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Fig. 1: Overview of RoboMIND. We introduce RohoMIND (Multi-embodiment Intelligence Normative Data for Robot Manipulation), comprising
107k demonstration trajectories across 479 diverse tasks involving 96 distinct ohject classes. To ensure consistency and reliability during policy
learning, RoboMIND is gathered through human teleoperation and structured around a unified data collection standard. The four pie charts
represent (a) the total trajectory numbers categorized by different types of robots, (b) average trajectory lengths (frames) categorized by different
types of robots, (c) trajectory ratio of different task categories (Artic. M.: Articulated Manipulations; Coord. M.: Coordination Manipulations; Basic
M.: Basic Manipulations; Obj. Int.: Multiple Object Interactions; Precision M.: Precision Manipulations; Scene U.: Scene Understanding), and (d)
trajectory ratio of different scenarios.



Abstract—Developing robust and general-purpose manipula-
tion policies is a key goal in robotics. To achieve effective
generalization, it is essential to construct comprehensive datasets
that encompass a large number of demonstration trajectories
and diverse tasks. Unlike vision or language data, which can
be sourced from the internet, robotic datasets require detailed
observations and manipulation actions, necessitating significant
investments in both hardware-software infrastructure and human
labor. While existing works have focused on assembling various
individual robot datasets, there is still a lack of a unified data col-
lection standard and insufficient high-quality data across diverse
tasks, scenarios, and robot types. In this paper, we introduce
RoboMIND (Multi-embodiment Intelligence Normative Data for
Robot Manipulation), a dataset containing 107k demonstration
trajectories across 479 diverse tasks involving 96 object classes.
RoboMIND is collected through human teleoperation and en-
compasses comprehensive robotic-related information, including
multi-view observations, proprioceptive robot state information,
and linguistic task descriptions. To ensure data consistency
and reliability for imitation learning, RoboMIND is built on
a unified data collection platform and a standardized protocol,
covering four distinct robotic embodiments: the Franka Emika
Panda, the X-Humannoid Tien Kung humanoid robot with dual
dexterous hands, the AgileX dual-arm robot, and the URSe.
Our dataset also includes 5k real-world failure demonstrations,
each accompanied by detailed causes, enabling failure reflec-
tion and correction during policy learning. Additionally, we
created a digital twin environment in the Isaac Sim simulator,
replicating the real-world tasks and assets, which facilitates
the low-cost collection of additional training data and enables
efficient evaluation. To demonstrate the quality and diversity of
our dataset, we conducted extensive experiments using various
imitation learning methods for single-task settings and state-
of-the-art Vision-Langunage-Action (VLA) models for multi-task
scenarios. By leveraging RoboMIND, the VLA models achieved
high manipulation success rates and demonstrated strong gener-
alization capabilities. To the best of our knowledge, RoboMIND
is the largest multi-embodiment teleoperation dataset collected
on a unified platform, providing large-scale and high-quality
robotic training data. Our project is at https://x-humanoid-
robomind.github.io/.

1. INTRODUCTION

One of the aspirations of any professional in the field of
robotics is to develop a versatile, general-purpose robotic
model capable of performing a broad spectrum of real-world
tasks. Specifically, such models should be generalizable in
order to execute the intended manipulation tasks under varying
conditions, such as a new robot, unfamiliar environments, or
different objects [77, 50, 51, 65, 64, 14]. To achieve this level
of generalization, researchers have drawn inspiration from
the training of large models in computer vision and natural
language processing, where rich and diverse datasets have
proven essential [1, 61, 96, 101, 32, 55]. They concluded
that for training generalizable robotic models, one of the most
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critical elements is the access to rich and diverse training data
that encompass varied scenes, tasks, and robot types. Such
diversity ensures that models learn to perform reliably under
different conditions and environments [70, 77, 92, 14, 29, 97].
Therefore, in this work, we aim to construct comprehensive
datasets that capture a broad spectrum of robotic interactions
and experiences to facilitate training models capable of
mastering various manipulation policies.

However, the curation of large-scale datasets for training
general-purpose robotic models poses significant challenges.
In contrast to the acquisition of vision or language data,
which can often be sourced through web-based collection
methods [32, 55], collecting robotic data is difficult because
such data cannot be easily obtained in the same way, as
it requires controlled environments where the joints and
end-effector information of robotic systems are meticulously
recorded. Moreover, scaling up data collection efforts neces-
sitates considerable investment in both hardware and software
infrastructure and human labor for oversight, particularly when
it comes to acquiring and curating high-quality demonstration
data [77, 102, 50]. Consequently, even the most versatile
robotic manipulation policies currently in use are predomi-
nantly trained on datasets gathered within constrained condi-
tions that offer limited diversity in robot types [77, 50].

