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Abstract—Neural displacement priors (NDP) can reduce the
drift in inertial odometry and provide uncertainty estimates that
can be readily fused with off-the-shelf filters. However, they fail
to generalize to different IMU sampling rates and trajectory
profiles, which limits their robustness in diverse settings. To
address this challenge, we replace the traditional NDP inputs
comprising raw IMU data with Lie events that are robust to
input rate changes and have favorable invariances when observed
under different trajectory profiles. Unlike raw IMU data sampled
at fixed rates, Lie events are sampled whenever the norm of
the IMU pre-integration change, mapped to the Lie algebra
of the SFE(3) group, exceeds a threshold. Inspired by event-
based vision, we generalize the notion of level-crossing on 1D
signals to level-crossings on the Lie algebra and generalize binary
polarities to normalized Lie polarities within this algebra. We
show that training NDPs on Lie events incorporating these
polarities reduces the trajectory error of off-the-shelf downstream
inertial odometry methods by up to 21% with only minimal
preprocessing. We conjecture that many more sensors than IMUs
or cameras can benefit from an event-based sampling paradigm
and that this work makes an important first step in this direction.

MULTIMEDIA MATERIAL

Open source code can be found here: https://github.com/
Royinalayanth/NIO_Lie_Events.

1. INTRODUCTION

Visual inertial odometry (VIO) has become a staple of
modern localization and navigation systems powering a diverse
range of applications including Augmented and Virtual Reality
(AR/VR) [9], autonomous driving, and robotics [17]. In short,
it works by integrating accelerometer and gyroscope measure-
ments from an inertial measurement unit (IMU) and correcting
the resulting drift with observations from a standard frame
camera [17]. However, the usefulness of these visual obser-
vations is often limited by the quality of the captured camera
frames, which degrades significantly, especially in challenging
lighting conditions and high-speed motion scenarios.

In seeking to overcome these limitations, a promising
alternative has emerged, namely using neural displacement
priors (NDPs). NDPs learn to map raw IMU measurements
themselves to displacement and covariance terms, and these
can then be used to correct drift, while circumventing the
pitfalls of classical frame-based algorithms. Surprisingly, these
priors have been shown to possess similar drift-correcting
capabilities to frame-based observations [31], and have thus
resulted in a resurgence of IMU-only, ie. purely Inertial
Odometry (I0) [31, 20, 6]. These neural priors generate
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Fig. 1. Neural Inerial Odometry from Lie Events. We train Neural Displace-
ment Priors (NDPs), which enable low-drift inertial odometry, with Lie Events
derived from acceleration a(¢;) and angular rate w(¢;) measurements from
an Inertial Measurement Unit (IMU). These events enhance the robustness
of NDPs due to their favorable properties under varying sampling rates and
trajectory profiles. To generate these events, we produce pre-integrations x(¢)
which reside in the special Euclidean group SE(3) and then perform level-
crossing on this signal which prompts the generalization of level-crossing and
event polarities (red and blue arrows) to higher dimensional manifolds.

denoised displacement measurements with associated uncer-
tainties by recognizing patterns in the IMU data and can
be readily fused using off-the-shelf filters. However, learning
generalizable priors has proven to be a challenging endeavor.
This is because IMU data exhibits a high degree of variability
as a result of differing IMU mount orientations, motion direc-
tion, and motion patterns. While orientation variability can be
addressed via data augmentation [31], consistency losses [6] or
equivariance [23], addressing the variability in motion patterns
remains elusive. In particular, NDPs need to learn to ignore
data variability which may arise from different gaits or speeds.
Yet, modeling this variation for the purposes of enforcing
consistency remains an open challenge.

In this work, we take on this challenge by training NDPs
with Lie Events instead of raw IMU data, visualized in
Fig. 1. Lie Events are generated when the change in IMU
pre-integration exceeds a pre-specified threshold. IMU pre-
integrations correspond to raw integrations of debiased IMU
accelerometer and gyroscope measurements. Change is mea-
sured by projecting the endpoint of the pre-integrated path
onto the Lie algebra of SFE(3) and taking its norm. We show
both theoretically and empirically that this behavior imbues



the resulting events with favorable invariances with respect
to different sampling rates and trajectory profiles, enhancing
the robustness of downstream NDPs. To generate these events,
we take inspiration from classical event-based vision [29, 38],
and generalize notions of level-crossing and event polarities
to arbitrary Lie groups. In particular, we generalize level-
crossing on 1D signals to level-crossing in the Lie algebra
centered at a reference element and introduce Lie polarities
which generalize binary polarities to normalized elements in
this Lie algebra. They characterize the direction of significant
pre-integration change in the Lie algebra. Unlike their binary
counterparts, Lie polarities are far richer since they can encode
analog values. These generalizations reduce to the standard
case in [29, 38] for 1D signals. Finally, we show that event
generation partially canonicalizes the IMU data with respect
to motion variations within an interval. This canonicalization
transforms IMU sequences to a space with lower data variabil-
ity and thereby enhances the generalizability of NDPs trained
in this space. Our contributions are the following:

« We present a canonicalization scheme for IMU data
which converts them into Lie Events. These Lie Events
are directly compatible with a wide range of existing
NDPs, and training on Lie Events enhances their robust-
ness with only minimal preprocessing.

e« We show both empirically and theoretically that these
Lie Events possess favorable invariances with respect to
motion variations within an interval, highlighting their
benefit for NDP training.

o Finally, we derive the formalism necessary to generate
Lie Events, which requires the extension of traditional
notions of level-crossing and event polarities to arbitrary
Lie groups. These tools are applicable in a wide range of
settings, beyond IMU-based odometry.

To show the generality of our method we apply it to multiple
down-stream NDPs and multiple datasets, where we show
consistent error reductions, with only minimal preprocessing.

