo = (y0,¥0) € Cg, then ¥(t) € Cp for all t € Inax(¥o),
Thus, hp is a CBF for (35).

Remark 2. (Holder Regularity and Control Design) The
results in [24, 43] rely on the assumption that A is smooth,
ie., h € C°(Q), which holds if f € C°°(Q) as established in
Theorem 4. In this paper, we relax this assumption and only
require Holder continuity, h € C%T%<(Q), therefore, allowing
for a wider range of methods for constructing forcing functions
that may not be smooth but are instead Holder continuous,
f € C**(Q). This relaxed regularity assumption motivates
the use of Lemma 1 to guarantee the existence of a Lipschitz
continuous controller on (2.

VI. DEMONSTRATIONS

To demonstrate the proposed algorithm’s effectiveness in
synthesizing safety filters for autonomous systems in complex
environments, we perform numerical simulations and hardware
experiments. We solve Poisson’s equation (16) numerically on
a discrete spatial grid by employing a finite difference scheme,
specifically the Successive Overrelaxation (SOR) method [45].

A. Simulations: Double Integrator

We define a 2D occupancy map defined by an open,
bounded and connected domain @ where O characterizes
obstacle surfaces, and consider the 2D double integrator model
of the form (35) with state ¥ = (y,y) = (z,y,4,9) € RL
We consider the task of stabilizing (35) to a goal position,
from various initial conditions, with a nominal PD controller
knom (¥), while avoiding collisions with the obstacle surfaces
on Of). To achieve this, we consider the solution A to (16) with
the forcing function (29) and construct a CBF via backstepping
(36). Using this CBE, we synthesize a safety filter to adjust
knom to ensure safety. The resultant trajectories for various
initial conditions are depicted in Fig 4. We compare the
behavior of this safety filter to one constructed via an SDF:

dist(y, 0Q),
—dist(y, 092),

y €9,
y ¢4,
where we also employ backstepping to construct a CBE.
Traditional SDFs have fixed gradient magnitudes, leading
to flat surfaces (i.e., without curvature) in the resulting safety
function, as seen in Fig. 4. They also possess ridges with
discontinuous gradients (of opposite sign) within unoccupied
regions of the domain, which, unlike Poisson safety functions,
result in undesirable chattering behavior when employed in
safety filter synthesis. Additionally, Poisson safety functions
constructed using the forcing function (29) and the guidance
field (26) enable the assignment of arbitrary boundary flux
values b via the boundary conditions in (26). Consequently,
different flux values can be specified across regions of the
boundary associated with different obstacles. This provides
the flexibility to manipulate gradients around obstacles, which,
among other benefits, aids in yielding trajectories that avoid
undesired equilibria as demonstrated in Fig. 4.

hspr(y) = { (40)

Remark 3. (Distance Functions via Elliptic PDEs) While
prior work has approximated SDFs using elliptic PDEs [46],
often relying on semilinear equations such as the screened
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Fig. 4: Double integrator simulations using safety filters synthesized from: [left] Signed Distance Function (40); and [middle and right] the
Poisson Safety Function, constructed with the forcing function (29) with the guidance field (26) where the boundary conditions use [middle]
a uniform boundary flux b(y) = —1 for all y € 9Q and [right] a non-uniform boundary flux b : 9Q — R, assigning different flux values
across regions of the boundary associated with different obstacles. Sharp ridges in the SDF surface introduce gradient discontinuities, which
lead to oscillations in the resulting trajectories—an issue which does not arise with Poisson safety functions due to their classical regularity
(i.e., differentiability) properties. Furthermore, in contrast to SDFs with fixed gradients, the guidance field promotes the manipulation of
boundary flux values via the assignment of b in (26), enabling the ability to encode gradients customized to specific obstacles, which we
are unable to do with traditional SDFs. This flexibility helps yield trajectories that avoid undesired equilibria i.e., “deadlocks”, in [right].

