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Figure 1: An example fine-grained robot manipulation task in PartInstruct. To successfully perform the task described in the instruction
(e.g., showing the cap without occluding it), the robot needs to reason about what object parts are relevant, ground the parts to its 3D
visual perception, and plan for a sequence of part-level manipulation skills (e.g., the bottom sequence). Native object manipulation without
a detailed understanding of object parts will fail to achieve the intended goal (e.g., the top sequence). These tasks thus pose challenges for
robust 3D vision and part-level grounding and reasoning. We show more examples on the project website.

Abstract—Fine-grained robot manipulation, such as lifting and
rotating a bottle to display the label on the cap, requires robust
reasoning about object parts and their relationships with in-
tended tasks. Despite recent advances in training general-purpose
robot manipulation policies guided by language instructions,
there is a notable lack of large-scale datasets for fine-grained
manipulation tasks with part-level instructions and diverse 3D
object instances annotated with part-level labels. In this work, we
introduce PartInstruct, the first large-scale benchmark for both
training and evaluating fine-grained robot manipulation models
using part-level instructions. PartInstruct comprises 513 object
instances across 14 categories, each annotated with part-level
information, and 1302 fine-grained manipulation tasks organized
into 16 task classes. Our training set consists of over 10,000
expert demonstrations synthesized in a 3D simulator, where each
demonstration is paired with a high-level task instruction, a
chain of base part-based skill instructions, and ground-truth
3D information about the object and its parts. Additionally,
we designed a comprehensive test suite to evaluate the gen-
eralizability of learned policies across new states, objects, and
tasks. We evaluated several state-of-the-art robot manipulation
approaches including end-to-end vision-language policy learning
and bi-level planning models for robot manipulation on our
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benchmark. The experimental results reveal that current models
struggle to robustly ground part concepts and predict actions in
3D space, and face challenges when manipulating object parts in
long-horizon tasks.

I. INTRODUCTION

There has been an increasing interest in training general-
purpose vision-language policies for robot manipulation
guided by language instructions [24, 17, 50, 16, 32, 51],
particularly with the recent advances in large generative
models [3, 41]. These models represent a promising type of
method for solving general robot manipulation problems, as
they have the potential to follow natural language instructions
to complete any described task. Prior works on language-
guided robot manipulation have been mainly focused on high-
level manipulation tasks involving simple objects (such as
rearranging blocks). However, in the real world, robots often
need to perform fine-grained manipulation of diverse everyday
objects, in which the robots need to not only identify the
target object but also understand and interact with specific
parts of that object to perform the intended task as instructed.
This involves reasoning about the relationship between the



Table I: Comparison of PartInstruct with existing tabletop robot manipulation benchmarks based on: the number of distinctive
part-level instructions, the number of part labels, the number of fine-grained part-level tasks, availability of training
demonstrations, and whether these demonstrations include part-level annotations such as 2D and 3D segmentation masks.

Name # Part Instruct  # Part Labels  # Part-level Tasks Demo 2D Part Mask 3D Part Mask
CALVIN 6 . 6 v X X
RLbench 136 . 64 X X X

VIMAbench - - - v X X
LoHoRavens - - - |/ X X
ManiSkill (SAPIEN) . 14,068 . v X X
PartManip - 8,489 1,432 X X X
Open6DOR 2,447 . 1,419 X X X
PartInstruct (ours) 4,043 4,653 1,302 v v v

part and the task, and grounding that understanding into
precise motion planning. For instance, to successfully perform
the manipulation task defined in the instruction as shown in
Figure 1, the robot needs to identify crucial parts of the object
relevant to the task (e.g., the label on the cap of the bottle) and
reason about a chain of base part-based skills that would lead
to the desired goal state implied by the instruction, which is to
display the label clearly to the human user without occlusion.

Despite the importance of part-level perception and rea-
soning for robot manipulation, existing robot manipulation
benchmarks on instruction following lack comprehensive in-
tegration of part-level semantics in both task instructions and
object ground-truth annotations [e.g., 16, 17, 24, 46, 50].
These benchmarks focus on object instance-level manipulation
tasks but do not include fine-grained, part-level manipulation
tasks like the example in Figure 1. There have been recent
benchmarks that evaluate fine-grained, part-level manipulation
tasks, but they either lack language instructions [e.g., 27, 9]
or do not provide training data for policy learning [e.g., 7].

To address these gaps, we introduce Partlnstruct, the first
large-scale fine-grained robot manipulation benchmark for
vision-language policy learning that incorporates part-level
semantics. Our core idea is to develop part-level skills that
enable robots to perform complex, fine-grained object manip-
ulation tasks, including those requiring long-horizon motion
plans. We developed a robot manipulation simulator for part-
level instruction following tasks, PartGym. Built upon the
PartGym simulator, our PartInstruct benchmark supports both
training and evaluation models on part-level manipulation
tasks. Specifically, we provide a large set of 3D assets of
everyday objects richly annotated with part-level information.
Using these object assets and detailed annotations, we created
a large-scale training dataset of expert demonstrations. Each
demonstration is paired with a task instruction as well as a
chain of base skill instructions (such as touching or grasping
an object part) necessary for performing the overall task. This
dataset allows training models for both long-horizon manipu-
lations guided by task instructions for long-horizon planning
and base manipulation skills guided by skill instructions.
Additionally, we developed a comprehensive evaluation suite
consisting of five test sets, each corresponding to a different

type of generalization test. Together, these tests assess how
well a learned policy performs in unseen scenarios, including
new states, objects, and tasks. We compare PartInstruct with
several existing table-top manipulation benchmarks in Table 1.

We evaluated multiple state-of-the-art vision-language pol-
icy learning methods designed for language-guided robot
manipulation. We also combined recent learning-based low-
level action policy planning models and VLM-based high-
level task planners to create strong bi-level planning baselines
for fine-grained manipulation tasks, which explicitly reasons
object parts relevant to a task and how to interact with them
to achieve the final goal. Our experimental results demon-
strate that state-of-the-art methods still struggle with complex
fine-grained manipulation tasks. We also show that visual
representations based on robust part-level 3D perception can
significantly improve model performance. These results help
reveal the fundamental building blocks for fine-grained task
manipulation.

In summary, our main contribution includes (1) the first part-
level instruction following benchmark for both training and
evaluating fine-grained robot manipulation models’ capacity
for part-level grounding, reasoning, and planning; (2) a large
training dataset with diverse assets and detailed annotations;
(3) a comprehensive evaluation of state-of-the-art vision-
language policy learning and bi-level planning baselines, re-
vealing limitations of current robot manipulation models.

II. RELATED WORK

A. Instruction Following Benchmarks for Table-Top Robot
Manipulation

Early benchmarks in robot manipulation primarily concen-
trated on object-level and object-scene interactions without
delving into the manipulation of specific object parts. Notable
examples include CALVIN [24], RLbench [16], VIMAbench
[17], and LoHoRavens [50]. These benchmarks typically in-
volve tasks such as object placement, scene arrangement, and
basic interaction with objects in their entirety. For instance,
CALVIN incorporates spatial semantics but lacks explicit part-
level semantics, treating components like a “door handle”
as standalone objects rather than parts of a larger entity.
This limitation restricts the granularity of instructions and the
complexity of manipulation tasks that can be evaluated.
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Figure 2: Example tasks and expert demonstrations in the dataset. Each task is defined by a task instruction. Each demonstration
is annotated with a chain of base skills and the corresponding skill instructions (the instructions following the task instructions).
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Specifically, in this figure, the demonstrations for the three tasks have 1, 3, and 5 annotated skill instructions respectively.

To bridge this gap, several benchmarks have introduced
object part manipulation, including ManiSkill [27], PartMa-
nip [9], and Open6DOR [7]. These benchmarks introduce
tasks that require finer control and understanding of object
components. ManiSkill extends manipulation tasks to include
interactions with articulated objects, whereas PartManip fo-
cuses explicitly on part-level manipulation within a structured
environment. Notably, Open6DOR is the only benchmark
identified that incorporates spatial semantic part-level instruc-
tions. However, it does not support policy learning; instead,
it outputs final goal positions and orientations, relying on an
oracle planner to plan for intermediate actions.