II. RELATED WORK

Neural Prior for 10: Learning-based inertial odometry (10)
effectively reduces integration drift by leveraging neural priors.
Recent approaches [43, 1, 20] introduce neural priors via
velocity regression. Specifically, RIDI [43] utilizes CNNs to
predict velocity for IMU data refinement, PDRNet [1] applies
recurrent networks for velocity regression, and RONIN [20]
employs TCNs to directly integrate the predicted velocity for
neural-based fusion. Some works [7, 31, 9, 40] learn the
displacement prior. Specifically, TLIO [31] predicts both 3D
displacements and diagonal covariances via a network, and
incorporates them in an Extended Kalman Filter (EKF) via
a measurement equation. RNIN-VIO [9] extends TLIO to
continuous pedestrian motion estimation with visual inputs.
In the meanwhile, there are some methods Brossard et al.
[4], Buchanan et al. [5], Brossard et al. [3] that leverage the
power of deep learning to denoise the motion and Steinbrener
et al. [39] predicts the IMU biases. Our proposed Lie events

can be directly applied to TLIO [31], and enhance its robust-
ness to variations in motion and sampling rate.
Canonicalization: Standardizing inputs [32, 44, 22] has
long been widely practiced with both hand-crafted and learned
techniques. Recently, canonicalization with equivariant models
to improve generalization in off-the-shelf models has gained
popularity. Kaba et al. [25] first theoretically proposed using
Learned Canonicalization Functions to achieve equivariance
with general off-the-shelf models. In practical applications,
Li et al. [28], Baker et al. [2] canonicalize point clouds
by constructing global and local frames, Deng et al. [10]
introduces an equivariant canonicalization method in PointNet
for 3D shape analysis and reconstruction, and Jayanth et al.
[23] learns an equivariant frame to canonicalize IMU data
with respect to reflections and rotations. Additionally, with
the rise of large pretrained models, recent work [34] applies
canonicalization as an input preprocessing step to such models.

Event-based Sensors: Event-based sensors are most promi-
nently used in the computer vision community, where they
address the bandwidth-latency tradeoff [12, 16] of algorithms
based on fixed-rate images from standard frame-based image
sensors. Capturing high-speed motion requires high framer-
ates, and, as a result bandwidth, and reducing this framerate
risks missing vital scene dynamics due to the increased latency.
Event cameras like the dynamic vision sensor (DVS) [29],
address this by adapting their sampling rate to the scene
dynamics. They do this by responding only to changes, i.e.
performing event-based sampling on the log intensity signal
observed at a single pixel. Alternative cameras, like the Asyn-
chronous Time-based Image Sensor (ATIS) [38], use the same
event-based sampling technique but instead measure absolute
intensities. Most recently, the work in [41] introduced the
generalized event camera, which explored a large range of
possible event cameras differing in the condition when an
event is triggered, and what type of data is read out for each
event. Beyond the vision domain, event-based sensing has
been also generalized to asynchronous binaural spatial audition
sensors [30], or tactile sensors [14]. A proof of concept
presented in [37] shows the benefits of using event-guided
depth-sensing, where an event camera is used to provide
guidance to a structured light system for efficient scene recon-
struction. This growing set of event-based sensors inspires the
development of an event-based IMU, presented in this work.
Similar to works in event-based control theory [24] which
consider attitude consensus, our work focuses on generating
events on the manifold. However, unlike [24], we use these
events for inertial odometry and consider the full SFE(3)
manifold instead of only SO(3).

III. METHOD

The goal of this work is neural inertial odometry from a
single IMU, comprised of an accelerometer providing linear
acceleration measurements a(t;) € R3, and a gyroscope
providing angular velocity measurements @(t;) € R? at
discrete times ¢;. These measurements are related to the true
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Fig. 2. Event timestamps 7; generated from reference signal x(t) =
x*(¢(t)) can be computed from the event timestamps o f of the path x*(s),

by applying the inverse mapping ¢~ . Moreover, references Xret,; = X(75)

and x5, = x* (cr;) are equal and independent of a specific ¢.

angular velocity w(t;) and acceleration a(t;) via
@(t:) = w(ti) +b?(t:) +n’ () 1)
a(t;) = a(t:) — Rus"(t:)g + b (t:) + n°(t:) @)
where g € R? denotes the gravity direction pointing down-
ward in world frame w, R, (¢;) is the transformation between
body frame b and w at time ¢;, and b9, b® and 19, ¢ are IMU
biases and noises respectively.
As in previous works [31] we assume access to a gravity
direction and bias estimate via a filter, with which IMU
measurements are gravity-compensated and bias-corrected:

&(t) = Ry(t)(@(t;) — b (1)) 3)
a(t:) = Ry(t)(@t) — b (1) + g )

where Rg (t;) is the estimated gravity aligned frame, such that
Rg(ti)ﬁzub(ti)g = Rv(ti)g =g and Rw (t;) is an unobserv-
able yaw around the gravity axis. The resulting measurements
thus mimic the true body rates w(¢;), a(t;). Note that estimates
of gravity and biases can be easily found by running an
EKF [31].

We address inertial odometry with neural displacement
priors that regress displacements and covariances from a se-
quence of IMU measurements regularly sampled at timestamps
t; = iAt within a time interval 7 = [0,T]. We will denote
these sampling times with 7 = (t1,...,ty) and N = | £ .
We will use the shorthand @(7) to denote the set {w(t;)}¢,e7-
Then the displacement prior can be written as

d, X =0(@(T),a(). (&)

Here d ¢ R? is the displacement between times ¢ = 0 and
t =T, and 3 € R3®*3 is its associated covariance. Note that
our exposition also encompasses methods like [20] which
predict averaged velocity v over a time window. Displacement
can be simply recovered via d = v7', with constant 7.