Poisson equation [47, Thm 2.3], our method intentionally does
not produce an SDF. Instead, we leverage linear elliptic PDEs
with classical regularity results as established in Theorem 4,
which are critical in the synthesis of safety filters.

B. Hardware Experiments

To demonstrate the practical performance of our proposed
algorithm in synthesizing safe sets, we applied it to several
collision avoidance scenarios using Unitree’s Go2 quadruped
and G1 humanoid robots. We leverage a reduced order model
(ROM) hierarchical framework [23, 48] for these platforms
based on (32). These ROMs assume that the robotic system
has a sufficient low-level tracking controller, enabling the
assignment of safe velocity commands without modification
of unique low-level locomotion controllers.

First, we perceive and segment the environment using a
fixed RGB camera and the Meta SAM2 [49] segmentation
algorithm. Next, we generate a 2D occupancy map, buffered
for robot size. Finally, we solve (26) to generate a smooth
guidance field, and, using (29), we solve (16) for the Poisson
safety function. For dynamic environments, we improve the
computational speed of our PDE solver by warm-starting each
PDE solution with the previous safety function, producing

solve times of 0.2 — 0.3 ms. After considering the entire
processing chain, we update the Poisson safety function A
online at approximately 10 Hz.

We employ this safety function in a CBF-based safety filter
for a single integrator ROM (32) to produce safe velocity
commands that are tracked by a low-level controller. Robot
states are estimated by an OptiTrack motion capture system.

1) Complex Static Environment — Quadruped: For the
first experiment, we constructed a static environment. We
initialized the quadruped at three different starting locations
and commanded it to walk to a fixed goal point. In each case,
the nominal controller attempted to drive the system directly to
the goal without safety considerations. Meanwhile, the CBI*-
based safety filter modified these nominal commands. The
results corresponding to this experiment are depicted in Fig 5.

From these results, it is clear that the Poisson safety function
enabled collision avoidance without hindering the nominal
objective. The control inputs (Fig 5 (bottom left/middle)) show
how the safety-filtered velocity commands deviated from nom-
inal, as necessary. The evaluated value of h(x,y) maintained
positivity throughout the duration of all three experiments,
confirming that the robot never departed from the safe set C.
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Fig. 5: Hardware experiments demonstrating Poisson safety functions for safety filtering. [Top Left] A timelapse showing the motion of the
Go2 quadruped during the 25-second tracking experiment, starting from three difference initial conditions (ICs). [Top Middle] The Poisson
safety function constructed from real-time segmented image data. [Top Right] The resultant safe trajectories for each IC. [Bottom Left/Middle]
The nominal (orange) and CBF safety-filtered (blue) velocity commands, in m/s, sent to the robot. [Bottom Right] The evaluated value of

the Poisson safety function over the course of each experiment. This value remains above zero, confirming that safety was maintained.

2) Dynamic Environment — Quadruped: To further
demonstrate the real-time utility of our approach, we consider
a dynamically changing environment. As mentioned earlier, we
compute the Poisson safety function online at approximately
10 Hz; however, this time we numerically incorporate the
temporal change in £ to approximate its time derivative via:

Oh h(te,y) — h(ty—1,y)
—(t ~ .
ot (&) tr —te—1

We commanded a Go2 quadrupedal robot to track a nominal
sinusoidal position reference; meanwhile, we introduced two
obstacles (i.e., a desk chair and a yellow box) into the
environment. By dynamically rearranging these obstacles, we
tested the real-time efficacy of our safety-critical architecture.
Fig 6 shows the dynamic performance.

Examining the value of /. during the experiment, it can be
observed that the robot effectively employed its safety filter to
avoid collisions. The value of / remained positive, confirming
that the safe set C was rendered forward invariant.

3) Dynamic Environment — Humanoid: We implemented
an identical safety-critical controller on the G1 humanoid to
show the versatility of our algorithm. We commanded a fixed
position reference and introduced a moving obstacle into the
environment. The results are presented in Fig 6.