There have been recent approaches supporting part-level
manipulation such as Composable Part-based Manipulation
(CPM) [22], RoboPoint [47], and SAGE [10]. RoboPoint
leverages point-based representations to facilitate precise part
interactions, but more focus on spatial relationships. SAGE
employs semantic grasping techniques to enhance manipula-
tion accuracy mainly for articulated objects. These methods
underscore the importance of integrating detailed object part
information to achieve more sophisticated manipulation.

B. Vision-Language Policies for Robot Manipulation

The integration of vision and language in robot manipu-
lation has given rise to various policy frameworks designed
to interpret and execute instructions. Generalist approaches
such as RT-1 [3], OpenVLA [19], and Octo [41] strive to
create versatile policies capable of handling a wide range of
tasks by leveraging large-scale vision-language models. These
models are pretrained on large-scale datasets, enabling them
to leverage extensive vision-language knowledge to interpret
natural language instructions and translate them into actionable
manipulation strategies. Key-pose based manipulation meth-
ods, such as PerAct [37], Act3D [11], and RVT series [12]

[13], focus on identifying and executing key poses that align
with the desired manipulation objectives. These approaches
typically involve detecting pivotal positions or configurations
that the robot must achieve to successfully complete a task,
thereby simplifying the policy learning process. Additionally,
frameworks like DP [5] and DP3 [49] formulate visuomotor
robot policies using Denoising Diffusion Probabilistic Models
(DDPM), enabling these policies to capture multimodal action
distributions and generate high-dimensional action sequences.
By leveraging the strengths of generative models, these meth-
ods can predict expressive and flexible robot actions.

C. Robot Planning with LLMs and VLMs.

The integration of Large Language Models (LLMs) and
Vision Language Models (VLMs) into embodied planning has
revolutionized the capabilities of robotic systems by enhancing
their understanding, reasoning, and execution of complex
tasks. For instance, TaPA [44] and LLM-Planner [38] focus
on leveraging the contextual and generative capabilities of
LLMs to decompose high-level instructions into actionable
sub-tasks. SayCan [1] presents a framework that anchors
linguistic instructions in the physical affordances of objects.
By aligning language understanding with the robot’s physical
capabilities, it ensures that generated actions are both feasible
and contextually appropriate. These approaches enable robots
to interpret complex, multi-step instructions by breaking them
down into manageable components, thereby facilitating more
coherent and structured action planning.

III. PARTINSTRUCT BENCHMARK

A. Problem Setup

We define an object part as a geometric sub-component of
an object that is either functionally manipulable (e.g., handle)



Table 1I: Example task instructions and goal states. Row A corresponds to the task illustrated in Figure 1, while rows B to D

correspond to the three tasks shown in Figure 2.

Task Instruction

Goal States

A Rotate the part of the object to face direction while lifting it

GRASPING (ob3j), FACING (part, dir),
AT_POSITION (obj, POS_INIT_ORJ+VEC (UP))

B Grasp the object by the part

GRASPING (gripper, part), ON(obj, table)

C Move the object to direction by pushing it at the part, then free it

Phasel: TOUCHING (part),
AT_POSITION (obj, POS_INIT_OBJ+VEC (dir))
Phase2: GRIPPER_OPEN, MIN_DISTANCE (gripper, obj)

D Rotate the part of the object to face the opposite direction

FACING (part, ~DIR_INIT (part)), ON(obj, table)

Table I1I: Definitions of base skills.

Skill Description
grasp_obj(obj, Robot grasps obj at part.
part)
move_gripper (dir, Robot moves gripper along dir dis.
dis=UNIT,

grasping=false)
rotate_obj (obj,

Robot rotates obj, such that part is

part, dir) facing dir.
touch_obj (obj, Robot touches obj at part.
part)

release_gripper (obj) | Robot releases the gripper and moves

away from obj.

or spatially distinct (e.g., front). As shown in Figure 1, a
natural language instruction Ji,5x describes a part-level instruc-
tion following task if it requires that a robot perform a fine-
grained manipulation where the robot must interact with a list
of object parts in a certain manner to achieve the intended
goal g. Critically, the relevant object parts and how the robot
needs to interact with them are often not explicitly described
in the instructions. Thus the robot must learn to reason about
relevant parts and plan how to manipulate them to perform
the task successfully. To define g, we first establish a set of
goal predicates that specify the states of the object, its parts,
the robot’s end effector, and their relationships. For example,
ON (obj, part, surface) represents physical contact between
an object part and a given surface; FACING (obj, part, dir)
indicates the orientation of an object part from a third-person
perspective; and GRASPING (obj, part) denotes a “grasp”
interaction between the object part and the robot’s end effector.
Given these goal predicates, each task goal is defined by a
set of goal predicates. Examples of tasks are presented in
Table II. For instance, in the task illustrated in Figure 1, the
goal is represented by the predicate set {GRASPING (bottle,
~cap), FACING (bottle, cap, front), AT _POSITION (bottle,
INIT POS+VEC(UP))}, where ~cap is any part other than
the cap. Note that some tasks consist of multiple phases, where
the next phase can only begin after completing the previous
one, as the order of interactions is crucial for these tasks. For
full task definitions, refer to A3 in Appendix.

To develop an embodied agent capable of executing tasks
defined by g, we hypothesize that it would be beneficial to start
with a set of base skills that can be combined to handle a wide
range of fine-grained manipulation tasks. In particular, we con-
sider five types of base skills: grasp_part, touch_part,
rotate_obj, move_gripper, and release_gripper.
As detailed in Table X and Appendix A2, each skill is

parameterized by (1) the object part it interacts with and the
type of interaction (e.g., touching or grasping), (2) the degree
of rotation required for the part, and (3) the distance and
direction in which the gripper or object should be moved.
This information is summarized in a skill instruction I,z
associated with that skill. As illustrated in Figure 2, a task
given by an overall task instruction can be decomposed into
a sequence of base skill executions, each described by a skill
instruction. For example, the second task shown in Figure 2,
“Push the bucket’s left part, then release”, involves three
skill executions. To “push” the bucket’s left part, the robot
must first touch the left side of the bucket by executing
touch_part(bucket, left), then move the end effector to
the right via move gripper(right). Following the “push”
action, the robot executes release gripper() to complete
the task. We hypothesize that structuring fine-grained manip-
ulation tasks into sequences of base skills can facilitate the
training of hierarchical planning models to compose complex
plans with base skills for long-horizon tasks that a end-to-end
vision-language policy would struggle with.

B. Simulation Environment

To train and evaluate language-guided part-level manipula-
tion models, we introduce PartGym, a realistic robot simulator
for fine-grained manipulation tasks requiring part-level under-
standing. PartGym provides (1) rich 3D assets of everyday
objects, (2) part-level 3D ground-truth annotations, and (3) a
large task set for fine-grained robot manipulation with natural
language instructions. We used Pybullet [6] as the backbone
physics engine to simulate the physical interactions between
a robot arm and different objects and their parts. Specifically,
the environment includes a 7-DoF Franka Emika Panda robot
with a two-finger parallel gripper.

Observations. As shown in Figure 3, we provide multi-
modal observations for a robot, including RGB images, depth
maps, and point clouds. Additionally, we provide object and
part annotations. Lastly, proprioception robot states like joint
states and end-effector poses are also available as part of the
observations.

Action Space. The Panda robot takes a 7D action vector at
each step. The first 6 dimensions represent the end-effector’s
Cartesian pose, parameterized by a 3D coordinate as well as
the roll, pitch, and yaw angles. The final dimension controls
the gripper’s position.