In what follows, we will derive steps to make the above
neural network robust to variations in IMU speed, thus en-
hancing its generalizability. In particular, we achieve this
by generating canonicalized inputs w(&),a(E) sampled at
specifically chosen event timestamps € = (71,...,7ar), and
augmented by Lie polarities p(€) with p(r;) € S* C RS
via a suitable preprocessing step, using on-manifold event
generation. These polarities are normalized vectors that encode
the change direction of pre-integrations, and will be defined

later. We term these network inputs Lie events. In summary,
our neural network uses inputs

d, % = ®(w(£), a(€), p(£))- (©)

In particular, we parametrize the uncertainty with a diagonal
covariance ¥ = exp (diag(2u,,2u,,2u,)) with learnable
Ug, Uy, U, Which ensures positive definiteness of 3I. Next, we
will study the impact of speed variations on the original neural
network inputs, and then how to derive the new inputs above.

A. Modeling Speed Variations in IMU motion

Let the IMU trajectory! T(t) = (R(t),t(t)) € SE(3) on
the interval 7 be decomposed into

T(t) = T*(s(1)) @)
with path’> T*(s) parametrized by arc-length s and unit
velocity ||[v*(s)|| = 1 and time parametrization ¢ : T — [0, 1]

with speed ¢(t) > 0 and ¢(0) = 0 and ¢(7T) = 1. Note that
network outputs in Eq. (6) only depend on the path, since

d=R[(tr — to) =R T(t] —t;) =d* (8)

where Ry, tg and Ry, tr denote the pose at time ¢ = 0 and
t = T respectively. Moreover, for methods like [20] which
predict average velocity v = % = dT—* = v* for a fixed and
given T. Yet, the network inputs are affected by ¢(t) via the

kinematic relations
w(t) = (RT(OR() Y al) =) ©)

where (.)¥ maps a skew-symmetric matrix to a vector. Using
the chain rule we find that

wlt) = dOw" (6(0)
alt) = $(t)a” (6(8) + G(t)o" (B(1)).

where canonical angular rate and acceleration are defined as
w*(t) = (R’T(S)R’(s))v and a'(s) = t(s). Note the use
of (.)' to denote derivatives, as these are no longer temporal
derivatives. Thus the network inputs @(7) and a(7) depend
on ¢ in the same form as above: First, ¢ modulates the function
evaluation time, i.e. shifts the evaluation time from 7 to ¢(7),
and second it modulates the magnitude of the measurement
via its derivative. We perform partial canonicalization of the
existing inputs and provide additional canonical inputs by
introducing new event timestamps & = (71, ..., 7as) and Lie
polarities p(&). Crucially, these event timestamps depend on
the trajectory T'(¢) taken by the IMU and, by construction, will
depend on the event timestamps £* = (o7, ...,0},) derived
from the path T*(s) via £ = ¢ 1(£*)>. Likewise, we will
construct polarities p(7;) that only depend on the path, and

(10)
QY

'Subscripts wb (body to world transformation) are omitted for brevity.

ZWe distinguish between parh which is simply the sequence of points, and
trajectory which depends on time.

3Note that since ¢(t) > 0 the function ¢ is invertible.
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Illustration of on-manifold event generation. (A) For a reference signal x(¢) on SE(3) we find the tangent space at the last reference pose Xpeti. In

this space, we find the moment it exits the #-ball and record the polarity p(7;) with unit norm perpendicular to that ball, and update the reference pose to
Xref,j = Xret,j—1Exp(p(75)8). (B) Two trajectories x1(t) = x*(¢1(t)) and x2(t) = x*(¢2(t)) on the simplified manifold R? with time parametrizations

@1, P2. (C) After projecting both trajectories onto the xy-plane, the reference signals Xt j, Xref, j—1 and polarities

are thus equal to the polarities p* (o ) derived from the path.
As a result, the inputs to the network become

w(€) = (E)w"(£7) (12)
a(€) = d()*a"(€7) + $(E)v"(£7) (13)
p(&) = p*(&7) (14)
simplifying  the dependence on ¢. Note that
p*(EF),v*(E%),w*(E£%),a*(E*) are canonicalized i.e.

only depend on path T*(s), not T(¢), and that the polarity is
completely independent of ¢. Thus networks trained on these
quantities exhibit better generalization to variation in motion
¢. Next, we discuss how to construct £ and p(7;) with the
properties outlined above.

B. Generating IMU Events

To construct the event timestamps £ we take inspiration
from event-based cameras [15]. These cameras have indepen-
dent pixels that trigger an event whenever the difference of the
log intensity log(I(t)) at a specific pixel with respect to some
reference log(l.r) exceeds a threshold 6. We generalize this
notion by identifying the pixel intensity with a new variable
termed reference signal x(¢) = I(¢). Thus, given that an event
was triggered at the last time step 7; 1 and reference X ; 1,
the next event timestamp and reference can be written as

7= 2o {t: 0 < [llog(x(t)) —log(%er,; 1)}, (15)
and Xref,j = X(Tj). Furthermore, event cameras report a
polarity p(7;) which can be defined as

p(ry) = bl TEbEl e g0} (16)
eref,j - Xref,jle

i.e. the sign of the change since the last reference. Using the
polarities, the references can be reconstructed via

Xref,j — Xref,j—leXP(GP(Tj)) (17)
Setting the initial event timestamp 7 = 0, and refer-
ence to Xpef,1 = x(Tl) we can generate event timestamps

T1, -y TM, Teferences Xeef 1, ..., Xref, M, as well as event polar-
ities p(r2), ..., p(7ar) recursively from a given signal x(t).
We will show that such a sampling scheme has the desired
property £ = ¢ 1(£*). In particular, as the log intensity L(#)
at a given pixel, we can let the reference signal x(¢) depend

p(7;),p(7;—1) are equal.
on a canonical reference x(t) = x*(¢(t)). We can inductively
prove the following theorem (see appendix, Sec. I):

Theorem 1. If x(t) = x*(¢(t)) with ¢'(t) > 0 and ¢(0) =
0, (T ) =1, then 7; = ¢71(U*) and X5 j = X, where o

J ref. 3 J
and X7, . are generated from x*(s).

ref,J

The implications of this theorem are that for all j we can
simply find the event timestamps 7; by computing ¢} from the
path x*(s) and applying ¢—'. Note that, since Xeer; = Xpef jo
the polarity p(r;), defined in Eq. 16, only depends on events
on the path x*(s), i.e. p(7;) = p*(0}). We visualize these
relations in Fig. 2. This theorem estabhshes the core invariance
property of Lie polarities (dependent on X ;) to variations in
parametrization ¢(t). Moreover, it shows that we can derive
such polarities without needing to directly access unobservable
¢(t) and x*(s) by simply performing event-based sampling on
observable x(t). Crucially, we never explicitly compute x*(s)
or ¢(t). Having established these event properties, we turn
to finding a suitable reference signal x(t) for IMU inertial
odometry. We will show that the codomain of this reference
is SE(3), and thus, we extend the notion of event-based
sampling to manifolds.