Our dataset, called RoboMIND (Multi-embodiment
Intelligence Normative Data for Robot manipulation), is
an extensive dataset that encompasses a broad range of
robotic interactions and experiences. RoboMIND features
107k demonstration trajectories amounting to 305.5 hours
of interaction data of 4 kinds of robotic embodiments
including Franka Emika Panda [34], a humanoid robot
(i.e., X-Humanoid Tien Kung [12]), AgileX Cobot Magic
V2.0 [87], and URSe [88], as shown in Figure 1. Unlike
the Open X-Embodiment dataset [77], which was compiled
from various laboratories with differing data collection
standards and diverse combinations of robotic platforms,
RoboMIND is gathered within the same standardized setting,
adhering to a standardized data collection protocol to ensure
consistency and reliability. By maintaining uniform data
collection standards, all data points are captured under similar
conditions, reducing variability and noise, which is crucial for
training models that can generalize well across different tasks
and environments. The standardized procedures also enhance
the reliability of the dataset, making it easier to validate and
reproduce experimental results, thereby building trust in the
trained models and ensuring their consistent performance in
real-world applications.

Moreover, RoboMIND covers a wide range of robot envi-
ronments and spans 479 diverse tasks involving 96 various
object classes. Additionally, we provide a dataset from our
real-world tasks simulated in the Nvidia Isaac Sim [76]. Robo-
MIND incorporates data from various robot types, including
26,856 motion trajectories from Franka Emika Panda single-
arm robots, 15,187 from Tien Kung humanoid robots, 10,269
from AgileX Cobot Magic V2.0 dual-arm robots, 25,170 from
URSe single-arm robots, and 30,035 from simulation. All these



TABLE I: Comparison to existing real-world datasets for robot manipulation. All data is drawn from the original paper or
from the DROID paper [50]. We divide robot types into three categories: single-arm, dual-arm, and humanoid. We report the

number of unique multi-view trajectories and highlight the advantages of RoboMIND in

fnon-robot, tool-based data

collections. ¥not a dataset in itself, but an aggregation of existing datasets.

Dataset Trajectory Task  Skill Arm Dexterons Hand  Detailed Annotation Robot Type Public Robot  Failure Data  Digital Twin  Collection

Pinto and Gupta [83] 50k n/a 1 Dual X X 1 4 4 X Scripted

Home-LCA [38] 28k n/a 1 Single X X 1 X X X Scripted

BrainRobotData [54] 800k n/a 1 Single X X 1 X 4 X Scripted

Roboturk [70] 2.1k 3 2 Single X X 1 X 4 X Human Teleoperation
MIME [93] 8.2k 20 20 Single+Dual X X 1 X X X Human Teleoperation
Sketchy [10] 74.4k 5 n/a Single X 4 1 4 4 X 12% Human / 78% Scripted
RoboNet [22] 162k n/a n/a Single X X 1 4 X X Scripted

BridgeData [26] 72k 71 4 Single X X 1 4 X X Human Teleoperation
MT-Opt [47] 800k 12 1 Single X X 1 4 X X Scripted

RT-1 [9] 130k 700 8 Single X X 1 X X X Human Teleoperation

BC-Z [45] 26k 100 3 Single X X 1 X X X Human Teleoperation
BridgeData V2 [99] 60.1k n/a 13 Single X X 1 4 X X 85% Human / 15% Scripted
RoboSet [8] 98.5k 38 6 Single X X 1 4 X X 30% Human / 70% Scripted
RH20T [29] 13k 140 33 Single X X 1 4 X X Human Teleoperation
DROID [50] 76k nfa 86 Single X X 1 4 X X Human Teleoperation
BRMData [115] 0.5k 10 7 Dual X X 1 4 X X Human Teleoperation
Dobb-E [92]* 5.6k 109 6 Single X X 1 ' X X Human Tool-based

Open X-Embodiment [77]% 1.4M 160k 217  Single+Dual X X 2 4 X X Dataset Aggregation
RoboMIND 107k 479 38 4 Human Teleoperation

trajectories are collected through a teleoperation system that
captures natural human motion patterns and maps them onto
robots to drive the same motion trajectories. These trajectories
encompass RGB-D data from distinct viewpoints, detailed
proprioceptive state information of the robot body, specific
information regarding the robot’s end effector, and a linguistic
description of the task at hand. Containing such comprehensive
and detailed information, these data are valuable for training
robotic models to perform complex manipulation tasks.

At the same time, we not only publish the 107k successful
trajectories but also document the 5k trajectories of real-
world failure cases. The robot model can explore the causes
of failures by learning from these failure case trajectories,
thereby improving its performance through such learning
experiences. This technique is representative of Reinforcement
Learning from Human Feedback (RLHF) [18, 81], where
human oversight and feedback direct the learning process
of models, leading the models to produce more desirable
and accurate outcomes. In addition, we annotate a total of
10k robot trajectories in RoboMIND with frame-level fine-
grained language descriptions. These annotated trajectories
encompass a wide range of robot tasks. To ensure accu-
racy and reliability, each annotation undergoes verification
and correction by multiple reviewers. We believe that these
additional failure cases and fine-grained linguistic annotations
will further advance research in robot learning, particularly in
areas such as failure recovery [66], task planning [60], visual
question answering [25], among others.