We provide more details about PartGym in Appendix B.
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Figure 3: PartGym supports multimodal observations, including RGB images, depth maps, and scene point clouds (PCDs).
It also provides object and part annotations, including object segmentations, 2D part segmentation for each object part (part
mask), 3D object instance segmentation (obj PCDs), and 3D part segmentations on point clouds (part PCDs) for each object.
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Figure 4: Annotated parts grouped by object categories. The
horizontal axis stands for different part names and the vertical
axis gives different object categories. The value in the heatmap
indicates the frequency of each part for an object category in
PartInstruct. A darker color shows a higher frequency. Spatial
part names are highlighted in light gray to distinguish them
from semantic part names.

C. Dataset

1) Partlnstruct Dataset: Built upon the PartNet Mobility
dataset [45, 26, 4], PartInstruct contains 14 categories of table-
top everyday objects annotated with different part labels. In
total, there are 513 object instances and 4,653 part labels.
Figure 5 shows the object instance distribution across object
categories. We also show the distribution of annotated parts
for each object category in Figure 4. Figure 6 illustrates the
visual diversity of objects and parts in Partlnstruct. Each
part of an object is unique in terms of its shape, size,
texture, and position on the object. Objects of the same class
also have different part compositions. For example, there are
7 types of part compositions for bottles, including “(body,
closure, neck)”, “(body, handle, lid, neck)”, “(body, handle,
mouth)”. Leveraging the richly annotated objects and parts,
we procedurally generate a large collection of demonstrations
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Figure 5: Number of object instances in each object category.

for vision-language imitation learning.

PartInstruct includes 10,000 demonstrations for training and
over 1,800 annotated episodes for evaluation. See Figure 2
for several example episodes in PartInstruct. Each episode
contains an observation set with different modalities, an expert
action trajectory, a natural language description of the overall
task, referred to as the task instruction I,q, as well as
a sequence of skill instructions Igy; that specify the part-
level manipulation subgoals sg required to complete the task.
Each skill instruction contains zero or one object part the
robot is manipulating with. It is important to note that skill
instructions are provided only during model training. For
evaluation, models receive only the overall task instruction
as the language input.

2) Task Categories: Partlnstruct has 16 task categories,
including 10 seen categories for training, and 6 unseen cat-
egories for testing. Each category is defined by tasks that
require the robot to execute a specific combination or sequence
of part-level interactions. Some categories require the agent
to physically interact with a specific part of the object. For
example, “Hold [part] the object and shift it in [direction].”
For such tasks, the agent must ground the part mentioned
in the task instruction to specific visual representations and
predict the actions needed to directly manipulate that part.
Other task categories require the agent to change the state of
a part. For example, “Rotate the object such that [part] is
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Figure 6: Representative object assets from Partlnstruct.

facing [direction].” To perform these tasks, the model needs
not only to know the location of the part but also to infer
its final state. The agent must manipulate some part of the
object to achieve that state, even when the part being directly
manipulated differs from the part mentioned in the instruction.

In the 5 test task categories, we have also designed more
challenging part-level manipulation tasks. One focus is on
long-horizon tasks that require the manipulation of multiple
parts in sequence. For instance, “Push the object toward
[direction] while touching [part], lift the object by holding
[part], then rotate [part] to face [direction].” Another focus
is on tasks that demand more complex reasoning about parts,
the environment, and their spatial relationships. For example,
consider the task, “Rotate [part] of the object on the table
so that it points to the opposite direction.” Here, instead of
explicitly naming the final state (e.g., a specific direction), the
task requires the robot to have additional knowledge about
the current direction of a certain part, identify its opposite
direction, and manipulate the object so that the part points in
that direction.

3) Demonstration Generation: Each demonstration is a
sequential execution of oracle high-level plans of base skills
defined in Table X. To generate the trajectories in the demon-
strations, we detect grasping point using [2] and then leverage
a sampling-based motion planner, BiRRT [20] to generate the
motion plan for each base skill.

To generate the task instruction for each task, we first create
template-based instructions (Appendix A3). To enrich the
language diversity, we prompt GPT-40 with the template-based
instruction, task definition, and object metadata to paraphrase
the task instruction. This yields between 3 — § natural-language
variants per template, greatly increasing the language diversity
of the dataset. For each base skill, we follow the template in
Table X to generate skill instructions.

4) Evaluation Protocol: As defined in Section III-C, each
part-level skill has a binary success criterion. A completion of
the entire task means the agent manages to complete every sin-
gle skills defined in the skill chain. To systematically evaluate
the performance of the learned policy, we designed a five-level
evaluation protocol (see Table IV). Each test set evaluates a
policy in one type of generalization condition. Specifically,
they focus on generalizability over object initial states (OS),

Table IV: Summary of the five test sets and the type of
generalization each one addresses.

Test Set Type of Generalization

Test 1 (OS) Novel object positions and rotations

Test 2 (OI)  Novel object instances within the same cate-
gory

Test 3 (TP)  Novel part combinations within the same task
categories

Test 4 (TC)  Novel part-level manipulation task categories

Test 5 (OC) Novel object categories

novel object instances (OI), novel part combinations in the
same task type (TP), novel task categories (TC), and novel
object categories (OC). Detailed visualization can be viewed
in Appendix B.

IV. EXPERIMENTS

To achieve general-purpose robot manipulation, there have
been two common types of approaches: (1) end-to-end policy
learning that directly maps observation and instruction to
actions (e.g., [48, 8, 23, 32, 41, 11, 13, 5, 49]) and (2) bi-
level planning that first generates high-level plans (typically
subgoals), then compute and execute the low-level action plans
to achieve the subgoals [44, 38, 1, 10, 43]. In our benchmark,
we evaluate both types of approaches.

A. End-to-End Policy Learning

1) Baselines: We evaluate the following state-of-the-art
end-to-end robot manipulation policy learning methods:

Octo [41] is a transformer-based generalist robot policy
pretrained in diverse large-scale robotic episodes. At each time
step, the model outputs an action vector that contains the
translation and rotation of the robot end effector, along with
one dimension that indicates the gripper open and closed.

Act3D [11] is a 3D feature field transformer for multi-task
6-DoF robotic manipulation. Unlike Octo, it employs a key-
frame-based approach to complete tasks. These key pose will
then be executed using a motion planner.

RVT2 [13] is a multi-task transformer-based 3D manipula-
tion model. Similar to Act3D, it also applies key-frame based
manipulation.

3D Diffuser Actor (3D-DA) [18] trains a policy that is
jointly conditioned on a tokenized 3D scene, proprioceptive
feedback, and a natural-language instruction. It uses diffusion
to generate 3D pose trajectories.

Diffusion Policy (DP) [5] represents a visuomotor policy
as a conditional denoising diffusion process in the action
space, which allows it to effectively handle multimodal action
distributions and high-dimensional action sequences.

3D Diffusion Policy (DP3) [49] combines 3D visual rep-
resentations with diffusion-based policies, leveraging compact
3D point cloud data for efficient and generalizable visuomotor
policy learning.

Note that the original DP and DP3 models do not support
language instruction inputs. To fit the setup of Partlnstruct,
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Figure 8: Success Rates of all baselines. The left group
represents end-to-end learning policies, while the right group
corresponds to bi-level planning models. Error bars denote the
standard errors calculated across all evaluation rollouts.

we modify them to incorporate language inputs. Specifically,
we use a pre-trained TS language encoder to get the language
embedding [31]. The embedding is then concatenated with
other features and used as the observation condition for the
denoising diffusion process.

We trained the baselines DP, DP3, Act3D, RVT2, 3D-DA
from scratch and fine-tuned the pretrained baseline Octo on
our training data. Our hypothesis is that fine-tuning Octo
will improve its performance on our benchmark by leveraging
its large-scale pretraining on Open X-Embodiment [2§]. The
implementation details can be found in Appendix D.