C. On-manifold Event Generation

Several options exist for selecting the reference signal as
long as it can be written in terms of x*(s) as x(t) = x*(¢(t)).
This excludes acceleration- or velocity-like signals since these
transform as a, w (i.e. depend on (;5 ¢), but includes distance-
like signals, e.g. the distance over time from some selected
origin. We use relative IMU pose estimates over the time
interval, which can be approximated via IMU pre-integrations
x(t) = (R(t), t(t)). These terms are the on-manifold forward
Euler integrated solution R(t),t(t) to (9), using raw IMU
measurements a(t;),@(t;). Forster et al. [13] provides formu-
lae for these, given initial pose (R/(t1), £(t1)) = (R(ty), t(t1))
and velocity V(1) = vg, namely

R(t;11) = R(L:)Exp({@(t;) — b(t1)}A1) (18)
V(tip1) = V(t:) + R(t:)(@(t;) — b (1) At + gAt  (19)
t(tig1) = 6(t:) + V(L)AL + %gmz (20)

t(t
+ g R()@(t) — B (1) AP



which provides finite samples R(t,),£(t;) for t; ¢ T. We
define the continuous signal x(¢) by interpolating between
these samples. In particular, between samples 7 and 7 + 1 we
construct the geodesic path defined on [¢;,¢;41] as

x(t) — x(t;)Exp (ttiLog(xl(ti)x(tiH))) @

liv1 — 1
Here Log : SFE(3) — se(3) is the log map, which sends
relative poses to elements in the tangent space, and Exp :
se(3) — SE(3) is the (inverse) exponential map. In Sec. IV-D,
we show that event generation is robust to IMU rate variations,
and interpolation errors.

While during test time we use the EKF state to set vy,
during training we use ground truth, and add random perturba-
tions to v to simulate filter uncertainty. Since pre-integrations
mimic the true pose of tlle* IMU~,* they approximately depend
on pre-integration paths R (s),t (s) via

H) =E(6(1) R() = R ((1)),

While previously our reference signal was simply a 1-D signal
(log intensity), the above pre-integrations naturally reside in
SFE(3). Thus notions such level-crossing, and polarities need
to be generalized. We start off by replacing the notion of signal
change between X ; 1 and x(t) with the geodesic distance
in SE(3), and use this to replace the La-norm in Eq. 15

{7’ 10 < HLog (x:eflyjilx(t)) H} (23)

and Xrr; = x(7;). Note that this equation mimics Eq. (34)
in [24] applied to event-based attitude control on SO(3).
We extend this to SF(3) and introduce the notion of event
polarities in this space, which we use to enhance the robustness
of our method. We visualize the event generation process in
Fig. 3 (a). We see that on the manifold, event generation
amounts to finding the timestamp when the signal projected
to the tangent space centered at X.r; 1 steps outside of a ball
of dimension 6. At the point where this crossing happens we
record the unit vector perpendicular to this sphere and define
it as being the Lie polarity of the event at time 7;:

(22)

T; = min
T>Tj—1

LOg(Xr;fl, jflxreﬂj)

HLOg(X;fl,jflxl'efyj) |

p(7;) es? (24)
where S° denotes the 6D unit sphere. we can reconstruct the
original signal with p(7;) recursively

Xref,j — Xref,jflEXp(Gp(Tj))' (25)

These closely mimic the formulae for event generation in
Eqgs. (15) and (16), but are valid for arbitrary Lie groups. More-
over, when x(t) € R, Egs. (23),(24), and (25) above reduce to
Egs. (15),(16), and (17) and polarities p(7;) € S° = {—1, 1}.
Note also that Theorem 1 can be seamlessly transferred to this
extension, as is proven in the appendix, Sec. L.

In Fig. 3 (b) and (c) we illustrate the invariance of polarities
to time reparametrizations by considering a toy example of a
dot moving in R? without orientation. We visualize two refer-
ence signals x1(t) = x*(¢1(¢t)) and x2(t) = x*(¢2(t)), with

different speed profiles. The tangent planes around reference
poses in R? can be visualized as planes perpendicular to time,
and the 6 ball can be visualized as a cylinder parallel to time.
Polarities are 2D unit vectors perpendicular to the cylinder.
Projecting this image onto the zy-plane (Fig. 3 (c)) reveals
that the polarities only depend on the path x*(s), not ¢.

D. Nerwork Inputs

As our method generates a variable number of events it is
not directly compatible with off-the-shelf neural displacement
priors [31] which are designed to handle a fixed number of
IMU measurements. Inspired by event-based vision, we use
event stacks [35]. We convert Lie events &(&),a(E), p(€) to
tensors Fg o, Fp € RPX6 with B = 200 via:

M

Boult = o Slatm)@(rele 5] @0
o
Epfb] = . 2_p(m)db — 7] @7

where M is the number of events triggered on the interval
[0, T, and ¢ is the Kronecker delta. Note that M can be much
smaller than B, leading to sparsity in the inputs. Future work
could tackle leveraging this sparsity for efficient processing.
Acceleration and angular rates have been concatenated. Here
ny, denotes the number of samples mapped to index b and [,
denotes the norm of the vector at index b so as to normalize the
polarity. Furthermore, j* = {%(B — 1) | maps the index
of the event into a range [0, B — 1]. Note that we linearly
interpolate w, & to the event timestamp. We concatenate Fq, (,
and Ep, along the channel dimension, resulting in an input
tensor of shape B x 12.

