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Fig. 1: Schematic overview of the proposed Large Language Model (LLM)-enhanced Autonomous Driving Systems (ADS). The
LLM enables natural language-based Human Machine Interaction (HMI), with a DecisionxLLM stage analyzing robotic state
information to ensure alighment with human preferences. If misalignment is detected, DecisionxLLM instructs the MPCxLLM
stage to adjust the cost J(x,u,q) and constraint (X,U) parameters x, u, g of a low-level Model Predictive Controller (MPC)
controller, where safety and constraint satisfaction is ensured through the MPC, while task adaption and decision-making are

managed by a LLM.

Abstract—Neural Networks (NNs) trained through supervised
learning, struggle with managing edge-case scenarios common
in real-world driving due to the intractability of exhaustive
datasets covering all edge-cases, making knowledge-driven ap-
proaches, akin to how humans intuitively detect unexpected
driving behavior, a suitable complement to data-driven meth-
ods. This work proposes a hybrid architecture combining low-
level Model Predictive Controller (MPC) with locally deployed
Large Language Models (LLMs) to enhance decision-making and
Human Machine Interaction (HMI). The DecisionxLLM module
evalnates robotic state information against natural language
instructions to ensure adherence to desired driving behavior.
The MPCxLLM module then adjusts MPC parameters based
on LLM-generated insights, achieving control adaptability while
preserving the safety and constraint guarantees of traditional
MPC systems. Further, to enable efficient on-board deployment
and to eliminate dependency on cloud connectivity, we shift
processing to the on-board computing platform: We propose an
approach that exploits Retrieval Augmented Generation (RAG),
Low Rank Adaptation (LoRA) fine-tuning, and quantization.
Experimental results demonstrate that these enhancements yield
significant improvements in reasoning accuracy by up to 10.45%,
control adaptability by as much as 52.2%, and up to 10.5x
increase in computational efficiency (tokens/s), validating the
proposed framework’s practicality for real-time deployment even
on down-scaled robotic platforms. This work bridges high-level
decision-making with low-level control adaptability, offering a
synergistic framework for knowledge-driven and adaptive Au-
tonomous Driving Systems (ADS).

I. INTRODUCTION

In the early 2010s [5, 22], it was widely anticipated by ex-
perts that research in ADS would soon lead to the widespread
adoption of fully autonomous vehicles, fundamentally trans-
forming the automotive sector. However, progress toward full
autonomy proved more challenging than initially predicted.

Before the adoption of Machine Learning (ML), many
autonomous driving systems were primarily addressed using
classical robotic algorithms for perception, planning, and con-
trol, adhering to the See-Think-Act cycle [26]. While strongly
principled, these approaches exhibited significant sensitivity to
heuristics and parameter tuning. With the advent of ML and
especially NNs, the ability to implicitly learn heuristics and
improve robustness against parameter sensitivity was demon-
strated [21, 32]. Consequently, efforts were directed towards
substituting individual components of the See-Think-Act cycle
with NNs or bypassing the cycle entirely through end-to-
end learning paradigms, such as Reinforcement Learning (RL)
[12, 30].

Nowadays data-driven ML approaches remain the predom-
inant methodology in ADS [7, 13]. However, despite the
considerable progress achieved through these approaches, full
autonomy remains elusive. ML systems inherently rely on
extensive amounts of training data to generalize effectively, but



edge-case scenarios are typically underrepresented in datasets.
Consequently, data-driven approaches struggle in these con-
texts, requiring human intervention to address situations where
little or no relevant data exists [6, 16, 25].

These limitations suggest that driving is not solely a
data-driven problem but partially relies on knowledge-driven
reasoning [29]. For example, when encountering anomalous
scenarios, data-driven solutions must have been explicitly
trained on such examples [16], whereas human drivers rely
on common sense and situational reasoning to handle these
situations effectively [29]. Furthermore, the simulation or
synthetic generation of every possible peculiar road scenario
is intractable, highlighting the necessity for knowledge-driven
methodologies in ADS.

In recent years, significant advancements have been made
in LLLMs, which represent the closest approximation to ar-
tificial knowledge systems to date [1, 2, 3]. While LLMs
have demonstrated their capabilities in robotic tasks such as
manipulation and scene understanding [11, 28], their adoption
in the ADS domain remains relatively limited especially
because existing robotic embodied Artificial Intelligence (AI)
systems predominantly depend on cloud-based models, such as
GPT4 [2]. However, reliance on cloud infrastructure introduces
concerns regarding latency, connection stability, security, and
privacy [9, 23, 27]. As a result, local deployment of LLMs
on robotic platforms emerges as a more robust and secure
alternative for ADS.

Concerns persist regarding the deployment of LLMs for
critical tasks, given their susceptibility to hallucinations [18].
Within this work, their integration into every facet of au-
tonomous driving is neither suggested nor advisable. Instead,
emphasis is placed on leveraging their knowledge-driven rea-
soning capabilities in specific scenarios where their strengths
are most applicable.

Hence, a hybrid system architecture is proposed that adheres
to the classical See-Think-Act cycle while incorporating a
locally deployed, knowledge-based LLM. The architecture
in this work is designed to enable LLMs to support HMI,
decision-making, and dynamic control adjustments, while the
evaluation has been performed on a 1:10 scaled autonomous
car platform [4]. The underlying controller operates based on
a low-level MPC, ensuring safety through constraint satis-
faction. A DecisionxLLM module monitors robotic state data
sampled over recent time intervals, analyzing adherence to
user instructions. If discrepancies are detected, the MPCxLLM
stage interacts with the MPC controller, adjusting cost function
weights and constraints as needed. This approach facilitates
seamless HMI while maintaining the safety and reliability
inherent in MPC-based systems. The proposed framework
allows switching between LLMs; for instance, GPT4o could
be utilized for tasks requiring extensive cloud-based resources,
while local LLMs such as Qwen2.5-7b can be deployed
depending on connectivity constraints and other operational
requirements.

To summarize, the contributions of this work are as follows:

I Knowledge-based Decision Making: A framework is

proposed for leveraging LLMs to interpret robotic data
conditioned on human desired driving behavior, en-
abling decision-making based on behavioral adherence.
By implementing the proposed RAG and LoRA fine-
tuning techniques, decision-making accuracy is improved
by up to 10.45% on local LLMs. Open-source code:
github.com/ForzaETH/LLMxRobot.

II Human-Machine Interaction: Adherence is identified in
relation to human prompts, enabling natural language-
based HMI through dynamic adjustments of cost and
constraint parameters in the low-level MPC controller.
This approach enables an increase in control adaptability
by up to 52.2%.

I Embodied AI on the Edge: The proposed framework
avoids reliance on cloud services by deploying LLMSs
locally on embedded platforms, such as the Jetson Orin
AGX, ensuring reliability, enhanced privacy, and improved
security on computationally constrained devices. By em-
ploying O5_k_m quantization and the 11lama. cpp infer-
ence engine, up to a 10.5-fold increase in computational
efficiency (tokens/s) can be achieved on embedded On-
Board Computers (OBCs).