2) Results: To evaluate each learned policy, we follow the
common practice outlined in recent works [17, 5, 49]. Specif-
ically, we select the top two checkpoints for each baseline
and conduct approximately 20 rollouts per object class across
all test splits, resulting in over 1,000 rollouts per baseline.
We report the Success Rate (SR, %) for all end-to-end policy
baselines in the left part of Figure 8 and in the top block of
Table V. The low success rate across all baselines suggests
that it remains challenging to train an end-to-end generalist
policy for fine-grained object manipulation tasks given part-
level instructions. They particularly struggle with long-horizon

tasks (Test 4) and generalizing to unseen object types (Test 5).

B. Bi-level Planning

1) Baselines: We hypothesize that it would be easier to
train action policies with skill instruction annotations com-
pared to directly training a policy for the whole task. Such low-
level action policies can then be combined with a high-level
planner that generates skill instructions given a task instruction
to solve the manipulation task intended by the user. To evaluate
the efficacy of bi-level planning on our benchmark, we extend
common bi-level planning frameworks (e.g., [10]) as shown
in Figure 7. Specifically, the bi-level planner consists of two
modules: (1) a high-level task planner and (2) a low-level
action policy. We describe each module below.

High-level Task Planner. We leverage a VLM for high-
level task planning. At step ¢, we prompt the VLM with
the task instruction I, to generate the skill instruction for
the current step as the subgoal sg:, i.e., Tvim(59t|0t, Luask),
where o, is the observation at step ¢. We constrain the skill
instructions to the space of base skills defined in Section III-C
and Appendix A2, which is also specified in the prompt
for the VLM. To facilitate decision-making, we also provide
additional observations when prompting the VLM, such as
RGB images of the workspace, robot states, etc. See Appendix
D3 for the detailed prompt. sg; will be passed to the low-
level action policy for execution and will be updated every
n step. Here, n is estimated by the typical length of a skill
execution in the training set. It is worth noting that we
could potentially incorporate an additional VLM to assess
the completion of the current skill and trigger updates to
the skill instruction. However, based on our study [42, 25]
and preliminary experiments, current VLMs are not yet robust
enough to reliably estimate this using multi-modal inputs. We
evaluate GPT-40 [15], Gemini-1.5 Flash [40] and Gemini-2.0
Flash [40] for the high-level task planner.

Low-level Action Policy. The low-level action policy is a
vision-language policy that generates low-level manipulation
actions based on a subgoal and the current observation, i.e.,



Table V: Success Rates (%) of baselines across five test sets. Baselines are categorized into end-to-end policy learning and
bi-level planning. Standard errors are reported alongside each value. The best-performing results are highlighted in bold.

| Baselines | Test 1 (0OS) Test2 (OI) Test3 (TP) Test4 (TC) Test 5 (OC) | All
Octo 1.82+1.3 0.0 0.9140.1 0.0 3.3343.2 1.11+1.5
Act3D 6.25+1.8 5.68+1.7 4.55+1.6 0.0 2.08+2.1 3.88+1.8
End-to-End Learning | RVT2 4.5542.0 4.5542.0 6.36+2.3 0.9140.9 3.3343.3 4.044-2.1
3D-DA 8.08+2.7 5.0542.2 4.0441.9 0.0 3.70+3.6 4.26+1.0
DP 7.27+1.8 8.64+1.9 8.18+1.8 3.754+2.1 6.67+3.2 5.9642.2
DP3 23.1842.8 23.1842.8 18.18+2.6 7.73+1.8 6.67+3.2 15.4042.6
CaP + Oracle Motion Planner 22.584+4.9 27.93+9.1 25.95411.0 6.994+12.2 19.3849.8 21.9046.2
Bi-Level Planning GPT40+DP3-S 33.6443.2 32.7343.2 25.91+43.0 10.00+2.0 23.3345.5 25.1243.4
Gemini-1.5 Flash+DP3-S 30.4844.5 25.45+4.2 27.62+4.4 1.82+1.8 26.67+8.1 2241446
Gemini-2.0 Flash+DP3-S 40.58+4.2 34.56+41 33.33+4.1 11.90+2.9 38.2448.3 31.7244.7

Table VI: Performance of low-level action policies when
paired with ground-truth high-level plans.

Baselines 0OS 0OI1 TP TC 0oC All

Octo 3.64 5.50 5.90 0.00 6.67 4.34
Act3D 0.45 2.80 3.33 0.00 0.00 1.32
3D-DA 7.27 5.45 3.64 0.00 6.67 4.61
RVT2 1.82 3.64 1.82 0.00 3.33 1.91
DP 6.47 11.42 16.53 0.06 6.94 8.28
DP3 19.34 13.61 17.89 0.00 12.08 12.58
DP-S 20.00 16.36 25.45 0.00 6.67 13.70
DP3-S 23.64 29.09 23.64 1.82 26.67 20.97

m(at|ot, sg: ), where a; is the action at step ¢. We can train
such policies using the skill instructions annotated for training
demonstrations in our dataset. We can train the end-to-end
policy learning models evaluated in Section IV-A on skill
instructions to create low-level action policies.

We hypothesize that an explicit visual understanding of
object parts can facilitate part-level instruction grounding. It is
difficult to visualize all object parts due to occlusion. However,
in our tasks, the robot needs to interact with at most one part
for the subgoal sg; defined in each skill instruction, making
it possible to give additional vision inputs about the target
object part to the low-level action policies. We select the
best-performing end-to-end policy learning baselines, DP and
DP3, to train the low-level action policies with object part
segmentation as part of the input.

For DP, we provide a part segmentation mask as an extra
vision input. There have been general-purpose segmentation
models like Segment Anything Model 2 (SAM 2) [33]. We
adopt the approach of Grounded-SAM-2 [35] to leverage SAM
2 to segment and track object parts. Specifically, given an
RGB image and language input, we first utilize a VLM, e.g.
Florence-2 [34] to ground the language onto the target part,
then prompt SAM 2 to generate segmentation masks and track
the object part in real-time. At each step, we add the obtained
part segmentation mask as an extra channel on top of the
original RGB, make the input a 4-channel image. The image
is then encoded using a ResNet18 [14] encoder before feeding
into the DP model. We refer to this model as DP-S.

For DP3, we use a part point cloud as an additional vision
input. Since there has not been a general-purpose object
part segmentation model on 3D point cloud [39, 36], we
obtain the 3D part segmentation using a lift-to-3D method.

In detail, we first apply the same method in DP to obtain
a 2D segmentation mask tracked using SAM2. We then lift
the 2D mask into 3D with the depth map using the pinhole
camera model and camera intrinsics. To represent a 3D part
mask, we append a binary mask channel to the original point
cloud observation. This modified point cloud is encoded using
an MLP, following the approach described in the original
implementation [49]. Additionally, as outlined in the original
work, the point cloud was cropped to match the minimum
workspace, which includes only the robot arm and the object.
We refer to this action policy as DP3-S.

We train the low-level action policies using the training
demonstrations and the skill instructions annotations, where
each demonstration is truncated into clips corresponding to
individual skill instructions. The implementation details of bi-
level planning baselines can be found in Appendix D3.

Additionally, we evaluate Code-as-Policies (CaP) [21] as
an alternative bi-level planning framework. CaP leverages an
LLM to compose API calls to generate robot policy code. In
our experiment, we define API calls as the skill primitives
implemented by the oracle motion planner as described in
Section III-C3. We use GPT-40 for the LLM.

2) Results: We adopt the same evaluation protocol de-
scribed in Section IV-A2 for bi-level planning baselines. To
evaluate different low-level action policies without considering
the effect of high-level task planners, we first pair each low-
level action policy with ground-truth skill instructions. As
shown in Table VI, DP3-S has the highest success rate across
all test sets.