Note on Timestamps: We do not feed in raw time stamps
into the network since they vary with the unobservable speed
¢(t) from the trajectory, not the path x*(s). They would thus
re-introduce data variability, which the network would need
to learn to ignore. We believe the network can recover the
displacement by leveraging event polarities. Eq (25) shows
that the path x*(s), which is sufficient to find, d can be
recovered from polarities alone and without raw time stamps.
We argue that the network learns to correct this reconstruction
with priors and additional information from a(7;) and w(7;).

IV. EXPERIMENTS

First, we present a toy experiment to validate the result
of Theorem 1 in Sec. IV-A, before demonstrating the gen-
erality of our approach by applying it to the neural inertial
odometry frameworks TLIO [31] (Sec. IV-B) and RoNIN [20]
(Sec. IV-C). Furthermore, we will present a sensitivity study
that highlights the robustness of our approach with respect to
IMU rate variations in Sec. IV-D, and round off with ablation
and hyperparameter sensitivity studies in Sec. IV-E.



Ref. x(#) #a(t)  Correction Contrast Threshold
0=0005 6=001 6=0.02

pre-integration  ¢2 no 2.18 3.62 5.52
05 no 2.48 3.89 5.61
2 yes 1.15 1.73 245
05 yes 0.95 1.11 1.12

ground truth 2 no 52 10.4 2.39
t0-5 no 0.73 137 2.79
2 yes 0.13 0.16 0.21
$0-5 yes 0.02 0.03 0.04

TABLE I

CHAMFER DISTANCE IN % BETWEEN EVENT TIMESTAMPS ¢« (5) AND
CANONICAL EVENT TIMESTAMPS £*. NO CORRECTION DENOTES THAT £
WAS NOT REMAPPED USING ¢ .

A. Toy Example

Here, we study the event timestamps £ generated from refer-
ence signals based on the pre-integration of IMU accelerations
and angular rates, and show their relation to event timestamps
E* generated from canonical pre-integrations. We use IMU
data from the TLIO test dataset [31], which comprises 60
hours of 1 kHz IMU data, with 200 Hz ground truth trajectory
data from MSCKF [36]. It was gathered from five individuals
performing a broad range of activities, for example, walking,
stair traversal, and kitchen organization. More dataset details
are in the appendix, Sec. V.

We denote non-overlapping 1-second ground truth trajec-
tories as paths T*(s) and generate synthetic new trajectories
Ta(t) - T*(¢a(t))’ where ¢a(t) - (&)a € [Oa 1] with
At = 1s and o € {0.5,1.0,2.0}. We then generate artificial
IMU measurements by fitting a spline through the poses and
finding derivatives. We apply bias, noise, and bias drift consis-
tent with the noise magnitudes found in [31]. We then perform
pre-integration on IMU data from the path R*(s),t*(s) and
trajectories R (1), tq(t). Finally, we generate events using
different thresholds @ € {0.005,0.01,0.02} producing canon-
ical event timestamps £* and non-canonical event timestamps
&, . Finally, we map £, to the canonical setting, i.e. compute
¢ (Es) and compare them with £* via the chamfer distance.
For comparison, we also report the chamfer distance without
remapping. We compare with noiseless ground truth poses as
the reference signal to show the lower error bound.

Tab. I shows that event generation is capable of sampling
the correct measurement even after time dilation. The smallest
threshold 0.005 achieves an error of 1.15 % for a remapping
of ¢(t) = t2. We also see that using ground truth significantly
reduces this error to about 0.1% in the same setting validating
the theory for ideal references. Future research can benefit
from more accurate pre-integration schemes.

B. Application to TLIO

TLIO is a learning-based inertial odometry algorithm that
estimates the 6-DoF IMU pose with an extended Kalman
filter (EKF). Propagation is performed by integrating raw ac-
celerometer and gyroscope measurements, while measurement
updates are performed with neural network-based displace-
ment and covariance predictions d € R® and X € R3%3, The
network takes 1-second windows of 200 IMU measurements
as input with shape 200 x 6. IMU data is bias-corrected

using factory calibration bias values, and gravity aligned using
the EKF orientation state. EKF details and propagation and
measurement equations are provided in Sec. I, and network
details in Sec. IV of the appendix.

Implementation Details We pre-integrate accelerometer
and gyroscope measurement sequences of length 200 and
obtain the orientation and position estimates in a gravity-
aligned world frame. We use the EKF estimates of orientation,
position, and initial velocity at the beginning of the time win-
dow, termed clone states, to initialize the pre-integration during
testing. We then generate event timestamps and polarities
using this reconstructed trajectory and a threshold # = 0.01.
Sec. IV-E shows a sensitivity analysis motivating the choice
of 6. For consistency, we map the polarity into the gravity-
aligned frame after generation.

Datasets: We train our method on the TLIO Dataset [31],
described in the appendix, and evaluate it on the TLIO Test
Set and the Aria Everyday Activities (Aria) Datasets [33].
Aria is an egocentric dataset collected using the Project Aria
glasses [11] and comprises a left (800 Hz) and right (1 kHz)
IMU with ground truth position and orientation. It contains 7.3
hours of data and includes a wide range of wearers engaged
in everyday activities like reading, exercising, and relaxing.
More dataset details are in the appendix, Sec. V.