During the humanoid experiment, the CBF-based safety
filter was effective in preventing collisions with the dynamic
obstacle; however, the robot experienced minor safety viola-
tions, corresponding to moments when & was briefly negative.
The difference in performance on the quadruped highlights the

(41)

importance of accurate ROMs when designing safety-critical
controllers [48]. In both cases, we filtered velocity commands
(single-integrator 32) to enforce safe set forward invariance.
This is an accurate ROM for the quadruped, as the low-level
locomotion controller effectively tracks velocity inputs with
minimal error. Unfortunately, this ROM is less accurate for the
humanoid, which struggles to track velocity commands due to
model mismatch. The lag in velocity tracking manifested in
modest departures from the safe set (i.e., brief moments when
h was negative).

Remark 4. (Real-time Computation) For the hardware exper-
iments in this paper, we consider a 3 x 3 m? experimental
environment, and we solve the 2D Poisson equation on an
N x N discretized grid with N = 120. We apply a SOR finite
difference scheme [45], using checkerboard iterations for GPU
parallelization. Parallel SOR iterations scale with \/N , and
computations per iteration scale with N2 (N3 in 3D). On a
GeForce RTX 4070 GPU, we solve the PDE in 0.2 — (0.3 ms
with 10~* residual tolerance.

VII. LIMITATIONS

A fundamental limitation of the proposed algorithm (and
a limitation of all non-predictive safety filters) is that such
safety-critical controllers may introduce undesired equilibria.
These equilibria can manifest as “deadlocks”, where the sys-
tem becomes trapped by obstacles and fails to achieve nominal
tracking. Such problems are typically solved by introducing a
navigational layer to the nominal controller to avoid regions
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Fig. 6: Hardware experiments demonstrating dynamic behavior on quadrupedal and humanoid robots. [Top Left] A timelapse showing the
Go2 quadruped successfully avoiding dynamic complex obstacles in real-time. [Bottom Left] The value of the Poisson safety function h
during the experiment. The positivity of / certifies that safety was maintained. [Top Right] A timelapse of the G1 humanoid during a dynamic
collision avoidance demonstration. [Bottom Right] The value of h. Although no collisions occurred, the robot briefly left the safe set C.

in the state-space that produce these undesired equilibria.

Another limitation of the proposed approach is that the
extension of the solution h, defined on , to the unsafe
regions I';, via Poisson’s equation is guaranteed only to be
Lipschitz continuous across safe and unsafe regions (i.e.,
across the boundary). The reason is that solving Poisson’s
Dirichlet problem results in unique solutions in each region
ensuring h(y) = 0 on 0f) (hence, continuity across ). As
a result, the directional derivatives from the safe and unsafe
regions are not guaranteed to be equal in magnitude on Of2.
However, from Hopf’s lemma, one can verify that they have
the same sign i.e., positive flux from each obstacle I'; and
negative flux into the safe region ). Thus, if safety violations
occur, there exists a locally Lipschitz continuous controller
enforcing attractivity to the safe set for a single integrator,
but may require a less regular controller [S0] for higher order
systems. One way of obtaining a more regular % across these
two regions is by a smooth extension of the solution A defined
on Q into I';. These extensions however, may require detailed
geometrical characterizations of obstacle interiors, whereas
Poisson’s equation itself only requires information about the
obstacle surfaces. Another approach is to employ mollifiers
[14] to regularize / across these regions.