Given this result, we then adopt DP3-S as the low-level
action policy and pair it with different high-level planners
to create bi-level planning baselines. The results are reported
in the right part of Figure 8 and the bottom block of Table
V. We can see from the results that the bi-level planning
baselines outperform the end-to-end learning in every test
set by a large margin. This demonstrates the effectiveness
of training a separate low-level action policy for base skills
and using VLM as high-level task planner. Among all high-
level planning baselines, Gemini-2.0 Flash paired with DP3-S
performs the best. However, bi-level planning still struggles
with many tasks, particularly when the tasks require longer
chains of base skills (e.g., Test 4). In these longer-horizon
tasks, there is a higher chance for the high-level task planner



Table VII: Impact of high-level task planners on bi-level
planning models. We pair each high-level task planner with
an oracle motion planner to execute the skill instructions.

Table VIII: Impact of various vision inputs on low-level action
policies. We pair low-level action policies using different
vision inputs with ground-truth high-level plans.

Baselines 0S [0) 1 TP TC ocC All Baselines (0] Ol TP TC ocC All
Gemini-1.5 Flash 20.41 19.07 19.36 0.15 29.24 17.65 DP 6.47 11.42 16.53 0.06 6.94 8.28
Gemini-2.0 Flash 27.73 25.94 26.75 0.00 32.70 22.62 DP-S GT 15.45 20.91 26.36 0.91 13.33 15.39
GPT4o0 20.08 18.87 14.87 0.79 22.45 17.94 DP-S SAM2 20.00 16.36 25.45 0.00 6.67 13.70
DP3 19.34 13.61 17.89 0.00 12.08 12.98
. . . DP3-S GT 45.45 36.36 36.36 1.82 40.00 32.00
to make mistakes. Errors from the low-level action policy are DP3-S SAM2  23.64 2909 23.64 182 26.67 20.97

also more likely to be accumulated.

C. Ablation Studies

In Section IV-B, we demonstrate that bi-level planning
models with low-level action policies informed by part seg-
mentation perform significantly better than state-of-the-art
end-to-end policies. To evaluate the effect of each component
of the high-level planning models, we conduct the following
ablation studies.

1) Effects of High-level Planners: To evaluate the effective-
ness of different VLMs as high-level planners on the overall
task performance, we construct bi-level planners by combining
each VLM with an oracle motion planner to perform the
skill instructions generated by the VLM. Specifically, we
use the same oracle planner used for generating the training
demonstrations. Unlike the full version of the bi-level planning
baselines, here the oracle planner can decide when the subgoal
for a skill instruction is achieved. Thus, instead of updating
the skill instruction at a fixed frequency, the high-level planner
will generate the next skill instruction when the oracle planner
has reached the subgoal of the current skill instruction.

We report the results in Table VII. Interestingly, compared
with the results in Table V, every bi-level planner that uses
a VLM for high-level task planning performs worse when
paired with an oracle motion planner. This is likely because
the oracle motion planner has to finish the entire execution
of a subgoal, even if it is incorrect. In such cases, VLM-
based high-level task planners struggle to recover from earlier
mistakes. In contrast, when we used a learned low-level action
policy, the same instruction will only be executed for a few
steps (as described in Section IV-B). Consequently, the VLM
has a better chance to correct those mistaken instructions in
subsequent steps.

2) Effects of Different Visual Inputs: To examine the impact
of different visual representations, particularly 2D and 3D
part masks, on policy learning, we conduct another ablation
study, where we evaluate the low-level action policies with
various visual inputs. Specifically, in addition to DP-S SAM?2
and DP3-S SAM2, we also trained low-level action policies
using ground-truth mask information, DP-S GT and DP3-
S GT, as well as the vanilla models without any part-level
mask, DP and DP3. The results are summarized in Table VIII.
With part segmentations, either 2D or 3D, the low-level action
policies can achieve significantly better performance. The
performance gap between the policies trained with ground-
truth part segmentation and SAM?2-based part segmentation
also suggests that there improvement in both the VLM’s ability

to ground fine-grained parts and in the capacity of state-of-the-
art segmentation methods to accurately segment object parts.

V. DISCUSSION

How well can current vision-language policies perform
in our part-level manipulation tasks? The experimental
results on our benchmark systematically reveal the perfor-
mance of current vision-language policies in our part-level
manipulation tasks. Specifically, we find that vision-language
policies perform adequately on object-level tasks but struggle
with precise part-level grounding. While they can follow
simple part-based instructions such as “grasp” or “touch,’
instructions like “touch the left part” introduce fine-grained
spatial reasoning that these models have not fully mastered.
We observed that these policies can learn the broad action
of “touch” but neglect the exact location of “left” Second,
zero-shot inference using pretrained generalist vision-language
policies on our benchmark fails to achieve any success (see
Appendix D2). This is likely due to the absence of part-level
skills and detailed spatial reasoning in their training data.
Current large-scale robotic datasets do not adequately capture
the detailed spatial and part-specific annotations required for
fine-grained part-level manipulation. This suggests the value
of our training dataset and PartGym simulator in training
part-level manipulation policies as we provide detailed part
annotations as well as fine-grained manipulation tasks that
require part grounding and reasoning.

Why is part-level instruction following challenging for
vision-language policy learning? Our experimental results
demonstrate that the part-level instruction following tasks
in our Partlnstruct benchmark remains extremely difficult
for state-of-the-art end-to-end vision-language policy learning
methods. There are several main challenges that these methods
cannot yet solve for part-level instruction following. First,
learned policies must recognize and track object parts over
time, which can be difficult as parts of the same kind can have
distinctive appearances. For instance, the object part “lid”,
may look differently across object categories (e.g., the lid of a
bottle vs. the lid of a pot, the top of a stapler vs. the top of a
mug). This variability requires the model to correctly associate
the same part name with distinct visual representations based
on context. Second, relevant objects and the corresponding
manipulation of these objects for performing a task may not
be explicitly defined in the task instructions. Thus a policy
must reason about what parts to interact with and in which
manner. Third, the fine-grained nature of these tasks imposes a
stricter success criterion than typical object-level manipulation.



For instance, in a general mug-picking task, any point on the
mug’s surface might serve as a grasping point, whether on
the handle, top, or body. In contrast, a task requiring grasping
specifically by the handle demands precision in targeting the
handle area alone, with the need for detailed semantic and
spatial awareness.

Why is bi-level planning helpful? One important feature
of bi-level planning is that it decomposes a complex task into
a chain of subgoals, each interacting with at most one object
part at a time. Focusing on a single part-level skill at a time
simplifies the training of low-level action policies, as the policy
only needs to ground the skill instruction into a relatively
simple manipulation of the specified object part. Part-level
manipulation also requires more fine-grained vision grounding
than object-level tasks, since the part-level information is much
more detailed and changes dynamically over time (e.g., the
front of a mug at the current step may no longer be the
front in future steps after rotation). By decomposing the task
into part-level tasks, we reduce the burden of grounding and
tracking different parts over time, enabling the low-level action
policy to focus on the most relevant visual information at
the moment. Additionally, separating reasoning from action
execution allows us to incorporate pretrained foundation mod-
els. Specifically, high-level task planning is performed by
VLMs pretrained on internet-scale data, which endows them
with extensive prior knowledge and proficiency in high-level
reasoning, planning, and language-guided decision making. As
multimodal foundation models continue to advance in vision-
language reasoning, their built-in knowledge is expected to
further boost overall performance.

What kinds of visual representations are useful in fine-
grained manipulation? As the tasks in PartInstruct require
a model to have a detailed visual understanding of object
parts, visual representations of the scene and objects may
play a central role in a model’s performance. Our ablation
study on the effect of visual representations in the model input
reveals the following findings. First, 3D representations, such
as point clouds, are more effective than 2D images. Unlike 2D
methods, which can misinterpret depth and lead to positioning
errors, point clouds provide precise 3D shape and location
information, improving action success. Second, explicit object
part segmentation provides a significant performance boost in
the performance of part-level policy learning, as shown in
Table VIII. The improvement is particularly noticeable for
3D part segmentation. In fact, DP3-S outperforms DP3 by
approximately 20%, more than doubling the performance.