Training Details: We train the first 10 epochs we train with
a component-wise MSE loss [31], so that the displacement
prediction converges, and we then, for 40 epochs, switch
to a Maximum Likelihood Error (MLE) loss [31] which
incorporates both the predicted displacement and diagonal
covariance. We use a learning rate of 10~*, the Adam op-
timizer [26], and a batch size of 1024. We train all our
models on NVIDIA a40 GPUs. During training, we use ground
truth initial velocities v, for bootstrapping pre-integration, and
perturb it with uniform noise ny, ~ U[—0.5,0.5]. To simulate
noise in the gravity-aligned frame, we perturb the gravity
direction by 5° uniformly at random and apply a random
yaw. Furthermore, we add uniform noise n,, ~ 4[—0.05,0.05]
and n, ~ U[—0.2,0.2] to angular rates, and accelerations
simulating uncertainties in bias estimates. We also add noise
np ~ U[—0.5,0.5] to polarities before renormalizing.

Baselines: For a fair comparison, we implement three vari-
ants of TLIO [31], which, similar to our method, target time
scale robustness. During training, we randomly subsample
the 200 Hz IMU data to rates r € {20,40,100,200}. Since
natively TLIO requires an input of 200 samples, we convert the
subsampled data back to 200 by interpolation (denoted TLIO +
interp.) or by using the event stack in Eq. (26) (denoted TLIO
+ splat.). Note that our method (denoted TLIO + events) is
not trained with rate augmentation.

Metrics: We report the following metrics used in [31, 6, 20],
and written out in detail in the appendix, Sec. VI:

e Mean Squared Error (MSE) between predicted ((Ai(ti))
and ground truth displacements (d(¢;)) averaged over the
trajectory.

o Absolute Translation Error (ATE), i.e. the RMSE between
estimated (£(¢;)) and ground truth positions (£(%;)).



NN evaluation

NN+EKEF evaluation

\ | TLIO Dataset Aria Right Aria Left TLIO Dataset Aria Right Aria Left
Model rate | MSE* ATE* MSE* ATE* MSE* ATE* | ATE RTE Drift AYE ATE RTE Drift AYE ATE RTE Drift AYE
aug. | (m®  m) mH  m)  mH () m  m W (©) m  m (B (degy (m) (m) (W) ()
TLIO X | 0013 1660 0018 1240 0019 1314 | 1410 0.102 1486 1.832 0865 0.119 2629 1481 1060 0.160 2749 5203
+ interp. 0.013 1519 0.019 1.195 0.020 1326 | 1410 0.109 1302 1.836 0.837 0.117 2456 1.441 0.944 0.163 2.335 5214
+ splat. 0.014 1498 0.019 1.216 0.020 1.292 | 1.440 0.107 1.242 1.788 0.876 0.114 2479 1462 0965 0.161 2425 5.142
+ events (ours) X 0.015 1445 0.015 1.099 0.015 1.064 | 1.282 0.106 0953 1.863 0.836 0.115 2459 1456 0942 0.165 2425 5.215
TABLE II

COMPARISON OF OUR METHOD AGAINST BASELINES TLIO WITH AND WITHOUT DATA AUGMENTATION ON THE TLIO DATASET [31], AND ARIA
EVERYDAY DATASETS [33]. NOTE HERE LEFT AND RIGHT DENOTE THE LEFT AND RIGHT IMUS IN THE ARIA DATASETS.

o Relative Translation Error (RTE), i.e. local differences
between t(¢;) and t(;) over a 1-second or (1 minute for
RoNIN) window 6t.

o Absolute Yaw Error (AYE), i.e. the yaw RMSE.

o Translational drift over the total distance traveled.

To limit the impact of outliers we report the median error
over the different trajectories of the dataset. Furthermore, to
evaluate the impact of the neural network and EKF separately,
we evaluate two types of trajectories produced by our method:
The first uses simple integration of the network outputs, and
the corresponding metrics are denoted with a %, and the second
uses the EKF, and is denoted without a x*.
Results: We report the results in Tab. 1I, and trajectory plots
in Sec. VII of the appendix. First, we see that, without EKF,
events improve ATE* on all datasets. They reduce the ATE*
on the TLIO Dataset by 13%, on Aria Right by 11%, and
on Aria Left by 19% compared to base TLIO. Moreover, it
reduces MSE™ on most datasets, reducing by 17% on Aria
Right, by 21% on Aria Left, but having a 15% higher MSE*
than base TLIO on the TLIO Dataset. As in [31] we argue
that the correlation between MSE and ATE is not exact, since
other methods may produce displacement estimates with lower
variance, but higher bias, introducing larger overall drift.
Our method’s EKF accuracy (ATE), is 10% higher on the
TLIO Dataset, 3% on the Aria Right Dataset, and 12% on the
Aria Left Dataset compared to base TLIO. We also see that
our method outperforms base TLIO in terms of drift but is
outcompeted by methods that use data augmentation.

C. Application to RoNIN

RoNIN [19] is a 2D inertial navigation method designed for
IMU-based pedestrian tracking. It works by regressing velocity
predictions,v(t) € R? expressed in the local gravity aligned
frame, from 1-second sequences of IMU measurements using
a ResNet-18 [18]. These velocities are regressed with a 25ms
stride, transformed into the global frame and then integrated
using known orientations from the IMU.

Implementation Details: As in [20] we use the RoNIN
dataset, which features 200 Hz IMU data. We convert sets
of 200 measurements into events, using the same parameters
as for TLIO but a higher contrast threshold = 0.1 due to
the higher average accelerations. We also use the last velocity
prediction as initialization for pre-integration.