II. RELATED WORK

This section reviews relevant work on the use of LLMs
for robotic control (Section II-A) and decision-making (Sec-
tion II-B), concluding with a contextual summary (Sec-
tion II-C).

A. LLMs and Robot Control

Recent studies highlight that direct control of robotic actu-
ators by LL.Ms is unsuitable due to their lack of training data
on actuator-level commands, incompatibility with real-time
control frequencies, and limited suitability for classical control
paradigms [31]. Instead, approaches such as [20, 24, 31]
emphasize the role of reward functions as intermediaries,
enabling interaction between LLMs and low-level controllers
like MPC. Here, the LLM interacts with the cost function
and system constraints, allowing for interpretable and flexible
control adaptation.

Building on this, Ismail et al. [20] propose using an LLM to
generate objective functions and constraints for manipulation
tasks based on human prompts. This architecture combines the
adaptability of LLMs with the safety and constraint guarantees
of classical MPC controllers.

Similarly, Ma et al. [24] demonstrates the significance
of reward functions within LLM-RL interactions. Instead of
focusing on cost functions and constraints as in [20, 31], the
LLM iteratively designs reward functions and domain ran-
domization strategies during the training of an RL locomotion
policy, this has shown to yield great flexibility in designing
effective Sim-to-Real policies [24].

Collectively, these works demonstrate that LLMs are more
effective at interpreting and adjusting reward functions and
constraints rather than acting as low-level controllers. This
approach combines the interpretability and flexibility of LLMs



with the safety guarantees of traditional controllers. However,
existing solutions depend on cloud-based GPT4 models, in-
troducing concerns regarding privacy, latency, and internet
reliability [9, 23, 27]. Additionally, these approaches limit
the LLMs role to adapting the behavior of the low-level
controller rather than actively participating in any decision-
making processes.

B. Robotic Decision Making with LLMs

Wen et al. [29] propose the DiILU framework, which utilizes
an LLM for decision-making in autonomous driving. DiLU
incorporates three core components: a reasoning module that
interprets the current driving scenario and generates high-level
decisions, a reflection module that evaluates and refines these
decisions based on previous outcomes, and a memory module
that accumulates experiences from previous interactions. This
architecture enables DiLU to integrate reasoning with iterative
refinement, allowing it to handle driving scenarios effectively.

While DiLU demonstrates reasoning and adaptability capa-
bilities, it operates within a discrete action space, which limits
its applicability to continuous control tasks common in real-
world robotics. Furthermore, it relies on cloud-based GPT4
models, with the aforementioned cloud-reliance downsides
[9, 23, 27]. Lastly, the framework has only been validated
in simulation within a simple highway lane-switching RL
environment. It remains to be seen whether this approach can
generalize effectively to physical robotic systems operating in
real-world conditions.

C. Summary of LLMs and Robotics

As summarized in Table I, existing works like Yu et al. [31]
and Ismail et al. [20] focus on manipulation and locomotion
tasks, relying on classical low-level controllers and lack-
ing robotic reasoning. DIiLU explores LLM-based decision-
making for autonomous driving but is limited to a discrete
action space in a simulated highway lane-switching environ-
ment, restricting its applicability from real-world continuous
control tasks. Additionally, these approaches depend on cloud-
based GPT4, posing challenges with latency, privacy, and
connectivity [9, 23, 27].

In contrast, our proposed approach emphasizes local edge
deployment of the LLLM, and decision-making in a continuous
action space on a physical robotic car, directly grounded on
robotic sensor data.

Related Work | Task | Decision | Controls | LLM
Ismail et al. [20] | Manipulation X v GPT4+
Yu et al. [31] Locomotion X v GPT4+
Ma et al. [24] Locomotion X v GPT4+
Wen et al. [29] Driving v X GPT4+
ours Driving v v Qwen-7b

TABLE I: Comparison of related work integrating LLMs with
robotics, highlighting differences in tasks, decision-making,
control influence, and LLM models used. § denotes cloud
dependency.

III. METHODOLOGY

This section describes the hardware and robotic platform
used for onboard LLM processing in Section III-A. Sec-
tion III-B describes how the decision-making module Deci-
sionxLLM utilizes robotic data for reasoning and integrates
with the overall stack. Finally, Section III-C explains the inter-
action between the LLLM and the controller within MPCxLLM,
including the MPC formulation.

A. Robotic System and Computational Hardware

In this work, the robotic platform of Figure 2, along with its
autonomy algorithms as detailed in the open-source FITENTH
autonomy stack [4], is employed. The autonomy stack has
been extended with the integration of a kinematic MPC
controller, further described in Section III-C1. Consequently,
positional state information is represented in the Frenet co-
ordinate frame, where the s coordinate indicates longitudinal
progress along a global trajectory, and the d coordinate denotes
lateral deviation from that trajectory, following the conventions
in [4].

A key hardware component is the Jetson Orin AGX serving
as the OBC. This OBC incorporates a 2048-core NVIDIA
Ampere architecture Graphics Processing Unit (GPU) with
64 Tensor Cores, delivering 275 TOPS, and is utilized for
LLM inference. Additionally, the Central Processing Unit
(CPU), a 12-core Arm Cortex-A78AE, is responsible for
running the autonomy stack, including the MPC. The OBC
is equipped with 64GB of shared Random Access Memory
(RAM), providing ample memory for computational tasks.
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Fig. 2: The 1:10 scaled robotic platform, utilizing the Jetson
Orin AGX as the OBC for executing computations related to
the locally deployed LLM and the ADS autonomy stack.

In this work, GPT4o is utilized via the OpenAl API [19]
as a cloud-based upper baseline, while two locally deployable
models, Phi-3-mini-4k-instruct! (referred to as Phi3-mini), a
3B parameter LLM, and Qwen2.5-7b-Instruct?, a 7B parameter
LLM, are sourced directly from HuggingFace. These models
were intentionally selected to validate the robustness and

Uhttps://huggingface.co/unsloth/Phi-3-mini-4k-instruct
Zhttps:/huggingface.co/unsloth/Qwen2.5-7B-Instruct



adaptability of the proposed framework, demonstrating its
effectiveness across diverse architectures and parameter scales.

B. DecisionxLLM — Decision Making with Robotic Data

The decision-making mechanism of DecisionxLLM, shown
in Figure 3, enables dynamic evaluation of robotic data against
desired driving behavior expressed through natural language
prompts. The system processes a brief temporal snapshot (e.g.,
2 seconds) of the robot’s state, including position, velocity, and
proximity to environmental boundaries.

Given this robotic data and a human-defined driving be-
havior prompt, the LLM assesses whether the robot adheres
to the specified behavior. For example, if a passenger in an
autonomous taxi requests a smoother ride due to discomfort,
the LLM could infer a reduction in lateral acceleration and
prioritize gentle maneuvers, enhancing overall user experience
through natural language HMI.