VIII. CONCLUSION

We have presented an algorithm for generating safe sets
for complex environments by solving Poisson’s equation. Our
method uses environmental perception data to define a domain,
on which we impose boundary conditions, and formulate a
boundary value problem for Poisson’s equation with a novel
forcing function. The resulting solution is a safety function—a
functional representation of the environment that characterizes
safety and defines the safe set. This safety function is also the
unique minimizer of a variational problem, and has desirable
regularity properties ideal for safety-critical control design in
robotic applications. The real-time efficacy of the proposed al-
gorithm enables its use in dynamically changing environments.
To validate this, we utilize the safety function to synthesize

CBF-based safety filters, and demonstrate their effectiveness
in achieving collision avoidance on quadruped and humanoid
robots navigating in complex, dynamic environments.
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APPENDIX A
POISSON’S EQUATION

This appendix reviews key concepts from second-order lin-
ear elliptic PDEs, emphasizing details relevant to our results.
The notation and expositions follow [14, 15, 38].

A. Dirichlet Problem for Poisson’s equation

Let 2 C R3 be an open, bounded and connected set with
smooth boundary 0f2, such that Q@ = Q U 0. Poisson’s
equation is a second-order linear elliptic PDE defined by:

Anh(y) = f(y)

where y = (x,y,2z) € R3, A = %Jr 63—;2+% is the
Laplacian and f : @ — R is a given forcing function. If
f(y) =0 for all y € Q, (42) is a homogeneous elliptic PDE
called Laplace’s equation. To completely determine solutions
to (42), boundary conditions must be specified to characterize
the behavior of a solution on 0f) [38]. Dirichlet boundary con-
ditions specify the solution’s value, while Neumann boundary
conditions specify the normal derivatives on 0f2. In this work,
we consider solutions 5 : Q) — R satisfying Poisson’s equation
subject to Dirichlet boundary conditions:

Ah(y) = fly)  inQ,
hy)=10 on 0€}.

A classical solution is a twice continuously differentiable
function i € C?(Q) satisfying (43). The sign of the values of
the forcing function f(-) in €2 leads to further characterizations
of the solution to (43), provided in the following definition.

in Q, (42)

(43)

Definition 5. Let 2 C R be an open, bounded and connected
set. A function h € C%(Q) satisfying Ah(y) =0 (> 0,< 0)

in € is called harmonic (subhamornic, superharmonic) in Q.

In the following subsections, we discuss the structural
properties of solutions to the boundary value problem (43)
relevant to the developments presented in this paper.

B. Gauss’s Divergence Theorem

A solution h € C%(Q) to (43) represents the density of some
quantity across the domain 2. The flux of the vector field Dh
is the net flow of & across the boundary of the domain, and is
given by the surface integral of the normal component of Dh
(i.e., outward directional derivative of /) as follows:

Dh(y) - fa(y) dA4,
o)

(44)

where 1 : 9Q — R3 is the outward-pointing unit normal on
08, dA is the surface element of 92 and:

h(y +n(y)) — hy)
5 )

for all y € 0. Given this property, we highlight a fundamen-

tal theorem associated with vector fields on closed domains.

Dh(y) - a(y) = lim (45)

Theorem 2. (Gauss’s Divergence Theorem [39]) Let Q! C R3
be an open, bounded and connected set with smooth boundary



0. Let i : 9Q — R3 be an_outward unit normal vector
on OQ and suppose h € C%*(Q), ensuring the vector field
Dh € CY(Q;R?). Then:

//Ah ydV =

where Ah = div(Dh) = V - Dh is the divergence of Dh,
dV = dxdydz denotes the volume element of Q@ and dA is
the surface element of 0N

Dh( )-n(y)d4,  (46)

Gauss’s divergence theorem states that the flux of a vector
field through a closed surface equals the integral of the
divergence of that vector field over the volume enclosed by the
surface. This condition is particularly helpful in the designing
forcing functions f, as demonstrated in Section IV.

C. Maximum and Minimum Principles

Second derivatives provide information about the extremal
values of a function. For Poisson’s equation, the strong
maximum and minimum principles state that a subhamornic
(superharmonic) function A attains its maximum (minimum)
in  if and only if & is constant, while weak maximum and
minimum principles further state that bounded subhamornic
(superharmonic) functions attain their extremal values on the
boundary of €1, as we highlight in the following theorem.