Datasets: We train our model on the public portion of the
RoNIN dataset [20] which comprises 200 Hz IMU and ground
truth trajectory data collected from pedestrians with varied

RONIN-U RIDI-T OxIOD

Model Training  ATE* RTE*  ATE* RTE* ATE* RTE*

Data (m) (m) (m) (m) (m) (m)
RoNIN + ResNet 100% 5.14 4.37 1.63 1.91 346 439
RoNIN + LSTM 100% 5.46 3.95 2.00 2.64 3.02 4.18
RoNIN + TCN 100% 5.87 4.39 1.66 1.95 3.56 4.98
RoNIN + ResNet 50% 5.57 4.38 1.19 1.75 3.52 442
+1J 50% 5.02 4.23 1.13 1.65 3.59 443
+ TTT 50% 5.05 4.14 1.04 1.53 2.92 3.67
+J+ TIT 50% 5.07 4.17 1.03 1.51 2.96 3.74
+ events (ours) 50% 5.35 4.63 1.03 1.97 1.52 191
Integration 458.06 117.06 31.06 37.53 194141 848.55

TABLE III

APPLICATION OF OUR METHOD TO THE RONIN ARCHITECTURE, AND
COMPARISON ON THE RONIN, RIDI, AND THE OXFORD INERTIAL
ODOMETRY DATASETS (OXIOD). NOTE, * INDICATES TRAJECTORY
RECONSTRUCTION WITHOUT AN EKF, AS REPORTED IN [20, 6].

placements and devices. We report results on the RoNIN
test set, and also on the RIDI [43] and Oxford Inertial
Odometry Dataset (OxIOD) [8]. RIDI comprises pedestrian
data at 200 Hz, with four different sensor placements, and
includes forward, backward, and sideways walking motion as
well as accelerating and decelerating motions. This dataset
uses Umeyama alignment [42] before calculating metrics. The
OxIOD dataset also comprises smartphone-based pedestrian
data with various motion modes, devices, and device place-
ments. More dataset details are in the appendix, Sec. V.
Training Details: Training mirrors [20] with 50% of the
training data that is public, minimizing the robust velocity
loss proposed in [20]. We use ADAM [26] with a batch size
of 128 and an initial learning rate of 10~ and a decay by
a factor of 0.1 if the validation loss does not decrease in 10
epochs. The maximum number of epochs is 120. Furthermore,
the linear layers use dropout with p = 0.5. As in [20] we
omit gravity perturbation, and bias noise, and leave other noise
sources and magnitudes the same.

Baselines: We compare our method with RoNIN operating
on raw IMU data with three different temporal processing
modules, namely ResNet-18 [18], LSTM [21] and TCN [27],
and also compare against RIO [6]. RIO adds two additional
strategies to RoONIN which enforce approximate yaw equivari-
ance. The first one, termed joint training (denoted with +J),
optimizes an auxiliary equivariant consistency loss between
predictions observed under different yaws. The other strategy,
adopted during testing and termed adaptive test-time-training
(denoted with +77TT) performs gradient descent steps on the
current model at 20 Hz, based on the equivariant consistency
loss derived from a buffer of 128 past IMU measurements.
Backpropagation is only performed on losses between samples
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Fig. 4. IMU rate sensitivity analysis. Each method is trained on the TLIO training set. Methods + interp. and + splat. were trained with IMU rate augmentation
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Hyperparameter Sensitivity: (left) the contrast threshold determines the distance to the reference when events are fired, (middle) initial velocity v

and (right) polarity p(7;) noise determine the range of uniform noise perturbing these quantities during training. In particular, vo noise affects pre-integration.

that have a significant predicted velocity mismatch. Further-
more, test-time training and model resetting are controlled
via a separate ensemble of models that estimate prediction
uncertainty online. Finally, we report the results of a naive
double integration baseline (denoted with Integration).
Results: We report results in Tab. III, and trajectory plots
in Sec. VII for the appendix. Note that the first three rows
are results reported in [19] which use 100% of the training
data. Other methods are retrained with the public training data,
which is only 50%. We observe that, despite this mismatch,
in terms of ATE*, our method outperforms RONIN on 50%
data on the RONIN dataset, on RIDI, and on OxIOD. Test-
time training and yaw consistency methods can be used
complementarily to our method to further improve results.
Discussion: Similar to the results when applied to TLIO,
the above results highlight the strength of using events in-
stead of regular IMU samples. Moreover, we see that our
method outperforms (i) methods that were trained with more
data on RIDI-T and OxIOD (see row 1-3 in Tab. III) and
(il)) methods that incorporate yaw consistency strategies on
OxIOD. In particular, using yaw consistency strategies is an
orthogonal approach to improving inertial odometry, which
would additionally strengthen our result. Finally, we note that
our method may benefit from a weak autoregression form
by using the predicted velocity from the previous timestamp
for pre-integration. However, compared to models that also
perform autoregression, i.e. RONIN+TCN or RoNIN+LSTM,
our method achieves a lower ATE".

D. Rate Sensitivity Study

In this section, we study the robustness of our method to
varying IMU measurement rates which simulate differing time
scales. We generate lower-rate IMU data by subsampling the
TLIO data (200Hz) to r = {20,40, 100,200}, the Aria Left
data (800Hz) to r = {20, 40, 100, 200, 400, 800} and the Aria
Right data (1000Hz) to r» = {20,40, 100,200,500, 1000}.
This subsampling strategy tests the robustness of our event
generation method to sampling errors. For the TLIO baselines

TLIO Dataset (NN} TLIO Dataset (NN+EKF)

ev. pol noise ref. x(t) Manifold MSE* ATE* ATE RTE Dift AYE
(m?) (m) m)y (m) (%) (©)
X - - - 0.013 1.660 1410 0.102 1486 1.832
X position R® 0.014 1.515 1724 0.110 1.580 1.846
X pose SO(3) x R® 0015 1.421 1.622 0.108 1.091 1919
X pose SE(3) 0.016 1.425 1420 0.108 0982 1.862
X pose SE(3) 0.005 0.912 6.080 0.240 3.140 1700
pose SE(3) 0.015 1.445 1282 0.106 0.953 1.863
TABLE IV

ABLATION ON EVENT GENERATION, POLARITY, AND (POLARITY) NOISE.

(base, +interp. and +splat.) we convert the IMU data to an
equivalent of 200 inputs per 1 second of data with interpolation
or event stack generation. We report the ATE* in Fig. 4, and a
table with the full results in the appendix, Sec. VIII. Note that
despite not being trained with data augmentation our method
remains stable over differing rates, outperforming the baselines
and TLIO. Most methods degrade heavily at low rates, while
our method degrades gracefully.