Beyond establishing such a large-scale and diverse dataset,
we conduct extensive experiments to not only validate the
dataset’s effectiveness but also evaluate various algorithms’
performance, providing a comprehensive benchmark analysis.
Specifically, we evaluate the task success rates using single-
task imitation learning methods, including ACT [116], Dif-
fusion Policy [17], and BAKU [39]. Additionally, we assess
the generalization capabilities and task success rates of Vision-
Language-Action (VLA) large models such as OpenVLA [77],
RDT-1B [65], and CrossFormer [24]. The experimental results

demonstrate that RoboMIND can be effectively utilized by
various single-task imitation learning algorithms and suc-
cessfully adapted to VLA large models. The high-quality
information provided by our dataset enables successful task
execution across different approaches in real-world scenarios.
Furthermore, pre-training the entire VLA models using the
full RoboMIND dataset results in significant improvements
in task performance across multiple robot types. To sim-
plify the use of RoboMIND, we provide the code scripts
that adapt RoboMIND files with the open-source LeRobot
framework [11] at https://github.com/x-humanoid-robomind/x-
humanoid-training-toolchain/.

II. RELATED WORK

Robotic Manipulation. Traditional manipulation policies
typically rely on state-based reinforcement learning [3, 46,
111]. In contrast, recent works [73, 27, 28] incorporate visual
observations as input to predict action poses. Imitation learning
policies, in particular, enable robots to acquire stable manipu-
lation skills by imitating an expert through demonstration [23,
104, 112]. Driven by advancements in diffusion-based genera-
tive models [41, 95, 89], diffusion policy [17] and subsequent
works [82, 86, 105] focus on transforming random Gaussian
noise into coherent action sequences, with methods such as
DP3 [113] and 3D Diffuser Actor [49] further enhancing this
process in 3D space. On the other hand, some Multimodal
Large Language Models (MLLMs) [2, 25, 43] enable robots to
comprehend natural language and visual scenes, automatically
generating task plans. Meanwhile, Vision-Language-Action
(VLA) models [117, 58, 57, 64, 51] empower MLLMs to
predict low-level SF(3) poses, demonstrating interpretability
and generalization in diverse scenarios. Given the critical role
of 3D spatial information in complex manipulation tasks,
several works [116, 35, 94, 33] explore the encoding of point
cloud data or multi-view images for 3D imitation learning.
However, most existing methods are trained on simulation
datasets or self-collected real-world datasets, and the robotics
community still lacks a unified large-scale dataset.



Robotic Learning Datasets. Interacting with spatial con-
figurations in real-world environments is vital for robots.
However, collecting data with a real robotic arm often incurs
substantial costs [77, 50]. General-purpose simulators [19,
52, 67, 76] replicate the physical world and provide virtual
environments for training policy models, significantly reducing
the costs and time associated with data collection. To meet
the training demands of complex and long-horizon tasks, sim-
ulators based on real-world environments are developed [53,
13, 109, 90], featuring photorealistic 3D assets and scenes
built with game engines. However, the sim-to-real gap signifi-
cantly impacts the manipulation accuracy of imitation learning
policies. As a result, some research shifts towards directly
collecting real-world data, including datasets gathered through
automated scripts or expert agents [83, 38, 54, 10, 22, 47], as
well as those obtained via human teleoperation [70, 93, 26, 9,
45, 99, 8, 29]. As shown in Table I, we compare RoboMIND
with representative publicly available real-world datasets for
robot manipulation. RoboSet [8] and BridgeData V2 [99]
include over 50k trajectories, but are limited to 6 and 13 skill
types, respectively. In contrast, RH20T [29] covers 33 tasks,
while its data scale is relatively small compared to the others.
Recently, Open X-Embodiment [77] has made a large effort
to unify existing robot datasets into a standardized format,
incorporating data from diverse robots collected through col-
laboration among 21 institutions. Following this, ARIO [102]
further integrates real-world and simulated data into a standard
format, aiming to bridge the gaps in existing data resources.
DROID [50] collects 76k demonstration trajectories via human
teleoperation. Although previous large-scale datasets offer di-
verse scenarios, most focus on a single embodiment type—the
two-finger gripper—and lack dexterous hands, limiting task
variety. In contrast, our proposed RoboMIND features four
distinct embodiments, including both grippers and dexterous
hands, and expands the number of task types to 479 with
long-horizon dual-arm tasks for complex skill training. Most
importantly, RoboMIND is collected in a standardized setting,
ensuring consistency and minimizing variability.

Large-scale Policy Learning. Learning robotic policies
from large and diverse datasets has become a major re-
search focus in the field of robotics. One series of works
leverages egocentric human videos [36, 20, 21, 37] to as-
sist in robot action learning. Leveraging large-scale human
videos, previous works investigate learning robotic represen-
tations [75, 5], manipulation priors [69, 48], and dexterous
hand control [68, 107]. Another prominent approach, VLA
models, leverages multimodal instruction datasets [71, 62, 42]
and robot data [9, 72, 91, 103] for co-training or pretraining,
enhancing the model’s reasoning and generalization abilities.
Specifically, RT-2 [117] innovatively incorporates large-scale
internet data and low-level action data for co-finetuning;
RoboFlamingo [58] directly loads the pretrained parameters
from OpenFlamingo [4] for visual instruction tuning; Robo-
Mamba [64] utilizes high-level common sense and robotics-
related reasoning data for co-training. Finally, a series of
works [65, 51, 56] leverage large assembler datasets, such

as Open X-Embodiment and ARIO, for pre-training. The
large-scale pre-training significantly enhances the fine-tuning
efficiency and generalization capability of policy models. Our
proposed real-world dataset and digital twin simulator provide
a large-scale pretraining dataset and a high-quality fine-tuning
dataset for policy learning in real-world applications, whose
efficacy is demonstrated via abundant experiments.