Given the robot_data, is the car adhering to the
desired human_behavior? Decide on the two actions:
a) Suggest behavior change
b) Pass

Human Prompt

"Safe Driving!"

Robot Data
[s,d, ve,a, ... ]

Fig. 3: Diagram illustrating the decision-making process of
the LLM, where it evaluates robot data conditioned on a
desired driving behavior based on a human prompt. The LLM
determines whether the behavior aligns with expectations or
suggests necessary adjustments.

a) Instruction: "Reduce the

a safer distance to the
walls"

The RAG module within the DecisionxLLM architecture,
inspired by [29], optionally enhances the system by enabling
memory modules to enrich the prompt with relevant context.
This includes safety-critical and robot-specific information,
such as nominal operating ranges (e.g., speed limits, distance
thresholds). This capability allows human users to define
custom safety and preference profiles while significantly im-
proving the LLM’s decision-making abilities by augmenting
robot-specific constraints into the prompt. This augmentation
is particularly valuable on computationally constrained embed-
ded OBCs, as the performance improvement comes without
having to employ larger compute heavy LLMs. An example
of the decision RAG is provided in Appendix C, Listing 3.

If the DecisionxLLM determines that the robot behavior
aligns with the desired behavior, no further action is taken.
However, if deviations are detected, the module generates a
concise adjustment instruction in natural language, specifying
how the behavior should be corrected. This instruction seam-
lessly integrates with the MPCxLLM module, where it serves
as input to dynamically adjust relevant parameters, ensuring
alignment with the desired behavior.

C. MPCxLLM — Controller Interaction

The interaction between the MPCxLLM controller and the
LLM, depicted in Figure 4, follows principles from [20, 31].
This integration enables an LLM, aware of the MPC formula-
tion and its adjustable parameters, to interface with the low-
level controller. As a result, task flexibility is achieved through
natural language-based HMI, while the MPC ensures safety
and constraint satisfaction at the low level.

Importantly, the inference latency of the LLM is decoupled
from the control frequency of the MPC. Operating at a higher
abstraction level, the LLM intermittently adjusts the MPC
parameters without interfering with the MPC fixed-frequency
control loop. This ensures control stability and safety, while
the LLM focuses on task-level adaptations.
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Fig. 4: Illustration of the MPCxLLM architecture: a natural
language instruction serves as input, optionally enhanced by
a RAG, processed by the LLM, and finally parsed to extract
relevant parameters, which are then transmitted to the MPC
via Robot Operating System (ROS) dynamic reconfigure.

Similar to the RAG module described in Section III-B, an
optional RAG can be integrated here. Given the computational
constraints of the OBC and the limited size of the locally de-
ployed LLM, the RAG can significantly improve performance
by enriching prompts with context-specific hints tailored for
the MPC. An example of such a MPC RAG memory is
provided in Appendix B, Listing 2. It is worth noting that
the RAG module is optional and can be disabled, as evaluated
in Table IIL

The MPC is based on a kinematic model, with its cost
function primarily designed to ensure accurate tracking of the
given trajectory and velocity.

1) Kinematic Model:
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where «, indicates the curvature of the reference trajectory. L
is the distance from the front axle to the rear axle. s denotes
the distance traveled along the reference trajectory, and n is
the lateral deviation from this trajectory. A¢ represents the
heading angle error. § denotes the steering angle and v is
the velocity. The incremental model is utilized to smooth
the control inputs. Consequently, the state of the model is
comprised of the following five variables:

95:[5 n A¢ o U]T (2)



The input variables include the steering angle difference A¢
and the longitudinal acceleration a:
u=1[As o] 3)

2) MPC Formulation:
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where N is the prediction horizon. ¢, q., ¢, are state weight
parameters. gr represents the weight matrix for the control
inputs. Its diagonal elements respectively indicate the penalties
on the difference of the steering angle and the longitudinal
acceleration, denoted by gags and ¢,.. X and U represent
the sets of constraints for the states and inputs, respectively.
Among them, the velocity v and the steering angle § are each
limited in magnitude. The vehicle’s lateral error is constrained
within the road boundaries, and an online tuning parameter
€ is introduced as a boundary inflation factor to ensure the
vehicle’s driving safety. The steering angle difference and the
longitudinal acceleration are also limited in their respective
ranges. To simplify the expression of the optimization prob-
lem, the lateral acceleration constraint a.(xz, u) based on the
vehicle’s kinematic model is not explicitly included in the
formulation.

Overall, the weight parameters ¢, the constraints on states X’
and inputs ¢/, and the boundary inflation €, can all be treated as
adjustable parameters for the LLM to tune so that the vehicle
can exhibit the desired behavior.

D. LoRA Finetuning of the LLMs

While GPT4o together with robot or task-specific RAG have
shown to be zero-shot capable, small LLMs which would
be locally deployable perform significantly worse than the
large cloud-bound GPT4o and thus have to be LoRA fine-
tuned with synthetic data derived from GPT4o. Although the
correctness of the synthetic data is not formally guaranteed,
observed response quality was deemed high enough for LoRA
fine-tuning on smaller LLMs. Hence, finetuning via Parameter
Efficient Fine-Tuning (PEFT) methods, particularly LoRA
[17], is employed. LoRA can reduce the number of trainable
parameters by thousands of times and the GPU memory
requirement by up to threefold, significantly simplifying the
finetuning process [17]. For LoRA-based PEFT, the unsloth
framework is utilized [10]. Training utilizes synthetic datasets
generated by zero-shot prompting GP7-4o0 [19] across each
domain:

I Synthetic Data for DecisionxLLLM: GP740 generates

state summaries using randomized parameters derived

from the decision-RAG, detailed in Listing 3. By lever-
aging randomized nominal operation ranges and thresh-
olds (e.g., speed ranges, critical distances to boundaries,
etc.), GPT4o synthesizes robot state representations and
identifies deviations from expected behavior according to
the RAG. These randomized parameters encourage the
local LLM to focus more emphasis on the decision-RAG
hints. This enhances the robot’s ability to ground its
decision-making process in the provided hints, facilitating
customization of safety and preference profiles by the
user. More information in Appendix A.

II Synthetic Data for MPCxLLM: GPT4o generates data
using randomized parameters in a base MPC formulation
(Listing 1). The model adapts these parameters to enforce
specific driving behaviors while providing brief justifi-
cations. This dataset enables LoRA to learn interactions
between MPC elements, with training data designed to
be out-of-distribution due to the parameter randomization
and an altered MPC formulation being employed during
inference. More information in Appendix A.

Post-training quantization is applied to enhance inference
speed and efficiency by converting the finetuned LLMs into
the Q5_k_m GGUF format. This compression reduces both
memory usage and computational demands, enabling notably
faster inference when utilizing the 11ama . cpp inference en-
gine [8, 14] on the resource-constrained OBC, as demonstrated
in Table IV.

This combined approach ensures efficient training, opti-
mized inference, and enhanced onboard decision-making ca-
pabilities for both MPCxLLM and DecisionxLLM modules.