Theorem 3. (Weak Maximum and Minimum Principle [51])
Let Q C R? be an open, bounded, connected set. If a function
h € C%(Q) satisfies Ah(y) > 0 (< 0) in Q, then the maximum
(minimum) value of h is on the boundary 0). That is:

Ah(y) > 0in Q@ = maxh(y) = max h(y), 47)
yeQ yEeoQ

Ah(y) <0in Q@ = minh(y) = min h(y). (48)
yeQ yEOQ

The above theorem follows from the mean value property
[38], which states that the value of a function at any point
in € is equal to the average over a ball centered around that
point. A key result from Theorem 3 is Hopf’s lemma, which
gives a statement about the sign of the normal derivatives of
h on 0f). To facilitate this, we introduce a key property that
a domain must satisfy.

Definition 6. (Interior Sphere Condition [38]) An open set
Q satisfies the interior sphere condition at yy € 0, if there
exists an open ball B,(y) C  of radius p > 0 and y €
such that 9B, (y) N 0Q = {yo}.

The above definition states every point on 02 can be
touched from inside with a closed ball contained in £ as shown
in Figure 7. Notice, if the above condition holds for all points
on 0F), then 2 cannot have outward-pointing “corners”, though
it may have inward-pointing ones. In this work, we assume
smooth boundaries, which guarantees the above condition
holds and that the gradient DA exists at each point on 0f2
as in (45). However, this analysis can be readily extended to
nonsmooth boundaries under appropriate conditions [34, 35].
Following from this, we have the following lemma for the
directional derivatives on Of2.

ii(yo)
Fig. 7: Interior sphere condition for [left] smooth boundary and
[right] Lipschitz boundary.

Lemma 2. (Hopf’s Lemma [51]) Consider an open, bounded
and connected set Q) C R? with smooth boundary 09), and let
h € C*(Q) such that Ah >0 (< 0) in Q. If yo € 0Q is an

extremal point of h as in Theorem 3, then we have:

h(yo) = max h(y) = Dh(yo) - (yo) >0, (49)
Y

h(yo) = melg h(y) = Dh(yo) - (yo) <0, (50
Y

where A(yq) is the outward-pointing unit normal to 9§ at yy.

The maximum and minimum principles can be used to
establish the uniqueness of a classical solution / € C?(Q) to
(43), assuming the solution exists [14, Theorem 2.4]. However,
these principles do not address the existence of a classical
solution. We devote the next subsection to this discussion.

D. Existence and Regularity of Classical Solutions

The existence of classical solutions to (43) relies on the
properties of the forcing function f. Naturally, one would
expect the solution h to (43) to be “twice more differentiable”
than f. However, this is not always true (except for the one-
dimensional case), and often depends on the function space
specifying the regularity of f [14, 15]. A sufficient condition
for (43) to admit a classical solution on  is that f 1s Holder
continuous, presented in the following definition.

Definition 7. (Holder Continuity [37]) A function [ €
C%2(Q) is said to be Holder continuous on 2 with order
« if for some 0 < o < 1, there exists M > 0 such that:

If(y1) — f(y2)| £ M|y,

We call C%%(Q) the space of Holder continuous functions of
order o, with o« = 1 denoting Lipschitz continuous functions.

—yall® Vyi,y2 €

Specifically, C*®(Q2) is the space of C*({) functions
whose partial derivatives of order & € Ny belong to C'% ().
That is, « € (0, 1) describes the regularity of the k-th partial
derivatives of f. We further have that C*9(Q) = C*(Q).
Furthermore, Holder continuous functions are uniformly con-
tinuous, thus, f € C*<(Q) denotes a function f € C**((Q)
whose partial derivatives up to order £ admit continuous
extensions to . The following theorem guarantees that all
second derivatives of £ lie in the same function space as f.

Theorem 4. (Classical Elliptic Regularity [14]) Let Q C R3
be an open, bounded and connected set with smooth boundary
Q. Suppose f € C**(Q) for some 0 < a < 1 and k € Ny,
Then there exists a unique solution h € C*T%*(Q) to (43).
Furthermore, f € C*(Q) = h € C>®(Q).