III. DATASET COLLECTION AND PROCESSING

In this work, we primarily introduce how the RoboMIND
dataset is collected on the robots and detail the process
of cleaning the RoboMIND dataset. Our dataset is col-
lected from four different robotic embodiments (Franka Emika
Panda [34], Tien Kung [12], AgileX Cobot Magic V2.0 [87],
and URSe [88]), totaling 107k trajectories on 479 tasks, 96
different object classes, and 38 operational skills. To support
the development of such a large-scale dataset, we develop
an intelligent data platform designed to collect, filter, and
process the dataset efficiently. This platform uses a cloud-
native architecture and distributed computing to handle large-
scale data processing, offering five main functionalities and
their corresponding modules:

1) Data Collection: Collect data from four types of robots
using teleoperation equipments and then automatically
transmit the collected data to the data platform;

2) Data Storage: Package and store the collected dataset
in a standardized HS5 format, including both visual data
of the robot’s executed actions and robotic proprioceptive
data of its movements;

3) Data Preprocessing: Filter the dataset based on prede-
fined standards, evaluating task execution accuracy, mo-
tion trajectory smoothness, and the presence of occlusion
or motion blur in the visual data;

4) Data Classification: Categorize the collected dataset by
robot type and specific tasks performed;

5) Data Annotation: Perform detailed linguistic annotations
on the collected dataset.

A. Data Collection and Storage

Teleoperation is widely applied in the data collection pro-
cesses for various types of robots [85, 114, 108, 40, 63,
106, 84, 16, 100]. Different types of robots also have spe-
cific teleoperation devices for data collection. For example,
researchers typically use VR headsets and motion capture
suits to collect humanoid robot motion data. They capture
the state of human movements and map this motion onto the
humanoid robot platform, enabling the robot to replicate these
movements while simultaneously collecting a comprehensive
dataset [16, 100]. RoboMIND contains teleoperation data in
real-world and simulation environments from various types of
robots, such as single-arm robots (Franka Emika Panda [34],
URSe [88]), dual-arm robots (AgileX Cobot Magic V2.0 [87]),
and humanoid robots (X-Humanoid Tien Kung [12]).

For the single-arm robots, following the Gello [106], we
construct the 3D-printed components and the servo motors that
match the Degrees of Freedom (DoF) of the robotic arm (see



Fig. 2: Visualization of teleoperation methods for different robots. (a) Using 3D-printed components to control the single-arm
robots. (b) Regulating the main robotic arm from the auxiliary arm for dual-arm operation. (c¢) Adopting a motion capture suit

to map onto the humanoid robot for operation.

Figure 2(a)). The motion of these 3D-printed components is
mapped to the robotic arm’s movements, thereby driving the
arm. Additionally, we use depth cameras to record the RGB-D
information of the robotic arm movement and simultaneously
receive the robot state of the robotic arm.

For the dual-arm robots, we directly utilize a bilateral tele-
operation device similar to the Mobile ALOHA system [31]
on the robot to collect the dataset. Figure 2(b) shows that we
employ a teleoperation structure using an auxiliary robotic arm
to control the main robotic arm.

For the humanoid robots, Figure 3
illustrates the structural design of the Tien
Kung humanoid robot utilized in Robo-
MIND. In terms of configuration, it is
highly modeled after humans. The robotic
arm is flexible and has a strong load-
carrying capacity, making it suitable for
performing operational tasks to collect
datasets. The dexterous hand is integrated
with multiple sensors for precise opera-
tion. With 42 degrees of freedom through-
out the whole body, it can perform a wide
variety of movements. In terms of visual
perception, depth cameras are installed on
its head, chest, waist, and back. The head
is equipped with the Orbbec Gemini 335 [79], and the other
parts are equipped with the Orbbec Gemini 335L [80]. These
cameras use active and passive stereo vision technology to pro-
vide multiple data streams, accurately record visual perception
information. Besides Gello-style teleoperation devices, we use
motion capture suits Xsens [74] to collect motion data from
various joints of the human body and then map the human
joint movements to the corresponding joint movements of a
humanoid robot. This allows the humanoid robot to perform
the same actions as the human body, enabling remote operation
for data collection. Using motion capture suits provides a more
accurate and direct method for capturing human movement,
compared to relying on VR headsets [16] and cameras [30]
for human pose recognition. Figure 2(c) visualizes how we
use a motion capture suit to collect data for humanoid robot
operation.

Fig. 3: The Tien
Kung humanoid

robot
tion.

configura-

TABLE II: Examples of the task definitions for Franka,
AgileX, and Tien Kung robots.

Task Name Task Description

The Franka single-arm robot grasps a
piece of bread and places it on a plate.

The AgileX robot packs the bowls.

FR-PlaceBreadPlate

AX-PackBowl

HR-OpenDrawer
LowerCabinet

The Tien Kung robot opens the bottom
drawer of the cabinet.