IV. RESULTS

This section presents the experimental setup, along with
qualitative and quantitative results of the DecisionxLLM mod-
ules’s ability to assess whether the vehicle adheres to in-
structed driving behaviors based on robotic state information
in Section IV-A. Next, the controller adaptability through
MPCxLLM is evaluated in Section I'V-B. Finally, the compu-
tational performance of the edge-deployed LLM is evaluated
on the resource-constrained OBC in Section IV-D.

A. Reasoning on Robotic Observations

Bubble 1 illustrates a qualitative example of the Deci-
sionxLLM output. The human_prompt instructs the system
to ”Drive normally”. The LLM evaluates the robot state
against this directive, leveraging optional rag_hints that
provide contextual information, such as for example nominal
vehicle speed and safe distances from track boundaries. De-
tailed rag_hints are provided in Listing 3.

In this scenario, the rag_hints define “normal” driving
as minimal lateral oscillations, safe clearance from boundaries,
and sufficient speed. The LLM identifies anomalies within the
robot state: significant lateral oscillations, proximity to the
right wall at 0.1 m, and a low speed of 1ms~!. Based on
these observations, the module concludes that the state does
not conform to the human directive of "driving normally”.



Subsequently, the LLM generates a natural language in-
struction for the MPCxLLM module to correct these issues,
enhancing interpretability and ensuring alignment with the
desired driving behavior.

Drive normally!

The human wants to: human_prompt.
The data has been sampled for 2.0 seconds in 4
samples.
e s-coordinate: 19, 20, 21, 22
e d-coordinate: -0.6, 0.6, —-0.65, 0.61
e sspeed: 1.0, 1.0, 0.9, 1.1
o d-speed: 1.2, -1.2, 1.21, -1.2
o distance to left wall: 1, 1, 1, 1
o distance to right wall: 0.1, 0.1, 0.1, 0.1
e crashed: False

Here are some guides
rag_hints.

Check if the car is doing what the human wants.
Choose one of the following actions to command the
car:

to help you reason:

o a) Continue behavior
« b) Change behavior: instruction

The car is driving with s-speeds close to 1.0 m/s,
which is below the normal driving speed range of
5-7 m/s. The d-coordinate oscillates between positive
and negative values, indicating oscillation around the
racing line. The d-speed is high, exceeding 0.5 m/s,
which is not normal. The car is not crashed, facing the
wall, or reversing. The distances to the walls are very
close, which is unsafe. The car is not adhering to the
human’s desired driving style of drive normally.”
Action: b) Change behavior

Instruction: The car should increase its s-speed
to a normal range of 5-7 m/s, reduce the oscillation
in d-coordinate, and move closer to the centerline to
increase safety.

On a quantitative note, the DecisionxLLM module is eval-
uated based on its ability to determine whether a robotic
state adheres to the human’s desired driving behavior. A
dataset containing 200 sets of robot states was curated and
labeled according to 8 example human prompts, allowing for
quantitative evaluation. Example prompts include:

1 ”Drive faster than 3 m/s!”

IT "Normal driving on the racing line.”

III Reverse the car!”

These prompts were selected for their suitability to pro-
grammatically classify the robot states based on the predefined
driving characteristics listed above. The LLM performs a bi-
nary classification over 1600 robot state samples, to determine
adherence conditioned on a desired driving behavior. More
information on the definition of decision-making accuracy in
Appendix C.

LLM | Params | Quant | LoRA | RAG | Accuracy [%]1
GPT40 ? ? X X 81.68
Phi3-mini 3.8B FP16 X X 72.15
Qwen2.5 7B FP16 X X 77.75
GPT40 ? ? X v 92.48
Phi3-mini 3.8B FP16 X v 78.69
Qwen2.5 7B FP16 X v 82.47
Phi3-mini 3.8B FP16 v v 82.60
Qwen2.5 7B FP16 v v 87.32
Phi3-mini 3.8B Q5 v v 84.95
Qwen2.5 7B Q5 v v 87.02

TABLE II: Decision-making accuracy across various LLMs,
illustrating the impact of quantization, LoRA fine-tuning, and
RAG on the performance of the DecisionxLLM module in
evaluating whether a robotic state aligns with desired driving
behavior. Higher accuracy values indicate improved adherence
to the specified driving characteristics. ? indicates that this is
proprietary knowledge, not known to the public.

Table II demonstrates the performance of the DecisionxLLM
module in determining whether a robotic state adheres to
the desired human driving behavior. All performance im-
provements are stated in absolute percentage points. The
results indicate that the inclusion of RAG consistently en-
hances model performance across all tested LLMs, with
an average improvement of 7.35% (GPT4o/Phi3/Qwen2.5 —
+10.8/+6.54/+4.72%). Fine-tuning locally deployable LLMs
via GPT4o distillation, as detailed in Section III-D, further im-
proves model accuracy by an average of 4.38% (Phi3/Qwen2.5
— +3.91/+4.85%). Lastly, quantization, which is essential for
deployment on computationally constrained OBCs, does not
substantially degrade decision-making performance, maintain-
ing accuracy within a margin of 1.02% relative to full-
precision models (Phi3/Qwen2.5 — +2.35/-0.3%).

In summary, the proposed system effectively reasons
over robotic state information conditioned on human driv-
ing instructions, benefiting from RAG, LoRA fine-tuning
(Phi3/Qwen2.5 — +10.45/+9.57%), and demonstrating re-
silience to the effects of model quantization for local deploy-
ment. Further, comparing the two local LLMs, Qwen2.5-7b
consistently outperforms Phi3-mini-3.8b across all settings,
making it the preferred choice. That said, GPT4o achieves the
highest performance overall, and the framework’s flexibility
enables its use in scenarios where dependency on cloud
connectivity is warranted.

While Table II presents the average decision-making ac-
curacy on the custom dataset, Table V provides a detailed
breakdown across sub-categories and additional highly con-



temporary LLMs, including a DeepSeek R1 distilled Qwen2.5-
7b model [15].

B. MPCxLLM — Control Adaptability

The MPCxLLM module is evaluated, in a closed-loop sim-
ulation environment of the open-source FITENTH autonomy
stack [4], where the MPC handles vehicle control. In this
context, simulation is preferred over physical testing due to
time efficiency and access to ground-truth data.

The LLM governs interaction scenarios to enable the com-
putation of quantifiable Root Mean Square Error (RMSE)
metrics. We assess changes in closed-loop behavior relative
to the default MPC formulation outlined in Section III-Cl1,
using the following criteria:

I Centerline: RMSE of the distance from the centerline,
denoted as E¢[m]. Instruction prompt: “Drive as far away
from the walls as possible!”

IT Reference Velocity: RMSE deviation from a human-
provided reference velocity, denoted as Ey-[ms™!]. In-
struction prompt: “Follow the reference velocity of 1.25
m/s as closely as possible!”

I Reversing: RMSE deviation from a negative reference
velocity specified by the human, denoted as Er[ms ].
Instruction prompt: "Drive the track in reverse at -1 m/s!”