What are the difficulties of learning part-level skills, and
what kind of skills are harder to learn than others? We
found that part-level manipulation skills can be particularly
challenging when they require indirect actions to achieve a
goal state for a target part. To analyze which part-level skills
are generally difficult to learn and which object parts tend
to pose challenges for the robot, we conducted an impact
study, detailed in Appendix C. The study shows that “grasp”
and “touch” achieve success rates over 50%, likely because
they involve direct physical contact with the part. By contrast,

“Rotate” achieves only 18.2%, since it specifies the orientation
of the part rather than direct manipulation. For example, to
show a bottle’s “cap,” the robot may avoid grasping the cap
directly (which obstructs the view) and must instead grasp
another part of the bottle, making it a more complex skill to
learn. Additionally, compared to common parts (e.g., “handle”
and “lid,”), spatial parts (e.g., “left” or “right”) are much
more challenging because these references can change as
the object moves. For instance, an instruction like “Rotate
the bottle, so that the left part faces the opposite direction”
requires the policy to remember the original “left” region while
also recognizing the updated orientation as the bottle rotates.
Maintaining both the original reference and the changing
spatial context makes these tasks particularly difficult.

How well can current VLMs perform in the planning
for fine-grained manipulation tasks? Our experiments show
that bi-level planning baselines significantly outperform end-
to-end policy learning approaches, as indicated in Table V.
This suggests that current VLMSs possess certain capabilities
in understanding and reasoning about part-level manipulation
tasks, as well as generalizing pretrained knowledge to perform
high-level task planning across diverse object- and part-related
scenarios. However, VLM-based planners can still fail during
task planning, particularly in tasks that require a long chain of
skill instructions (e.g., tasks in Test 4). This poses challenges
for future research to further improve VLMSs’ reasoning and
planning capacities for fine-grained manipulation tasks.

V1. LIMITATIONS

Our current study focuses on part-level manipulation tasks
in a controlled 3D simulator, which has certain limitations
when considering real-world deployment. First, we have not
fully evaluated sim-to-real generalization. Although the dataset
includes diverse objects and tasks, there is no guarantee that
the learned policies will transfer seamlessly to physical robot
platforms. Exploring techniques such as domain randomization
or policy fine-tuning on real-world data could improve the
robustness of the policies. Second, the demonstrations in
our training set are generated by an oracle motion planner,
which may have limited behavioral diversity. In the future,
we plan to integrate a teleoperation interface in PartGym to
collect human demonstrations. Third, our current benchmark
focuses on single-object manipulation. Studying scenarios
where multiple objects are present or clustered closely together
is another important future direction. Finally, while we have
diverse object instances, we can further enrich the object
assets by including articulated objects (e.g., cabinets, drawers),
which can be used for evaluating part-level manipulation under
dynamic constraints.

VII. CONCLUSION

In this work, we introduced Partlnstruct, a large-scale
benchmark designed to advance fine-grained robot manipula-
tion using part-level instructions. By curating a diverse set of
objects, tasks, and expert demonstrations, PartInstruct provides
a foundation for training and evaluating robot manipulation



models that require reasoning about object parts and their
relationships with tasks. Our evaluations of state-of-the-art
models highlight critical challenges in grounding part concepts
and executing long-horizon tasks. With comprehensive experi-
ments and ablation studies, our work provides key insights for
future research, highlighting the need for further innovation
in perception, reasoning, and planning to enable robots to
effectively perform fine-grained, part-aware manipulation.
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APPENDIX

A. PDDL Definitions

1) Predicate Definitions: This subsection gives the definition of the basic predicates utilized by the motion planner.

Table IX: Definition of Predicates

Predicate Description

ON (obj, part, contact) Whether obj is on the contact.

TOUCHING (obj, part) Whether the gripper is in contact
with obj at part; part can be
empty to indicate a general touch
on any parts.

GRASPING (obj, part) Whether the gripper is carrying
obj at part; part can be empty
to indicate a general grasp with any
parts.

FACING (obj, part, dir) Whether part of ob3 is facing or
pointing dir.

AT_POSITION (obj, pos) Whether obj is at position pos =
(x.y.z].

2) Skill Definitions: This subsection shows the detailed definition of the five skills.

Table X: Definition of Base Skills

Effects
GRASPING (obi,
part)

Preconditions
ON (table, obij);
~GRASPING (0bj);
~TOUCHING (obij)

Skill
grasp_obj (obi,
part)

Description
Robot grasps obj at part.

move_gripper (dir,
dis=UNIT,
grasping=false)

Robot moves gripper along
dir dis.

If grasping==True:
GRASPING (ob3j)

AT_POSITION (
gripper,
last_gripper_pos
+

vec (dir) Xdis);

If grasping==True:
GRASPING (obij)

rotate_obj (obj,

Robot rotates obj, such that

GRASPING (ob3j)

GRASPING (obj);

part, dir) part is facing dir. FACING (part,
dir)
touch_obj(ob7, Robot touches obj at part. ON (table, obj); TOUCHING (ob7,
part) ~GRASPING (obj); | part)
~TOUCHING (obij)
release_gripper Robot releases the gripper | ON (table, obj); ON (table, obj);

(ob3J)

and moves away from obj.

GRASPING (ob3j)
or
TOUCHING (obJ)

~GRASPING (obj);
~TOUCHING (obj)




3) Task Definitions: This subsection shows the detailed definition of different task types in Partlnstruct.

Table XI: Seen Task Instructions and Goal States

Seen (10)
Order Example Task Instruction Goal States
1 Grasp the object by the part GRASPING (gripper, part), ON(obj, table)
2 Touch the object at the part TOUCHING (part), ON(obj, table)
3 Hold the part of the object and | GRASPING (part),
move it to direction AT_POSITION (cbj, POS_INIT_ORJ+VEC (dir))
4 Push the object towards direction | TOUCHING (part),
by touching part AT_POSITION (obj, POS_INIT_OBJ+VEC (dir))
5 Slide the object on the table to- | Phasel: GRASPING (part),
wards direction while keeping hold | AT_POSITION (obj, POS_INIT_OBJ+VEC (dir))
of part, then release it Phase2: GRIPPER_OPEN, MIN_DISTANCE (gripper, obj)
6 Move the object to direction by | Phasel: TOUCHING (part),
pushing it at part, then free it AT_POSITION (cbj, POS_INIT_ORJ+VEC (dir))
Phase2: GRIPPER_OPEN, MIN_DISTANCE (gripper, obj)
7 While keeping hold of part, move GRASPING (part),
the object towards direction in the | AT_POSITION (obj, POS_INIT_OBJ+VEC (dir)+VEC (UP))
air
8 Rotate part of the object to face GRASPING (obJ), FACING (part, dir),
direction while liftirlg it AT_POSITION (obj, POS_INIT_OBJ+VEC (UP))
9 Move the object towards direction | Phasel: GRASPING (part),
after raising it, while keeping hold | AT_POSITION (obj, POS_INIT_OBJ+VEC (dir)+VEC (UP))
of part, then put it down Phase2: GRASPING (part),
AT_POSITION (obj, POS_INIT_OBJ+VEC (dir))
10 Move the object towards directionl GRASPING (ob7),
in the air, then rotate part to point | AT_POSITION (obj, POS_INIT_OBJ+VEC (UP)+VEC (dirl)),
towards direction2 FACING (part, dir2)
Table XII: Unseen Task Instructions and Goal States
Unseen (6)
Order Example Task Instruction Goal States
11 Rotate part in the air so it points | Phasel: GRASPING (obj), FACING (part, dir),
towards direction, then put it down | AT_POSITION (obj, POS_INIT_OBJ+VEC (UP))
Phase2: GRASPING (obj), FACING (part, dir),
AT_POSITION (obj, POS_INIT_ORJ)
12 Shift the object towards directionl Phasel: GRASPING (partl), FACING (part, dir),
in the air while grasping partl, | AT_POSITION (obj, POS_INIT_OBJ+VEC (dirl) +VEC (UP))
turn part2 to direction2, then set it | Phase2: GRASPING (partl), FACING (part, dir),
down AT_POSITION (obj,POS_INIT_OBJ+VEC (dirl))
13 Turn part of the object to point to | Phasel: ON (ocbj, table), FACING (part, dirl);
direction] while keeping it on the | Phase2: ON (obj, table),
table, then push it towards direc- | AT_POSITION (obj, POS_INIT_OBJ+VEC (dir2))
tion2
14 While keeping it on the table, push | Phasel: ON (obj, table), TOUCHING (partl),
the object towards direction] while | AT_POSITION (obj, POS_INIT_OBJ+VEC (dirl))
touching partl, then rotate part2 to | Phase2: ON (obj, table), FACING (part2, dir2)
face direction2
15 Rotate part of the object to face the | FACING (part, ~DIR_INIT(part)), ON(obj, table)
opposite direction
16 Push the object to directionl and | Phasel: FACING (part, dir2),
rotate part to point towards direc- | AT_POSITION (ob7j, POS_INIT_OBJ+VEC (dirl) +VEC (UP))
tion2 in the air, finally place it | Phase2: FACING (part, dir2),
down AT_POSITION (obj,POS_INIT_OBJ+VEC (dirl))