To optimize storage efficiency and facilitate dataset organi-
zation, we consolidate each collected trajectory, encompassing
multi-view RGB-D data, robot proprioceptive state informa-
tion, specific end-effector state information, and teleoperation
body state information, into a single HS format file.

B. Data Preprocessing and Classification

All data is collected from operators controlling the teleoper-
ation system in real-time, and errors can arise due to physical
limitations such as fatigue, habits, distractions, or external
disruptions. To mitigate these issues, we employ a rotation
rest system for operators and strive to provide a comfortable
working environment to help them stay focused. Additionally,
we perform comprehensive quality checks on collected data
to ensure its reliability. We define quality assurance criteria,
such as avoiding unnecessary contacts and repeated grabbing
(see Figure 4). The quality assurance consists of three steps:

« Initial Inspection: Quickly review videos to ensure there
is no obvious technical issue, such as frame loss or
freezing.

¢ Detailed Inspection: Review the video frame-by-frame
or in slow motion to carefully check if the conditions
described in Figure 4 are present.

« Data Filtering and Issue Logging: Document specific
timestamps and descriptions for non-compliant data and
categorize it for further processing or improvement.

For data classification, we adopt a task-centric data collec-
tion protocol, where each task serves as the fundamental unit
of the dataset. We classify the collected datasets according
to the task names, and each task name is comprehensively



Touch Excess
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Mechanical Arm Shaking

Collision before Grabbing

Fig. 4: We define 8 quality assurance criteria in the data collection process. Touch Excess: Unnecessary contact with objects by
the robotic arm; Movement not Smooth: Noticeable jerking or interruptions in robotic arm movements; Secondary Grabbing:
Repeated grasping attempts after failures in robotic arm operations; Mechanical Arm Shaking: Abnormal vibrations in the
robotic arm; Collision before Grabbing: Collision of the gripper with surrounding objects before grasping; Image Distortion:
Data collection quality issues; Failed Placement: Incorrect placement of objects; Gripper out of the Camera: Frames in
which the gripper exceeds video frame boundaries. During the data inspection process, all failures were annotated from videos.
We show 8 trajectory examples that failed to pass the quality assurance due to different reasons. Each example includes three
images that depict the dynamic process of the trajectory. We use red boxes and markers to highlight the reasons for failure.

Language description of the entire task process

Stéi): opﬁ the drawer

Step4: move towards the drawer with apple Step3: place the apple i the drawer

f /

Ste()‘: close the drawer

Fig. 5: Example of language description annotation. The video of the robotic arm placing the apple in the drawer is divided
into six segments using Gemini. The language descriptions provided for each segment were initially generated by Gemini and

subsequently refined through manual revision.

defined by four key components: (1) the specific robotic em-
bodiment utilized; (2) the manipulation skill being executed;
(3) the objects involved in the task; and (4) detailed scene
descriptions, including object positions, spatial relationships,
and environmental constraints or interfering elements. Table 11
shows examples of the task definition.

This structured task-based framework ensures systematic
data collection and enables fine-grained analysis of robotic
manipulation capabilities across different scenarios and tasks.

C. Data Annotation

While the visual and robot proprioceptive information can
be extracted directly from the collected videos and trajectories,
we need to provide better semantic information from the data

to aid model training. For each collection task, its detailed and
accurate linguistic descriptions are provided. These linguistic
annotations can be utilized for training currently popular VLA
models. In addition, RoboMIND collection tasks encompass
numerous long horizon tasks, where a uniform linguistic
description may be insufficient to capture the full complexity
and nuances of the entire task. Thus, we offer detailed fine-
grained linguistic annotations for each movement occurring
within a trajectory, as illustrated in Figure 5. We annotate 10k
successful robot motion trajectories, which are contained in
long horizon manipulation tasks. The annotation process in-
volves two primary steps. First, we use Gemini [96] to segment
each video based on the sequence of operations and generate
detailed text descriptions for each segment. These descriptions



accurately capture the operational steps and relevant context.
Second, we manually refine Gemini’s annotations regarding
the following key aspects:

o Identifying key manipulated objects;

« Detecting and describing all critical actions in the video;

o Ensuring accurate description of operational details;

o Applying reasonable granularity in temporal segmenta-

tion;

« Maintaining consistent temporal logic.

This thorough process enhances the precision and reliability
of the language annotations for the collected trajectories. We
show the annotation of a video of a Franka Emika Panda
arm picking the apple and placing it in the drawer using
the above standard procedure in Figure 5. The results show
that our annotation scheme can accurately segment the key
actions in the video and provide precise language descriptions
of these key actions. These detailed descriptions can be used
for training models like RT-H [7].

IV. DATASET ANALYSIS

Based on a standardized procedure, we collected a large-
scale, multi-embodiment dataset named RoboMIND. This
dataset consists of 107k high-quality trajectories across 4
robotic embodiments, 479 tasks, 96 object classes, and 38
skills. Robotic data diversity plays a crucial role in model
generalization, encompassing various dimensions across hard-
ware and environmental settings. In this section, we perform
a thorough quantitative analysis of key diversity dimensions,
including robot variety, task length variation, task diversity,
and object diversity. We analyze RoboMIND across these di-
mensions, showing that it offers comprehensive training data to
learn generalizable manipulation policies. Furthermore, unlike
previous works [77, 50], RoboMIND offers unique data types,
such as language descriptions and failure case demonstrations,
which enhance the policy model’s ability to perform fine-
grained task planning and reflect on failure actions.