IV Smooth Driving: RMSE of acceleration deviating from
0 ms—2, denoted as Eg[rns2]. Instruction prompt: “Re-
duce jerkyness!”

Reverse the car!

Adapt the tuneable parameters of the MPC so that the
car achieves the following: instruction.

This is the MPC formulation: base_memory.

Make use of these memories: rag_memories.
Return format:

new_mpc_params = {paraml: new_valuel,
param2: new_value2, ...}

new_mpc_params = {gqv: 0.1, ’"gn’:
40, galpha: 50, ddelta min: -5,
ddelta_max: 0, dv_min: -50,

dv_max: -1, v_min: -1, v_max: -1,

boundary_inflation: 0.1}

Explanation: The new parameters are tuned to
achieve the goal of driving the track in reverse at -1.0
m/s. The minimum and maximum velocities (v_min
and v_max) are set to -1 and -1, respectively, to
ensure the velocity is at -1.0 m/s.

It is important to note that while the evaluation scenarios
presented here are specifically designed to ensure the compu-
tation of quantifiable metrics, such as RMSE, the MPCxLLM
module is capable of processing and responding to a wide
range of other natural language instructions. The chosen sce-
narios are simply representative examples where measurable
outcomes — like centerline deviation, velocity tracking, and
smooth driving — allow for clear and reproducible analysis.
However, the methodology and interaction flow described
are not limited to these examples and can extend to other
instructions.

Table III demonstrates the controller adaptability through
the evaluated LLMs. The MPC baseline, represents the dif-
ferent RMSEs adherences with default parameters, tuned for
nominal operation of the vehicle. All percentage improvements
are reported in absolute percentage points. The results show
that the inclusion of RAG generally improves instruction
adherence for locally deployable LLMs (Phi3-mini, Qwen2.5)
by approximately 40%, although performance without RAG
can be negligible or even detrimental. GPT40 cannot be
deployed via LoRA fine-tuning and is therefore excluded. For
locally deployable models, LoRA fine-tuning offers an addi-
tional 15-20% improvement over RAG-only setups. Hence,
in terms of controller adaptability, both RAG and LoRA
demonstrate a 45.1% and 52.2% (for Phi3-mini and Qwen2.5
respectively) improvement over the nominal MPC baseline.
Lastly, quantization introduces a minor 1-6% performance
drop but is essential for achieving acceptable computational
performance on the OBC, as detailed in Section IV-D. Note
that the numerical values should be interpreted with caution,
as the closed-loop experiment is not deterministic, since it
depends on the MPC’s adherence quality and the specific
map used in the open-source simulation environment [4],
hence the relative improvement should be regarded. From the
local LLMs, Table III shows that Qwen2.5-7b consistently
outperforms Phi3-mini-3.8b in terms of controller adaptability.

Bubble 2 illustrates a qualitative result of the MPCxLLM
module. The input instruction is passed to the LLM, where the
prompt demonstrates how the LLM is guided by the instruction
and optionally enriched by the MPCxLLM RAG. Finally, the
module’s output displays a new set of MPC cost and constraint
parameters that are subsequently parsed and transmitted to the
MPC as a ROS dynamic reconfigurable parameter.

C. Physical Robot

Multiple qualitative examples of the proposed framework
operating on the physical robot are shown in Figure 5. In
Figure 5a, the human instructs the robot to increase its
distance from the wall. The before image illustrates how close
the robot was initially driving to the wall, while the after
image demonstrates a much safer clearance achieved through
adjustments made by the MPCxLLM module. The MPCxLLM
was prompted with: "Drive further away from the wall.”

Figure 5b showcases the DecisionxLLM and MPCxLLM
modules combined, by detecting a crash and subsequently
instructing the robot to reverse and then safely resume its



LLM | Params | Quant | LoRA | RAG | Eg[m]l | Ey[ms—']] | Eg[ms~*]l | Es[ms—2] | | Improve [%]

MPC (baseline) | - | - | - |- 0.7 | 1.6 | 4.6 | 1.5 |

GPT4o0 7 ? X X 0.5 (19.3%) 1.8 (-11.8%) 1.5 (68.1%) 1.4 (5.1%) 20.2%
Phi3-mini 388 | FPI6 X X N.C. 19 (-17.1%) 2.8 (39.5%) | 11.8 (-711.4%) -229.6%!
Qwen2.5 7B FP16 X X | 07¢146%) | 1.8 (-14.4%) 1.3 (70.9%) 2.0 (-40.4%) 0.5%
GPT4o ? ? x V| 05213%) | 03 (81.5%) 1.2 (74.7%) 13 (7.5%) 46.3%
Phi3-mini 388 | FPI6 X v 0.6 (6.6%) 0.6 (60.8%) 42 (9.8%) 0.3 (82.5%) 39.9%
Qwen2.5 7B FP16 x v 0.6 (8.6%) 0.1 (91.7%) 1.5 (67.7%) 1.4 (4.8%) 432%
Phi3-mini 3.8B FP16 v v 0.7 (-0.3%) 0.6 (59.3%) 1.0 (78.8%) 0.8 (42.8%) 45.1%
Qwen2.5 7B FP16 v v | 04@372%) | 0.4 (71.9%) 1.1 (76.4%) 1.1 (23.2%) 52.2%
Phi3-mini 3.8B Q5 v v | 057(126%) | 0.5 (70.7%) 1.2 (73.6%) 1.1 (-22.3%) 44.%
Qwen2.5 7B Q5 v v 0.43 (33.4%) 0.2 (85.8%) 1.3 (71.3%) 1.5 (-3.3%) 46.8%

TABLE III: Quantitative Comparison of LLM configurations with MPC. Performance metrics include deviation from the
centerline (E¢[m)), reference velocity (Ey [ms™']), reversing accuracy (Fr[ms!]), and driving smoothness (Es[ms2)),
with percentage improvements shown relative to the MPC baseline. The average improvement column summarizes overall
performance across all metrics. § indicates an average over completed runs, excluding N.C. (Not Completed). ? indicates that

this is proprietary knowledge, not known to the public.
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Fig. 5: Visualization of physical robot behaviors: (a) increasing clearance from walls, (b) recovering from a crash scenario.
All experiments were performed utilizing the edge-deployed Owen2.5-7b LLM.

path. The DecisionxLLM module is instructed by the human seconds, while the 05_k_m quantized model shows improved
to: ”Drive normally!”. The full model outputs of the LLM performance with an inference time of 4.80 seconds for 154
is shown in Bubble 3. More qualitative experiments on the tokens. For the framework based on Qwen, the outcome is

physical robot are depicted in Appendix D. similar. On the RTX 3090, when the model is quantized to
05_k_m, the throughput speed rises to nearly 9.7x that of
D. Computation FP16, reaching 107.52 tokens per second. Thus, the inference

time decreases significantly to 0.91 seconds, approximately
20% of the time required for FP16. On the Jetson Orin,
the Q5_k_m configuration increases the throughput to about
10.5x compared to the FP16, at 22.12 tokens per second.
The inference time is lowered to 5.52 seconds, less than 20%
of that of the FFP16. These results highlight the substantial
efficiency gains achievable through post-training quantization,

Given the need for efficient hardware utilization in au-
tonomous driving scenarios and the necessity for real-time
interaction, the efficiency based on two models is evaluated
and discussed in Table IV for the locally deployable Phi3-mini-
3.8b and Qwen2.5-7b. The same input prompt was used for
all compute evaluations and performed 60 times sequentially.