B. Partlnstruct Benchmark Details

1) Observation and Action Space: Table XIII shows the observation and action space available in PartGym.

Table XIII: Observation and Action Space details.

Observation Space

Static View - RGB

Static View - Depth

Static View - PCD

Static View - Semantic

Static View - Traget Part PCD
Static View - Traget Part Mask
Wrist View - RGB

Wrist View - Depth

Wrist View - PCD

Wrist View - Semantic

Wrist View - Traget Part Mask
Wrist View - Traget Part PCD
Proprioceptive state

300 x 300 x 3
300 x 300

3 x 1024

300 x 300

3 x 1024

300 x 300

300 x 300 x 3
300 x 300

3 x 1024

300 x 300

300 x 300

3 x 1024

EE position (3)
EE orientation (3)
Joint positions (7)
Gripper action (1)

Action Space

Absolute cartesian pose (w.r.t. world frame)

EE position (3)
EE orientation (3)
Gripper action (1)
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Figure 9: Selected Visual Modalities in PartGym.
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2) Key Features of PartGym: The aim of PartGym is to boost embodied Al research related to interaction with table-top
object parts. PartGym support real-time rendering of different visual modalities (see Figure 9). In additional to the typical
modalities like RGB, depth and object segmentation, PartGym also provides part-related visions like part masks and part point
cloud, including spatial parts and semantic parts of an object. These part-related vision modalities are renderred by PyBullet
[6] simulation engine using the ground-truth part assets given by PartNet Mobility [45] [26] [4].

Additionally, PartGym provides a framework to implement bi-level planning models for part-level manipulation tasks in
simulation environments. It provides a template skill instruction generator, an oracle skill execution checker, as well as a
systematical way to render part-related modalities shown in any skill instruction.



3) Visualization of Test Splits: We provide the visualization of all 5 test sets in this section.

a Move the bottle on the table away from me while holding top, then free it.

Figure 10: Left: Training set. Right: Test 1(OS).

a Place gripper tip on the screw of the scissors.

Figure 11: Left: Training set. Right: Test 2(O1I).

a Grab the top of the mug and move it forwards.

\ E‘ E\

I

a Grab the handle of the mug and move it backwards.

y E E\

Figure 12: Above: Training set. Below: Test 3(TP).



a Lift the bucket by its left, then rotate the left part to face front, then move it to the left.

a Move the bucket towards to the left in the air, then rotate handle to point towards back.

Figure 13: Above: Training set. Below: Test 4(TC).

a Lift the bottle by its top. a Lift the knife by its base body.

Figure 14: Left: Training set. Right: Test 5(OC).



4) Statistics of PartInstruct Episodes: We provided detailed statistics about parts within each object type.

Counts for Parts in the Seen Objects
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Figure 15: Parts in PartInstruct episodes, grouped by seen object types.

Counts for Parts in the Unseen Objects
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Figure 16: Parts in PartInstruct episodes, grouped by unseen object types.



C. Skill and Object Part Impact Study

Here, we selected the rollout logs of the best-performing policy and analyzed the impact of different skill types and object
parts. Specifically, we evaluated the success rate and failure causes for each skill and part.

The Success Rate was calculated by dividing the number of successful executions of each skill or part by the number of
times it appeared in the skill chain. The Failure Cause was calculated by dividing the number of times a skill chain failed
because of a specific skill or part by the total number of skill chain failures.

Table XIV: Average success rate and failure cause for the three part-level skills

Skill Grasp Object  Rotate Object Touch Object
Success Rate (%) 53.55 18.18 54.55
Failure Cause (%) 43.51 6.11 16.79

Table XV: Average success rate and failure cause for selected parts.

Part Blade Left Neck Top Screen Mouth  Bottom
Success Rate (%) 46.67 4510 66.67 52.78  60.00 66.67 30.00
Failure Cause (%)  4.60 13.79 1.15 2414 230 0.00 0.00

Part (Continued) Handle Leg Lid Front Right Back Screw Head
Success Rate (%) 64.29 3333 63.64 29.03 3649 41.03 0.00 16.67
Failure Cause (%) 4.60 2.30 4.60 5.75 21.84  9.20 1.15 345

D. Implementation Details

1) Training Details in End-to-End Policy Learning: We trained the baseline models, including Diffusion Policy (DP) [5], 3D
Diffusion Policy (DP3) [49], and Act3D [11], from scratch. For RVT2 [12] and Octo [41], we implemented both fine-tuning of
the pretrained models and training from scratch on our dataset. All trained models are using vision modalities from a static-view
camera put with the same extrinsics in the workspace, as well as the real-time robot states information. Experiments were
conducted on cluster nodes of A100 or H100 using Distributed Data Parallel (DDP). Training from scratch generally took
about two days, while fine-tuning required one day.

Diffusion Policy (DP): We train CNN-based DP from scratch on our dataset. The action prediction horizon is set to 16
steps, with an observation horizon of 2 steps and action steps of 8. The input RGB images are cropped to a size of 76 x 76.
For language instructions, we use a pre-trained TS5-small language encoder to obtain a language embedding of 512 dimensions.
This language embedding is then concatenated with other features to form the final feature representation.

3D Diffusion Policy (DP3): The DP3 model is trained under a similar setup as DP, with an action prediction horizon of 16
steps, an observation horizon of 2 steps, and action steps of 8. For the point cloud observations, we use an input size of 1024
points, which are downsampled from the original point cloud using the Iterative Farthest Point Sampling algorithm [29]. The
language instructions are processed in DP3 following the same approach as in DP.

Act3D: Act3D takes an image input size of 256 x 256. The action prediction horizon is set to 6 steps, and the observation
horizon is 1 step. Following the raw work [11], we use ResNet50[14] as the vision encoder, and use CLIP [30] embeddings
for vision-language alignment. For 3D action map generation, the number of “ghost” points is set to be 10,000, with a number
of sampling level of 3.

3D Diffuser Actor (3D-DA): For 3D-DA, we use the front-view RGB and scene point cloud as vision inputs. The RGB
image has a resolution of 256 x 256. Following Ke et al. [18], we extract visual features with a pre-trained CLIP ResNet-50
encoder and use CLIP [30] embeddings for vision-language alignment. We use an interpolation length of 5 steps and an
observation history of 3 steps.

Octo: For fine-tuning, we use the released checkpoint of the octo-base—1.5 model and fine-tune its output head for
20,000 iterations. We use both the static view camera and the wrist view camera. The input image sizes are 256 X 256 for the
static view and 128 x 128 for the wrist view. The window size is set to 2 steps, and the action horizon is set to 16 steps.



RVT2: To adapt RVT2 in our benchmark settings, we first convert the depth map from the static camera view into a point
cloud in the camera coordinates, then apply camera extrinsic to transfer the point cloud into the world coordinates, where the
action heat maps will be generated and apply supervision in. The action prediction horizon is chosen to be 6 steps, and the
observation horizon is set to be 1 step.