The interior regularity of & on 2 is determined by the
regularity of f, and global regularity on € follows by ex-
tending the interior regularity to the boundary, given that the
boundary is (sufficiently) smooth as we assumed. Schauder
theory [14, Chap. 6] provides classical regularity results for
general linear elliptic PDEs in Holder spaces. In the above
theorem, the existence of a classical solution to (43) with a
Holder continuous f is guaranteed by Kellogg’s Theorem (see
[14, Theorem 6.14]) and [15, Theorem 13.3.1]. For interior
higher-order regularity, refer to [14, Theorem 6.17], while for
global higher-order regularity, see [14, Theorem 6.19].

Remark 5. The above theorem does not hold for o = 0, and
«a = 1, that is, A is not guaranteed to be twice differentiable
if f is merely continuous or even Lipschitz continuous, and
may require further technical assumptions and developments to
establish this. For an introduction to elliptic regularity theory,
refer to [52]; for elliptic equations in Holder spaces, see [36].

E. Optimality

A solution to Poisson’s equation can also be recognized as
the minimizer of an appropriate functional in the appropriate
function space. By recognizing that the solution to a PDE
is the critical point of an associated cost functional, proving
the existence, uniqueness (e.g. via convexity arguments), and
regularity of a minimizing solution can, in some cases, be
easier than working directly with the PDE. We have the
following theorem for classical solutions to Poisson’s equation.

Theorem 5. (Dirichlet’s Principle [38, 53]) Let 1 be an
open, bounded and connected set with smooth boundary OS).
Suppose h € C?(Y) is the solution to the Dirichlet problem
for Poisson’s equation (43). Then h is the unique minimizer
of the variational problem:

wig {70 = [ SI000E +r0sm) avh 6D

in the set of admissible functions:

H={heC*Q)|h(y) =0on 00} (52)

Conversely, if h € H satisfies (51), then it solves the boundary
value problem (43).

The above theorem states that .o € H being the solution to
the PDE (43) is equivalent to the statement that # minimizes
J[-]. This follows from the fact that a necessary condition for
optimality of a C?(Q) minimizer of J[] is that it satisfies
the Euler-Lagrange equation [53], which, in the case of (51),
corresponds Poisson’s equation (43). The uniqueness of a
solution to (43) certifies it as the unique minimizer of J[-].

The main challenge of Dirichlet’s principle is that it is not
obvious whether (51) attains its minimum in the chosen class
of functions in the set (52). The above theorem is an “inverse”
optimal statement as we already assumed the knowledge of a
C?(€2) solution to Poisson’s equation (43), which, as earlier
mentioned, relies on the regularity properties of f. Therefore,
for forcing functions f that are not Holder continuous, it is

useful to consider solutions in less regular function spaces,
which we briefly discuss next.

F. Weak Solutions

For less regular f, which may be discontinuous or lack con-
tinuous derivatives, solutions A to (43) need not be continuous
or even continuously differentiable. Moreover, minimizers of
(51) may not exist in (52). In such cases, one would prove the
existence of a generalized or weak solution to allow for wider
class of candidate solutions [38, 44]. Typically, weak solutions
satisfy a criterion—often based on integration by parts—that
is necessary and sufficient for a differentiable function to
solve a PDE, but does not require differentiability. Thus, every
classical solution is also a weak solution. A common condition
for less regular f that yields weak solutions is integrability,
where f € LP(§2) for p € (1, 00). For further details on L?
regularity theory for elliptic equations, see [14, 15, 52, 54].

To establish existence of a classical solution, it is often
easier to first prove the existence of a weak solution and
then prove sufficient regularity such that this weak solution is
also a classical solution. Consequently, in variational methods
[53, 55], a minimizer & of (51) has to satisfy the corresponding
Euler-Lagrange equation in its weak form*, and if h is
sufficiently regular, also in the classical sense (43).