E. Ablation Study and Hyperparameter Sensitivity Analysis

In this section, we ablate the design choices in the method-
ology, and show sensitivity analyses of the specific chosen
hyperparameters. First, we study the impact of the reference
signal x(¢) and its associated manifold by comparing the ATE
and ATE* on the TLIO test set. We select reference signals
that monitor only the translation component t(¢) of the pre-
integration (labeled with “position”) and those that monitor
the full pose R(t),t(t) (labeled “pose”). While “position”
admits only the R® manifold, “pose” admits both the direct
product manifold SO(3) x R? and the semidirect product
manifold SE(3) = SO(3) x R3. These differ in the definition
of the Log and Exp map used previously. We also study the
impact of Lie polarities and the necessity of adding polarity
noise. We report results in Tab. IV. We see that of the
different considered manifolds, SE(3) yields the best ATE*
and ATE. This points to the fact that using the full pose
and associated manifold yields the most informative events.
Using polarities without noise yields very low ATE* but high
ATE when deployed with the EKF. We argue that the neural
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Testing Training Data
Data 50% 30% 20% 10%
RoNIN-U | (3.35/463) (6.11/4.89) (5.83/4.96) (5.73/5.00)
RIDI-T (1.03/1.97)  (1.2312.50) (1.227244)  (1.43/2.77)
OxIOD (1.52/181) (1482.82) (1.52/2.18) (1.51/2.4%)
TABLE V

DATA EFFICIENCY OF OUR METHOD (ATE*/RTE™*) IN METERS.

network learns to overfit to specific training trajectories, and
thus becomes sensitive to noise in its predictions. Adding
polarity noise during training significantly reduces the ATE
when deployed with the EKF. Next, we study the sensitivity
of our method to hyperparameters. Specifically, we vary the
contrast threshold 6 € {0.005,0.1, 0.2}, polarity noise range
rp € {0.1,0.25,0.5,0.75,1.0} and initial velocity noise range
v, € {0.25,0.5,1.0,1.5} applied during training and report
results in Fig. 5, with tables with the full results in the
appendix, Sec. VIII. First, we find an optimal ATE at # = 0.01.
While too large thresholds may reduce the sensitivity of
the method, too low thresholds may be more susceptible to
noise and increase computational complexity. ATE reaches
an optimum for initial velocity noise range ry, = 0.5. As
previously discussed, using too low noise makes the network
overfit to the specific trajectories and sensitive to noise, leading
to excessively low ATE* but high ATE. Finally, the optimal
polarity noise range is around r, = 0.75. We found that this
value yielded marginally worse results on other datasets, so
we opted for rp = 0.5.

F. Runtime, Robustness and Generalization

Runtime: Running TLIO for 1 second of data takes 1.14 ms
on an NVIDIA GeForce RTX 4090 Laptop GPU, with an Intel
19 processor, enabling real-time measurement updates at the 20
Hz used in the experiments. The network (baseline TLIO, i.e.
1D ResNet-18, PyTorch) takes 1.06 ms. The C++-implemented
event generation (including pre-integration) takes 76 us (4.22
ps/event), and stacking takes 7.62 ps ( 0.331 ps/event). With
an average event rate of 74 Hz (vs. 200 Hz for TLIO), our
method reduces redundancy.

Sensitivity to IMU Pre-integration Accuracy: Inaccurate
bias, gravity, and initial velocity estimation degrade pre-
integration accuracy. To minimize this we train with initial
velocity, gravity, and bias noise. Fig. 6 shows the sensitivity
of ATE* (lower is better) with respect to gravity, bias, and
initial velocity noise perturbation for pre-integration, on the
TLIO test set, following the scheme in Sec. IV-B “training
details”. These introduce drift, SO(3) perturbations, and elu-
cidate the role of gravity. Gravity and vy perturbations lead to
graceful degradation, still outperforming other baselines, and
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Fig. 7. Aria dataset MSE vs. speed for models trained on the TLIO dataset.

bias noises show little to no degradation. Slight improvements
may stem from the fact that we train with noise. Overall this
shows low impact of bias-induced drift, and higher sensitivity
to gravity and velocity estimation errors.

Generalization: Tab. V reports our method trained on smaller
subsets of the RoNIN training set. Our method’s performance
stays relatively stable on both in- (RoNIN-U), and out-of-
distribution data (RIDI-T, OxIOD). Notably, performance on
RIDI-T degrades gracefully, while fluctuating on the other
datasets. Even with 10% our method can learn reasonably
well, underlining generalization, which we ascribe to the
canonicalization capabilities of events.

Out-of-distribution data: We report the distribution of MSE
versus average speed, for models trained on the TLIO dataset
and tested on the out-of-distribution Aria datasets (Fig. 2).
Our method outcompetes other methods with lower MSE
at higher speeds, supporting the claim that events confer
canonicalization with respect to speed variations. This targets
a key limitation of existing methods, and shows improvements
in edge cases with large accelerations .

V. LIMITATIONS AND CONCLUSION

Limitations: Pre-integrations as reference signals are efficient
to compute, but suffer from slight drift and sampling noise,
which may impact event generation. Yet, we show that event
generation is robust to sampling noise. Finding better-behaved
reference signals is the subject of future work.

Conclusion: This work enhances the robustness of neural
inertial odometry methods by training the underlying neural
displacement priors with Lie events generated from IMU pre-
integrations. We showed both theoretically and empirically that
these events have favorable canonicalization properties with
respect to motion and rate variations in IMU data which sim-
plifies network training. To generate events on pre-integrations,
we generalize notions of level-crossing and event polarities to
arbitrary Lie groups, and in particular, the special Euclidean
group SF(3). To this end, we introduce new concepts such as
Lie polarities. Training on these events effectively reduces the
tracking error of off-the-shelf neural inertial odometry methods
with only minimal input pre-processing. As a result of this
study, we believe that many more sensors than IMUs and
cameras may benefit from event-based sampling, opening the
door to exciting new applications.
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