2) Zero-Shot Evaluation of the Generalist Policy: We selected several popular generalist policy, including RT-1, Octo and
OpenVLA, and evaluated their zero-shot performance on our test sets. For RT-1, we followed the implementation of Open
X-Embodiment project and used the released rt_1_x_tf trained_for 002272480_step checkpoint for inference.
For Octo, we used octo-base-1.5 model, following the same setup as described in section D.I. For OpenVLA, we used
the pretrained model openvla—7b. We followed the same evaluation protocol as other baselines, and our results shows that
these generalist policies fail to achieve any success on our test sets.

3) Design Details of Bi-Level Planning: We outline the bi-level planning pipeline’s implementation here as a supplement
to Section I'V-B.

Implementation of the High-Level Task Planner: The high-level task planner features a skill inference mechanism that
leverages comprehensive contextual information—including user task instructions, previously executed skill chains, and real-
time state data such as vision and pose information—to determine the next appropriate action. Recall that the high-level task
planner updates the skill instruction once every n steps. Here n is determined by the average number of steps typically required
for each skill in the training dataset. Specifically, we use 130 for grasp_ob3j, 30 for move_gripper, 68 for touch _obj,
40 for release_obj, and 22 for rotate_obj. Once the execution counter reaches these average values, the VLM is
prompted to infer the subsequent skill based on the current state. This design ensures that the decisions are grounded in both
historical and real-time data. In addition, the planner incorporates an exception handling measure to maintain output consistency
and reliability. Any unacceptable terms generated by the VLM—such as directional indicators that out of our definition, will be
normalized to their prescribed equivalents. Also, despite embedding all acceptable part names within the prompt, a dedicated
mechanism cross-references any inferred part names against a stored list of valid part names. For VLM baselines, we use
gemini-1.5-flash-002 and gemini-2.0-flash-exp for Gemini [40], and GPT40 for OpenAl models [15].

Training of the Low-Level Action Policies: We trained the low-level action policy using skill instructions retrieved from our
training data, assuming the presence of an oracle planner that decomposes the overall task. Apart from the skill instructions,
the training setup remains identical to the end-to-end learning approach described in Section D.1.

Part Grounding and Tracking: We selected sam2_hiera small as our mask generation and tracking model due to its
fastest tracking time among all configurations of SAM 2. For language grounding, we chose Florence-2-large as our
Vision-Language Model (VLM). To evaluate the performance, we used the rollout logs of DP-S SAM?2.

The performance was assessed using two key metrics: Grounding Success, Intersection over Union (IoU). Grounding Success
is calculated as the ratio of successfully grounded parts to the total number of parts during a task. A grounding is considered
successful if: 1) after language grounding, the prompt points given by the VLM consist of one positive and one negative
point (to prompt SAM 2), and 2) the IoU of the generated mask is greater than zero. If either of these conditions is not met,
the grounding is deemed a failure. The IoU measures the overlap between the predicted mask genrated by SAM 2 and the
ground-truth mask retrieved from PartGym environment, it is defined as the area of intersection divided by the area of union
of the predicted and true regions. The results across different test sets are summarized in Table XV.

Table XV: Performance of part grounding and tracking across different test sets.

Metric Testl  Test2  Test3  Testd All
Grounding Success (%) 25.26 35.73 36.87 15.06 27.58
IoU 0.15 0.18 0.19 0.25 0.20

VLM Prompts: We provide an example VLM prompt used in our bi-level planning pipeline below.



You are an expert at planning manipulation tasks. You will be given one task instruction
for each manipulation task. Each task instruction can be divided into a chain of skill
instructions. Your job is to infer the next skill instruction (you only need to output
one immediate next skill instruction each time, even if the entire task requires multiple
skills) for the robot to execute, based on the following information and the attached
image (current rgb frame) without outputting any intermediate inference and explanation:
- Task Instruction: {user_input}

- Executed Skill Instructions: {executed_skill_instructions}

— Gripper State: gripper_state (The gripper is open when the value is around 0.04 and it
is closed when the value is around 0.00.)

- Previous TCP Pose: {previous_tcp_pose}

— Current TCP Pose: {current_tcp_pose}

- Previous RGB Observation: {prev_image_desc}

— Current RGB Observation: The {current_image_position} image in the contents array shows
the current state.

Here is relevant information about the task.

1. The task instruction helps you understand the overall task goal. The executed skill
instructions shows the sequence of actions taken so far.

2. The gripper state shows whether the gripper is open or closed. The TCP poses and images
together illustrate the state transitions of the previous action.

3. The current object state, relative to the gripper, and the object motion (from TCP and
images) can help determine if the last action was successful.

Skill Descriptions:
1. grasp_obj:
— Description: This skill grasps an object by a specific part.
— Parameters:
part_grasp: The exact part of the object to be grasped. Must match the user’s input
(e.g., ’"blade’, "1id’).
- Format: Grasp the {obj_class} at its {part_grasp}
2. move_gripper:
— Description: This skill moves the gripper in a specified direction while optionally
keeping an object grasped.
— Parameters:
dir move: Direction to move the gripper. Can only be ’‘top’, ’"bottom’, "left’, ’‘right’,
"front’, or 'back’.
- Format: Move {dir_str}, where 'dir_str’ is mapped from ’dir_move’ by: — ‘front’ =
"forwards’ - ’"back’ =+ 'backwards’ - ‘top’ -+ ‘upwards’ - ’‘bottom’ -+ ‘downwards’ - ‘left’
+ "to the left’” - ‘right’ =+ "to the right’
3. rotate_obj:
— Description: This skill rotates an object in a specific direction based on a given part.
— Parameters:
dir_rotate: Direction to rotate the object. Must be one of "top’, ’"bottom’, ’left’,
"right’, "front’, ’'back’.
part_rotate: The part of the object that should be rotated.
- Format: Reorient the {part_rotate} of the {obj_class} to face {dir_str}, where ’dir_str’
is mapped from ’‘dir_rotate’.
4. touch_obj:
— Description: This skill touches a part of an object.
— Parameters:
part_touch: The part of the object to be touched.
- Format: Touch the {obj_class} at its {part_touch}
5. release_obj:
— Description: This skill releases an object from the gripper.
— Parameters: None.
— Format: Release



Part Names:

— Scissors: blade, handle, screw, left, right, top, bottom, front, back

— Kitchen Pot: base body, 1lid, left, right, top, bottom, front, back

— Laptop: base frame, screen, touchpad, keyboard, screen frame, left, right, top, bottom,
front, back

- Eyeglasses: base body, leg, left, right, top, bottom, front, back

— Bucket: handle, base body, left, right, top, bottom, front, back

— Display: base support, surface, frame, screen, left, right, top, bottom, front, back
— Pliers: base body, leg, outlier, left, right, top, bottom, front, back

— Bottle: mouth, 1lid, body, neck, left, right, top, bottom, front, back

— Knife: base body, translation blade, rotation blade, left, right, top, bottom, front,
back

— Stapler: base body, 1lid, body, left, right, top, bottom, front, back

— Kettle: handle, base body, 1lid, left, right, top, bottom, front, back

— Mug: handle, body, containing things, left, right, top, bottom, front, back

— Box: rotation 1lid, base body, left, right, top, bottom, front, back

— Dispenser: base body, pressing lid, head, handle, outlier, left, right, top, bottom,
front, back

Task Splitting Example:

Break down the task: Split the task instruction into individual steps. Example: \Move
the box in the air towards the right while keeping touch of right, then put it down."
Steps: (l) Grasp the box at its right, (2) Move upwards, (3) Move to the right, (4) Move
downwards. Return only the next skill instruction in the specified format.

Notes:

— Do not modify or assume alternate names for object parts.

— The task sequence should follow the user’s input as strictly as possible.
— Do not replace object parts with similar or inferred names.