For the framework based on Phi3, when deployed on RTX
3090 hardware using FP16, the model with 3.8 billion param- enabling the deployment of our LLMs-based framework in
eters achieves a token output rate of 25.23 tokens per second ~Ccomputationally constrained hardware while maintaining real-
and utilizes 4.3 GB of memory. In contrast, when quantized time capabilities on robotic platforms.
to Q5_k_m, the memory usage decreases to 3.9 GB, and
the throughput speed significantly increases to 148.36 tokens
per second. On the computationally constrained Jetson Orin This work introduces a hybrid architecture that enables the
hardware, the FP16 Phi3 achieves an inference time of 15.29 integration of low-level MPC and edge-deployed LLMs to

V. CONCLUSION



HW [LLM
[#B] |[GB]| [#] ™ o

RTX |Phi3 | FP16 | 38 | 43 | 72 | 2523 |2.85 0.05
3090 [Qwen| FPI6 | 7 | 78 | 50 | 1114 |451 008
Phi3 | Q5 | 38 |39 | 110 | 14836 [0.75 0.06
Qwen| Q5 | 7 |56 | 97 | 10752 [091 008
Jetson|Phi3 | FP16 | 38 | 42 | 72 | 471 |1529 048
Orin |Qwen|FPI6 | 7 | 69 | 64 | 211 [3048 059
AGX phis | Q5 | 38 | 36 | 154 | 32.47 | 480 0.58
Qwen| Q5 | 7 |53 121 | 2212 |552 o058

TABLE IV: Comparison of computational performance for
locally deployable models, Phi3-mini-3.8b and Qwen2.5-7b.
The LLMs were deployed on both an RTX 3090 GPU and the
Jetson Orin AGX robotic OBC. FP16 denotes full-precision
models, while Q5 represents the Q5_k_m quantized models
implemented via the 1 1ama . cpp inference engine. The num-
ber of tokens denotes the output tokens generated for the given
inference. The average inference latency with the standard
deviation is denoted with i, o; respectively.

enhance robotic decision-making and HMI through natural
language in ADS. It offers the flexibility to choose between
different LL.Ms based on operational requirements such as
cloud connectivity, privacy considerations, and latency con-
straints. This approach bridges the gap between high-level
reasoning and low-level control adaptability.

On locally deployed LLMs, the DecisionxLLM module
demonstrates up to 10.45% improvement in reasoning ac-
curacy when augmented with RAG and LoRA fine-tuning.
The MPCxLLM module showcases controller adaptability,
achieving up to a 52% improvement in controller adaptabil-
ity, highlighting how natural language can adjust low-level
MPC parameters to achieve flexible robotic behaviors while
maintaining safety and constraint satisfaction through MPC
systems.

Furthermore, this work demonstrates the deployment of
embodied Al locally on embedded platforms, highlighting the
importance of quantization in enabling real-time performance.
Through post-training quantization, a 10.5x improvement in
throughput are achieved for the Qwen2.5-7b model on the
Jetson Orin AGX OBC, allowing for efficient deployment of
LLMs on resource-constrained hardware.

VI. LIMITATIONS

One limitation of this approach is the relatively slow
decision-making and controller adaptation process, which may
fail to capture subtle (or high-frequency) behavioral nuances
in the robotic state. Additionally, the reliance on text-based
LLMs constrains the reasoning capabilities to state-based
information alone. In contrast, multimodal LL.Ms could sig-
nificantly enhance performance by incorporating visual data,
enabling richer and more context-aware reasoning. However,
the computational constraints of the embedded OBC neces-
sitated the use of standard LLMs as an initial step. Future

Quant|Param|Mem | Tokens Tokens/s | Latency [s]. work may address these constraints by exploring efficient

deployment strategies for multimodal models on resource-
limited hardware and investigating their reasoning capabilities.
Lastly, locally deployed LLMs are not without flaws. They
occasionally introduce reasoning errors and inconsistencies
in controller adaptability, highlighting areas for improvement
by retraining with a larger amount of distillation data. The
proposed framework should therefore be viewed as a potential
approach to integrating knowledge into ADS.
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APPENDIX A
LORA FINE-TUNING EXAMPLES

For DecisionxLLM, we generate synthetic data via a two-stage process. First, in simulation, the vehicle collects diverse
states (e.g., centerline tracking, reversing, unsafe maneuvers). These states are input to GPT4o, with prompts enriched by a
RAG context (Listing 3) that injects robot-specific details (e.g., speed ranges, safe distances). Parameter values are randomized
programmatically to avoid overfitting, ensuring diversity in the synthetic dataset. GPT4o then produces behavior descriptions
based on queries such as: "The human wants to: Drive Safely. Check if this state: robot_state adheres to the
command. Additional context: RAG_info. Decide: (a) Yes, (b) No, adjust behavior” This yields 626 state-prompt response
pairs for DecisionxLLM fine-tuning.

For MPCxLLM, GPT4o is prompted with the human instruction (e.g., "Do not exceed speeds of 10 km/h.”),
base_memory (Listing 1), and RAG_memories (Listing 2). Programmatic randomization of the numeric inputs prevents
overfitting, producing 150 prompt response pairs for LoRA fine-tuning of MPC adaptation.

APPENDIX B
ADDITIONAL MPC INFORMATION

The baseline MPC parameters within Table III have been set to ensure nominal tracking of the racing line in the
simulation environment, which are the default parameters visible in Listing 1. Hence, in the controller adaptability experiment
Section 1V-B, the MPCxLLM module was tasked to adapt the nominal behavior (e.g., from tracking the racing line to “Reverse
the car!”) as described in Section IV-B — thus yielding a quantitative and measurable alteration of the nominal (baseline)
MPC behavior.

The base memory of Listing 1 within the MPCxLLM prompt Bubble 2 serves as a predefined knowledge foundation for
mapping high-level natural language instructions into precise MPC parameters. It encodes the cost structure, tuneable parameters,
and safety constraints essential for dynamic control adjustments. Each parameter is strictly defined with names, valid ranges,
and default values that are defined as ROS dynamic reconfigure parameters.