A. Quantitative Analysis

Heterogeneous Embodiments. A manipulation dataset
with different robotic embodiment types improves generaliza-
tion to various actions and joint DoFs in downstream tasks.
We select four mainstream hardware platforms, each paired
with different actuators: the single-arm robots, Franka Emika
Panda and URSe with grippers; the dual-arm robot AgileX
Cobot Magic V2.0 with grippers; and the humanoid robot
Tien Kung equipped with dexterous hands. Figure 1(a) shows
the distribution of trajectories across different embodiments in
our dataset. Franka accounts for 49.2% of the total trajectories,
with over 26,070 simulation-based trajectories from our digital
twin environment and 26,866 real-world trajectories collected
via human teleoperation. The remaining three embodiments
consist solely of real-world demonstrations. Specifically, the
dual-arm data enhances the dataset’s diversity and complexity,
supporting the training of coordination skills and more long-
horizon tasks. Additionally, the humanoid robot with dexterous
hands, which constitutes 17.8% of the trajectories, can perform

0.7 Franka
Tien Kung
0.6 AgileX
» 0.5 UR
1%}
=
Y04
o
Lo3
0.2
0.1
0.0 1 2 3 4 5

Skills per Trajectory

(a) Skill number distribution histogram for each embodiment. We
observe that over 70% of the Franka tasks involve only a single
skill, while over 75% of the Tien Kung and AgileX tasks involve
two or more skills, indicating that these dual-arm tasks are mostly
long-horizon tasks.

Pick ® Place Hand-over

(b) The AX-PutCarrot task with the AgileX robot is visual-
ized, involving a sequence of three different skills: pick, hand
over, and place.

Fig. 6: Analysis and visualization of skill distribution across
different robotic embodiments.

a series of complex, human-like manipulation skills. The het-
erogeneous set of embodiment data collected under a unified
standard can provide pretraining data for policy models with
different action spaces [65, 51], as well as experimental data
for the cross-embodiment transfer research [110, 15].

Tasks with Various Horizon Lengths. In addition to
the diversity across robot, the varied task horizons in the
dataset directly impact the temporal generalization capabilities
of policies in real-world scenarios. We calculate the average
task horizon (the number of time steps in one trajectory) for
each embodiment, as shown in Figure 1(b). Tasks collected
by Franka and UR have shorter trajectories (fewer than 200
time steps), making them ideal for training primitive skills.
In contrast, tasks from Tien Kung and AgileX have longer
trajectories (over 500 time steps), better suited for long-
horizon task training and skill composition. Since each task
involves a varying number of skills, we computed the skill
number distribution for each embodiment in Figure 6(a),
offering a clearer view of task horizons. AgileX tasks typically
involve two or more combined skills, while Tien Kung tasks
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Fig. 7: Distribution of objects in RoboMIND, categorized as domestic, industrial, kitchen, office, and retail. The y-axis uses a
logarithmic scale for counts above 500, with exact numbers shown for values exceeding it.

vary in length, with some incorporating up to five skills per
task. To provide a clearer explanation of long-horizon task
construction, we show an AgileX task involving three skills
and visualize its dual-arm trajectory in Figure 6(b). First, the
left and right arms perform the pick skill on the carrot and
blue plate, respectively. Next, the left arm hands the carrot
to the right arm’s plate. Finally, the right arm places the blue
plate onto the black plate. The entire process involves complex
coordination and long-horizon manipulation.

Task Classification. Unlike the previous dataset categoriz-
ing tasks based on de-duplicated verbs [50], we categorize
tasks by summarizing the manipulation skills from task lan-
guage descriptions, considering various axes such as actions,
objects, and trajectory horizons. Each trajectory may belong
to multiple task types, with only the primary type being
counted for each trajectory. As shown in Figure 1(c), tasks
are categorized into six types:

1) Articulated Manipulations (Artic. M.): Opening, clos-

ing, and turning on or off objects with articulated joints;

2) Coordination Manipulations (Coord. M.): Dual-arm
coordination between the robot’s arms;

3) Basic Manipulations (Basic M.): Fundamental skills like
grasping, holding, lifting, and placing;

4) Multiple Object Interactions (Obj. Int.): Interaction
with multiple objects, e.g., pushing one cube across
another;

5) Precision Manipulations (Precision M.): Complex ma-
nipulation and control skills, such as pouring liquid into
a cup or inserting a battery;

6) Scene Understanding (Scene U.): Actions with major
challenges related to the semantic understanding of the
scene, like closing the upper drawer from the right side
or placing four large blocks of different colors into
corresponding colored boxes.

By breaking down the language descriptions into fine-
grained tasks based on verb-noun combinations, RoboMIND
includes 479 distinct tasks. In summary, RoboMIND en-
compasses a range of skills (i.e., verbs from descriptions)
beyond basic manipulations, significantly enhancing the policy

model’s manipulation robustness in handling complex and
long-horizon tasks.