In this paper, we focus on classical solutions to (43) as
they provide continuous derivatives which are convenient
for control design in robotic applications, and present our
results for Holder continuous forcing functions f. However,
our results can be generalized to less regular f that yield
weak solutions, provided that a proof of regularity—to obtain
classical solutions—can be established.

G. Equivalence of Variational Problems

We provide an equivalent formulation of the variational
problem associated with (24) to show that a C'?(Q) minimizer
of I[-] is also the minimizer of a functional with the structure
in Theorem 5. In particular, we have that the following holds:

1
I[h]:/// 5|th\7|2 dv (53)
Q
:/// 1|Dh|2—Dh~\7+l|\7|2 dav (54)
Q 2 2
1 1
:/// —|Dh* +hV v+ —|[¥*dV  (55)
Q 2 2

where we used the product rule V - (hV) = Dh - v+ AV - ¥
and Gauss’s divergence theorem for the cross-terms to yield:

///Dh~\7dV:// V- (h¥) — hV - vdV (56)
Q Q
:# h\?-ﬁdAf///hV-VdV (57)
o Q
:f///th?dV. (58)
Q

#Weak forms (and weak solutions) are employed in Finite Element Method
(FEM) algorithms [45] to obtain approximate solutions to (43).



since h(y) = 0 on 9. Computing the Euler-Lagrange
equation associated with (55) yields (25), thus verifying that a
C?(Q) minimizer of I[] is also a minimizer of the functional:

= [[] 51PhIF + h)T - 5) av,

since the last term in (55) does not affect (25). That is, (25)
arises as the necessary condition for optimality for both 7]
and J[-], with the structure of J[] guaranteed by Theorem 5.
For further discussion on Euler-Lagrange equations, see [53].

(59

APPENDIX B
SAFETY-CRITICAL CONTROL FOR HIGH-ORDER SYSTEMS
VIA POISSON SAFETY FUNCTIONS

We generalize the discussions in Section V and formalize

them for systems defined as integrator chains (10) for outputs
(13) of relative degree r € N.

A. CBF Backstepping for High-Order Systems

Let » > 2 and suppose h € C?T%(Q) is a solution to
(43) satisfying Theorem 1, for some o € (0,1) and k € Ny
such that » < £ + 1. Define the following function via a
backstepping procedure as denoted in [24, 43]:

he(y Z <l) (y, . ,y(ifl), hy),
. 2
(60)
where k; € C" IR x R x R? x -+ x R3 T « R?’i;R?’)

for 1 < ¢ < r — 1 are recursively designed auxiliary safe
controllers (see [43, Theorem 5]). The time derivatives of k;
are of the structure:

Z (J)
8y(] 1)

' ay@)ah(Y)a Dh(Y)a e

(61)

= <1>Z-(y, , D" h(y)). (62)

The function (60) defines a 0-superlevel set given by:

C ={¥ €R¥ |hp(y) >0} CCxR3H, (63)

we wish to render forward invariant. To design a controller
yielding unique solutions (i.e., trajectories) to (10), the gra-
dients of (60) must be at least Lipschitz continuous. Conse-
quently, the r-th partial derivatives of 4 must be Lipschitz
continuous, while the higher order partial derivatives (i.e., 741
and beyond) can be Holder continuous, as they are not directly
used. This condition arises from the fact that Holder continuity
guarantees the existence but not uniqueness of solutions to
ODEs. The condition r < k£ + 1 in Lemma 1 ensures this
requirement is satisfied, and enables the following theorem.