# Cost expression with adjustable weights:
model.cost_expr_ext_cost = (
weight_gn * nxx2 +
weight_galpha % alphaxx2 +
weight_qv * (v — V_target)xx2 +
weight_gac % der_vx*2 +
weight_ddelta * derDeltax*2 +
u.T @ R Q@ u
)

# Tuneable cost weights and constraints (USE EXACT NAMES, DO NOT CREATE NEW ONES!) :
# param: min, max, default # description

qv 0, 2, 10 # Velocity weight: minimizes speed tracking error

qn 0, 100, 20 # Lateral weight: minimizes deviation from the track

qalpha 0, 100, 7 # Heading weight: minimizes orientation error

qac 0, 1, 0.01 # Acceleration weight: penalizes high acceleration

qgddelta 0, 100, 0.1 # Steering weight: penalizes fast steering changes

alat_max 0, 20, 10 # Max lateral acceleration: limits side force

a_min -20, 0, -5 # Min acceleration: lower acceleration bound

a_max 0, 20, 5 # Max acceleration: upper acceleration bound

v_min -2, 5, 1 # Min velocity: lower speed bound

v_max -1, 10, 5 # Max velocity: upper speed bound

track_safety margin 0, 1.0, 0.45 # Safety margin: increases track boundary margin

Listing 1: MPCXLLM Base Memory

Listing 2 shows the MPCxLLM RAG memories establish context-specific mappings between natural language instructions and
corresponding MPC parameter adjustments. Each memory entry provides guidance on how parameters from the base_memory
influence the MPC, resembling simplified driving school instructions, akin to [29]. These memory entries are modular and can
be combined to address more complex scenarios. The RAG mechanism ensures effective retrieval by performing similarity
matching between the user instruction and scenario descriptions.

# Memory Entry 0:
Scenario:
To force going forwards v_min should be positive. If you want it to be able to reverse, then set v_min to
negative.
MPC Action:
mpc_params = {
positive, if you want to go forwards, else negative to reverse




}

# Memory Entry 1:
Scenario:
Always have v_max be higher than v_min.
MPC Action:
mpc_params = {
higher than v_min

}

# Memory Entry 10:
Scenario:
To minimize the lateral acceleration and jerk, set alat_max to a low value and a_min and a_max close to
zero. If you want to drive more aggressive, then set alat_max to a higher value.
MPC Action:
mpc_params = {
low for minimizing lateral acceleration, else high for aggressive driving

}

Listing 2: MPCxLLM RAG Memories

APPENDIX C
ADDITIONAL DECISION-MAKING INFORMATION

Decision accuracy was evaluated using a dataset of 200 state samples (using a different state-dataset as the LoRA fine-tuning
data), yielding 1600 state-command pairs across 8 driving commands Section IV-A. Each state corresponds to a command
(e.g., "Drive faster than 3 m/s.”). The DecisionxLLM module performs binary classification to determine if the robot’s state
meets the command (Figure 1 or Figure 3). Adherence is verified computationally; for instance, for “Reverse the car!”,
the system checks if the velocity is negative. Accuracy is measured as the percentage of correctly classified state-command pairs.

Listing 3 is an excerpt is from the DecisionxLLM RAG entries. The RAG enhances the human_prompt by augmenting it
with context retrieved through similarity searches across various hints. The top-k most relevant hints are selected to enrich the
prompt, providing additional contextual grounding. This approach allows users to ground the robot using natural language. For
instance, a user might specify a different desired nominal speed range, such as operating the car between 2-4ms~—!, thereby
supplying DecisionxLLM with updated operational constraints.

# Hint 1:
If the d-speed is above than 0.5m/s is high.

# Hint 2:
Unless specified differently by the human, the car is usually driving at speeds between 5 and 7m/s.

# Hint 3:
If the distance to a wall is smaller than 0.4m, the car is close to that wall.

# Hint 8:
A d-coordinate above 0.3m is considered not to be on the racing line.

# Hint 9:
The car is oscillating if the d-coordinate oscillates between positive and negative values exceeding a
magnitude of 0.3 metres.

# Hint 10:
Oscillations in d-coordinate under 0.3m or d-speed under 0.5m/s are negligible.

Listing 3: DecisionxLLM RAG Memories

APPENDIX D
CRASH RECOVERY OUTPUT EXAMPLES ON THE PHYSICAL ROBOT

Bubble 3 captures the chat log from the experiment detailed in Figure 5b. The robot begins in a crashed state, facing a wall.
The DecisionxLLM identifies this condition and adjusts the MPC to initiate a reversing maneuver. Once the robot successfully
reverses out of the crash, it resumes normal driving along the track. This log presents the LLM output generated during the
experiment, where the locally deployed Owen2.5-7b was running on the OBC.




Drive normally!

The human wants to: ”Drive normally!”
The data has been sampled for 2.0 seconds in 5 samples.

e s-speed: -0.009, -0.026, -0.03, -0.03, -0.013

e d-speed: 0.096, 0.091, 0.088, 0.09, 0.096

o distance to left wall: 2.953, 2.954, 2.954, 2.955, 2.955
« distance to right wall: 0.149, 0.148, 0.148, 0.147, 0.147
o crashed: True

Here are some guides to help you reason: rag_hints.

Check if the car is doing what the human wants. Choose one of the following actions to command the car:
o a) Continue behavior
« b) Change behavior: instruction

The car is facing a crash and is reversing, which is not the normal driving behavior. The car should be facing
forward and driving at a normal speed. The s-speed is close to Om/s, indicating the car is stopped, and the d-speed is
high, suggesting the car is oscillating around the racing line. The car is also close to the right wall, which is a sign of
a crash. Reversing is necessary to get the car back on the racing line and back to normal driving.

Action:

Change behavior: Reverse the car to get back on the racing line.

new_mpc_params = {gqv: 0.5, gn: 50.0, galpha: 5.0, gac: 0.01, gddelta:
0.1, alat_max: 10.0, a_min: -5.0, a_max: 5.0, v_min: -2.0, v_max: -1.0,
track_safety_margin: 0.45}

Explanation: Setting parameters to reverse the car.

Human Narration

The car was stuck in the wall. The DecisionxLLM stage made the correct decision, albeit a reasoning error on stating

that the d-speed is high, but this did not change the overall decision-making. Then the MPCxLLM stage correctly adapts
the MPC to induce reversing behavior.

The human wants to: ”Drive normally!”

The data has been sampled for 2.0 seconds in 5 samples.
e s-speed: -0.022, -0.014, -0.037, -0.005, —-0.038
e d-speed: 0.091, 0.095, 0.088, 0.097, 0.088
o distance to left wall: 2.956, 2.955, 2.955, 2.955, 2.956
« distance to right wall: 0.146, 0.147, 0.147, 0.147, 0.146
o crashed: True

Here are some guides to help you reason: rag_hints.

Check if the car is doing what it needs to ensure recovery. Choose one of the following actions to command the car:
o a) Continue behavior
« b) Change behavior: instruction



The car has crashed and is reversing, so it should continue to reverse until it is safe to proceed. The car’s speed
is very low, indicating it is stopped, and it is close to the right wall. Therefore, the car should reverse slowly to get
back on the racing line.