Diverse Objects. A generalized policy needs to learn not
only a variety of task skills but also how to execute each skill
consistently when interacting with different objects. Robo-
MIND includes over 96 object categories from five usage
scenarios, as shown in Figure 1(d), covering most daily life
settings: domestic, industrial, kitchen, office, and retail. To
provide a detailed overview, we summarize trajectories for all
objects categorized by usage scenario in Figure 7. In each
scene, we design multiple tasks involving a variety of objects.
Specifically, in the kitchen, the dataset includes common food
items such as strawberries, eggs, bananas, and pears, along
with articulated objects like oven doors and bread machines;
Domestic scenarios feature both rigid objects like tennis balls
and deformable objects like toys; Office and industrial sce-
narios include small objects that require precise control, such
as batteries and gears. This wide variety of objects increases
the dataset’s complexity and supports better generalization to
unseen objects in downstream tasks.

B. Qualitative Analysis

Standardized Settings. RoboMIND features standardized
settings to form a large-scale real-world manipulation dataset.
As shown in Figure §, we compare our dataset with Open X-
Embodiment, another large-scale robotic learning dataset. Al-
though Open X-Embodiment contains a vast amount of data,
the significantly different settings make it difficult to learn
efficient manipulation policies across the entire dataset. In
contrast, RoboMIND is collected through a carefully de-
signed standardized procedure, making it ready-to-use for
other roboticists. Meanwhile, its heterogeneous embodiments,
diverse tasks, and various skills are suitable for training
generalizable policies, whether for primitive skills or long-
horizon manipulations.

Failure Case Demonstrations. We also release 5k tra-
jectories of the robot task failure cases. The failure cases
documented include scenarios where different types of humane
operators failed to complete their assigned tasks, as well as in-
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Fig. 8: Comparison between Open X-Embodiment and Robo-
MIND. RoboMIND features heterogeneous embodiments with
diverse tasks and skills while providing ease of use due to
standardized settings.
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Fig. 9: Visualization of failed data collection cases. We present
two examples of failure from Franka and AgileX. In the
FR-PlacePlateInPlateRack task (the second row), the
Franka arm fails to align with the slot, causing the plate to slip
due to operator interference. In the AX-PutCarrot task (the
fourth row), the AgileX gripper unexpectedly opens, dropping
the carrot. These failure cases were filtered out during quality
inspection to maintain the dataset quality.

stances where robots encountered failures during the execution
of operational tasks. We present the visualization examples
from the Franka and AgileX robots of these failure cases
in Figure 9. For the FR-PlacePlateInPlateRack task
performed by Franka, a successful execution shows the robotic
arm accurately placing a plate into the plate rack. In the failure
case, the arm fails to locate the correct slot position, causing
the plate to slip out of the rack, likely due to visual occlusion
or interference from the operator. For the AX-PutCarrot
task performed by AgileX, successful execution demonstrates
the robot’s collaborative manipulation to place a carrot onto
the plate. In the failure case, the robot’s gripper unexpectedly
opens, causing the carrot to drop prematurely and resulting in

Insplre Robots B
Dextérous Hands
RH56DFX s

Fig. 10: Robotic real-world setup. For the Franka robot, we
use cameras positioned at the top, left, and right viewpoints to
record the visual information of the task trajectories. For the
Tien Kung and AgileX robots, we use their built-in cameras
to record visual information. For the UR robot, we use an
external top camera.

task failure-presumably due to accidental gripper activation by
the operator. During the data quality inspection process, these
failed trajectories are identified, categorized, and documented,
further enhancing the overall quality of the dataset.

The failure data is intended to advance research in areas like
failure detection and recovery, data augmentation, and reward
generation for reinforcement learning. For instance, training
a binary classifier on success/failure data can aid failure
detection, SSDF [104] filters high-quality data segments from
failure data, and the RLHF approach [6] uses failure data as
negative examples to learn accurate patterns. Our failure data
can be used seamlessly in these works.

V. ANALYZING ROBOT LEARNING WITH ROBOMIND

Following the detailed description of RoboMIND’s collec-
tion process and an in-depth analysis of its characteristics, we
conducted a series of comprehensive experiments employing
various robot manipulation learning methods. RoboMIND
serves as a benchmark to evaluate the performance and
limitations of these methods. In the subsequent experiments,
we assessed the performance of single-task imitation learning
models (ACT [116], Diffusion Policy [17], and BAKU [39]),
as well as VLA large models (RDT-1B [65], OpenVLA [51],
and CrossFormer [24]), which can perform multiple tasks
with RoboMIND. Subsequently, we validated the ability of
the VLA models to generalize across various scenarios and
manipulate different types of objects. Additionally, we ap-
plied RoboMIND to pre-train the aforementioned VLA large
models, demonstrating that RoboMIND also facilitates cross-
embodiment task execution for the VLA large models. Finally,
we provided some failure case analyses and validated the ef-
fectiveness of our digital twin simulation data via co-training.