Theorem 6. (Forward Invariance for High-Order Systems)
Let & C R? be an open, bounded and connected set with
piecewise smooth boundary 0S). Consider the system (10) for
outputs with relative degree r > 2, and a safe set C defined as
the O-super level set of a function h : @ — R. Suppose that h is

the solution to (43) with a forcing function f € C**(Q; Rq)
for some o € (0,1) and k € Ng, and consider the function
(60) defining the 0-super level set Cg in (63). If r < k+ 1,
then given y(0) = yo € Cg, there exists a locally Lipchitz
continuous control law w = k(y) for (10) such that:

hs(¥)

for all ¥ € Cg,v > 0. Thus Cg is rendered forward invariant
and (60) is a CBF for (10).

= Dhg(y) - (Ay + Bk(y)) > —vhn(y)  (64)

Proof: As shown in Theorem 1 and Proposition 1, it
can verified using Hopf’s Lemma and the weak minimum
principle that the solution h € C?T%%(Q;R>) guaranteed
by Theorem 4 satisfies Dh(y) # 0 when A(y) = 0, i.e., when
y € OC. Taking the time derivative of (60), we have:

hg (¥, w) = Dhg(y) - (Aif + Bw) (65)
Z Y ) T k)
Y k) T (w - k),
Hr—1
where the time derivative kr,l is of the form:
8kr 1

Z oyu (66)
= 1 (¥, h(y). Dh(y), -+ . D'h(y)).  (67)

Leveraging Lemma 1, it follows that D" A is Lipschitz contin-
uous on C for all r < k + 1. Therefore, it follows from [43,
Theorem 5] that there exists a locally Lipschitz continuous
control law w = k(¥) satisfying (64). Therefore, Nagumo’s
theorem holds and Cg is rendered forward invariant. As a
result, hg serves as a CBF for (10). [ |

B. High-Order Control Barrier Functions

An alternative approach to constructing CBFs for systems
of high relative degree is High-Order CBFs (HOCBFs) [56].
HOCBFs define a CBF candidate recursively by differentiating
h until the input appears. Consider the system (10) for outputs
with a relative degree » > 2, and let h € C*t%*(Q) be a
solution to (43) for some o« € (0,1) and & € Ny such that
r < k+ 1. Define h; recursively as follows:

hg % h, (68)
hi & by +yihicy,  i=1-r—1 (69
with ~; > 0 where each h; and h; explicitly depends on:
hi(y) = haly, - ,y“),h(Y),Dh(Y), -, D'h(y))  (70)
it+1
Z ayo (¥ 71
i (v, .y h(y), Dh(y). .., D' h(y)) (72)



where ¥ = (y,--- ,y'")) represents the state variables up to
the ¢-th derivative. Each function £, defines a O-superlevel set:

C= {7 eR¥ 1 |h(3) >0} i=1,--,r—1

with Cy = C. These sets are used to define a safe set as the
intersection:
r—1
Cu= (G cC, (73)
i=0

which we aim to render forward invariant. The function:

hu(¥) £ he—1(¥) (74)
— hrfl(ya h(Y)a Dh(Y)a e aDrilh(Y))

is a HOCBF for (10) restricted to Cy if Cyr can be rendered
forward invariant via a locally Lipschitz continuous controller
w = k(y) satisfying:

hu(¥) = Dhu(¥) - (A¥ + Bk(¥)) > —vhu(y) (75

for all y € Cy with v > 0. From (72), we observe that hy
depends on D"h. Therefore, if Ay is an HOCBF, then by
Lemma 1, there exists a locally Lipschitz continuous controller
satisfying (75) if » < k + 1. However, to guarantee the
existence of such a controller, HOCBFs further assume a
uniform relative degree by requiring Dhy(y)B # 0 for all
¥ € Cu. However, one can verify that:

Dhu(y)B = Dh(y), (76)

and because the set C generated by (43) is compact, the
condition Dhg(¥)B # 0 is not guaranteed to hold for all
¥ € Cug C C. This leads to a notion of weak relative
degree [57] and requires further technical development to
guarantee the forward invariance of Cy as addressed in [58].
Nevertheless, h € C?T%<(Q) can be used to construct a
candidate HOCBF, hy as defined in (74).