Action:

Continue behavior

Human Narration

Even though reversing behavior was already induced, the state was sampled while the car was still crashed into the
wall. Hence the decision of continuing the reversing behavior is correct.

The human wants to: ”Drive normally!”
The data has been sampled for 2.0 seconds in 5 samples.
e s-speed: -0.254, -0.149, -0.086, -0.088, -0.029
e d-speed: 0.748, 0.281, 0.163, 0.155, 0.112
o distance to left wall: 0.372, 0.379, 0.386, 0.393, 0.391
« distance to right wall: 2.82, 2.846, 2.839, 2.832, 2.834
e crashed: False
Here are some guides to help you reason: rag_hints.
Check if the car is doing what the human wants. Choose one of the following actions to command the car:

o a) Continue behavior
« b) Change behavior: instruction

The car is reversing, which is not the normal driving behavior. The car should be facing forward to maintain normal
driving. Therefore, the action should be to stop the car from reversing and resume normal driving.

Action:

Change behavior: Stop reversing and resume normal driving.

new_mpc_params = {’v.min’: 1.5, ‘v_max’: 1.5, ’'qgn’: 100, ’'galpha’: 100, 'gac’:
0.01, "gddelta’: 0.1, 'alat_max’: 10, 'a_min’: -5, ’'a_max’: 5}
Explanation: The parameters are tuned to smoothly resume normal driving.

Human Narration

It is correctly detected that the car is no longer crashed and should now drive forwards again. The MPC parameters
are then again adjusted to do so.

A. Velocity Adherence on the Physical Robot

Fig. 6 illustrates the robot’s ability to respond to human commands effectively by adjusting its velocity to remain within a
specific range. This experiment is performed on the physicial robot using the edge-deployed Qwen2.5 model. Upon receiving
the instruction to maintain a target velocity window, the robot promptly modifies its speed, demonstrating precise control and
adaptability. This behavior highlights the system’s capability to monitor and regulate its performance, ensuring that the velocity
consistently stays within the designated limits.



"Keep the velocity between
1.6m/s and 2m/s!"
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Fig. 6: Illustration of the robot’s velocity behavior before and after (at 30s) the human prompts the LLM: "Drive at speeds
between 1.5 and 2.0 m/s”.

APPENDIX E
EXTENDED DECISION-MAKING RESULTS

Table V extends Table II by presenting the performance of various LLMs across individual decision-making test cases, with
the average accuracy reported in the final column. Additionally, this table includes evaluations of contemporary models such
as Phi4-14b*, Gemma2-9b*, and DeepSeek RI-distilled Qwen2.5-7b°. These models represent state-of-the-art architectures at
the time of this submission. However, due to time constraints, the quantization and Q5_k_m GGUF inference pipeline could
not be implemented.

Furthermore, the large parameter count (or slower inference architecture) of Phi4-14b and Gemma2-9b — and in the case
of Owen2.5-7b-R1distill, the extended Chain of Thought (CoT) reasoning process — renders them infeasible for closed-loop
MPC and simulation experiments. As a result, only decision-making results are presented here.

A key observation from the results is that, with and without RAG, Qwen2.5-7b-R1distill demonstrates a significant
performance boost over its non-R1-distilled counterpart of the same parameter count. The § symbol denotes instances where
the LLM was occasionally cut off during evaluation — despite doubling the maximum token limit to 1024 — directly leading
to incorrect decision scores. This issue stems from the computational overhead associated with R1 CoT reasoning, resulting in
a significantly higher number of output tokens and consequently longer inference and evaluation times. This means, that given
more time, the performance values would probably be even higher.

Moreover, Qwen2.5-7b-R1distill exhibits a notable drop in performance when fine-tuned with LoRA. This finding is
particularly intriguing, as the LoRA fine-tuning was based on Supervised Fine-Tuning (SFT) using GPT-40 data, suggesting a
potential degradation in reasoning capability rather than improvement and that the LoRA tuning step could perhaps be improved
by utilizing R1 generated data for SFT. Further, it is to note, that once LoRA tuned on GPT4o data, the LLM now again learns
to be concise and is no longer cut-off, however this comes at the cost of reasoning accuracy performance.

3https:/huggingface.co/unsloth/phi-4
“https://huggingface.co/unsloth/gemma-2-9b
Shttps:/huggingface.co/unsloth/DeepSeek-R1-Distill- Qwen- 7B



Model | Params | Quant | LoRA | RAG | Centerline | Close Wall | Forward | Oscillating | Racingline | Reversed | Speed | Stop | Avg. Accuracy

GPT4o0 ? X x X 94.57 80.5 81 80.5 81 70.83 775 | 875 81.68
Phi3-mini 3.8B x x X 837 56.5 76 76.5 74 48.96 745 | 87 72.15
Phid-14b 14B x x X 913 83.5 745 755 71 62.5 71 77 75.79
Gemma2-9b 9B x x X 84.78 86 80 81.5 78 84.9 775 | 835 82.02
Qwen2.5-7b 7B x x X 82.07 71 76 84 755 724 715 | 895 77.75
Qwen2.5-7b-R1distil | 7B x x X 92.93 84 75 79 80 724 745 | 825 80.04+
GPT4o ? x x v 100 98 97 85.5 95.5 83.85 96 84 92.48
Phi3-mini 3.8B X x s 90.76 66 81 84 78 68.23 77 | 845 78.69
Phid-14b 14B X X s 97.83 84 86.5 75 85 65.62 77 85 81.99
Gemma2-9b 9B X x s 96.2 82 795 83 79 7135 74 85 81.26
Qwen2.5-7b 7B X X s 90.79 78.5 83 84 81 73.44 785 | 905 82.47
Qwen2.5-7b-R1distil | 7B X X s 94.02 89 88.5 825 86.5 78.12 79 | 865 85.52¢
Phi3-mini 3.8B x v v 94.57 68.5 825 80.5 82 79.69 755 | 975 82.60
Phid-14b 14B x v v 100 90.5 94 80.5 93.5 79.17 915 | 895 89.83
Gemma2-9b 9B x v v 82.61 72 76 75 73 724 66.5 | 72 73.69
Qwen2.5-7b 7B x v v 97.28 78.5 90 86 88.5 81.77 81 | 955 87.32
Qwen2.5-7b-R1distil | 7B x v v 85.33 73 81.5 795 85.5 85.42 83 93 83.28
Phi3-mini 3.8B v v v 88.59 84.5 84 745 90 86.98 85 86 84.95
Qwen2.5-7b ‘ 7B ‘ v ‘ v ‘ v ‘ 98.91 ‘ 81.5 ‘ 85 ‘ 87.5 ‘ 85.5 ‘ 80.21 ‘ 82 ‘ 95.5 ‘ 87.02

TABLE V: Extended performance evaluation of Table II showcasing the single decision making test cases and additional LLMs.
Accuracy units are reported in %. 7 denotes proprietary information. | denotes that the evaluation was occasionally clipped to
the max tokens set to 1024 per inference, which might indicate that a higher score could potentially have been achieved with
more time.