A. Experiment Setup

Real-world Robotic Setup. Our real-world robotic setup
is shown in Figure 10. The robotic platforms used in this
study are equipped as follows: (1) Franka Emika Panda [34]
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Fig. 11: Diverse task examples across 4 robotic embodiments in RoboMIND. The dataset features tasks performed by four
distinct robotic embodiments: Franka (the first row), Tien Kung (the second row), AgileX (the third row), and UR (the fourth
row). For each robotic embodiment, we have selected 5 representative task scenarios.

features three Intel RealSense D435i cameras [44] (left, top,
and right) with resolutions of 480 x 640, 720 x 1280, and
480 x 640 pixels, respectively, and a Robotiq gripper. (2) Tien
Kung [12] utilizes two Inspire-Robots RH56DFX dexterous
hands and Orbbec Gemini 335 cameras [79] on the head
and chest, both at 480 x 640 resolution. (3) AgileX Cobot
Magic V2.0 [87] is fitted with two hand-eye Orbbec Astra
cameras [78] and one front-facing camera, all at 480 x 640
resolution. (4) URS5e [88] is paired with a top-mounted Intel
RealSense D4351 camera at 480 x 640 resolution and employs
a Robotiq gripper.

Representative Tasks. RoboMIND encompasses a diverse
collection of 479 distinct manipulation tasks collected across
four different robot embodiments. Representative examples of
these tasks are illustrated in Figure 11. Below, we provide a
representative task for each robot to elucidate the nomenclature
and functionality associated with these operations.

e FR-SideCloseDrawer. This task requires the Franka
robotic arm to locate the outer edge of a cabinet door
accurately. The robot needs to make contact with the door
edge and push it along a curved path. The goal is to
completely close the cabinet door.

e HR-UprightCup. In this task, the Tien Kung humanoid
robot needs to grasp a cup that is lying on its side. The
robot must then execute a 90-degree rotation movement
to bring the cup to an upright position. Finally, it needs
to place the upright cup on the table surface gently.

e AX-TakeCorn. For this task, the AgileX robot must first

use its left hand to locate and open the pot lid. The robot
then extends its right hand into the pot to grip the corn.
Finally, it needs to carefully lift the corn out of the pot
and place it onto a plate.

e UR-CloseTopWhiteDrawer. This task is performed
by the URS5e robot, wherein the robot is required to close
the uppermost drawer of a set of stacked white drawers.

B. Single-task Imitation Learning Models

Experimental Task Design. We carried out our single-task
experiments on a large set of single tasks. We used a total of
45 tasks which were grouped based on the robots performing
them. Franka, Tien Kung, AgileX, and URS5e carried out 15,
10, 15, and 5 tasks respectively. We carefully chose these tasks
to include a wide variety of actions collected in RoboMIND.
These actions ranged from simpler tasks like picking up
different objects and placing them in specified spots, to more
complex tasks like pulling and pushing articulated objects.
Additional tasks involved dual-arm coordination and precise
operations, posing further challenges to the learning capabili-
ties of the models.

Training and Evaluation Setup. In terms of the imi-
tation learning algorithms, we used three well-known and
commonly used methods: ACT [116], Diffusion Policy [17],
and BAKU [39]. For ACT and BAKU, we followed the
default model settings as recommended in their original pa-
pers. For Diffusion Policy, we followed the implementation in
DROID [50]. Using the three algorithms, we trained the single-
task model from scratch for each dataset. After training, we



1.0 1 Ef*** E**
0087 © “ e o o °
2 * £ * <
T 0.6 * % % — *
] * & & Cs *
foel kA w * e °*
=
wn
0.2 * o)
* % %
0.0 & ) ® @ % ¢ ) * % ® o0 ® S0 ® OO0 e
S @ £ D@ OS2 DY P - Y S dS ey @ ES - U @ @ D OO S Ao oD
SELEFSESEITELEF SESTEESLLSE SEEEE LS OESELELSE L8RS
\“‘bmgo@o@ &o&&&kﬁ 00,,}8 foé& &°'§° f ,g(';’ &'}’o@'b\,«g’ & 604@“ ©\° b§ 'b§ &&ngo‘éz oq"z&o‘sé? d"b &0‘8 dS d"b q‘}oqo&@‘"w &90 00 &&g’? '5.’? §
CELELEFEEILLFLIL b T LT AT L LLFLLLF S L ESES S
PP ISP IILEY LT ESIRY 53',-\0\00" o'e',@q,;\'qo-ooqf(g/v
SE5 EFFEEE CSTHESF IS PEELETT SIS ESF L SEEES
SEFEELFRELFLFE & FIL RS L SL S &S & e K
SESTEELETETE T eST S o T 7 TSI
& ELE ¢ REOE L& ELEE EAE & &S
§ o 5 Q s
& & O &
& & o .
* ACT Diffusion Policy BAKU

Fig. 12: Success rates of ACT, Diffusion Policy, and BAKU on RoboMIND.
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Fig. 13: Visualization of the selected tasks on single-arm, dual-arm, and humanoid robots used in experiments of the vision-

language-action models.

directly deployed the models in real-world environments for
evaluation. We assessed the performance of each model using
its success rate in the tasks. Each model was tested ten times,
and the testers recorded the success or failure of each test and
the reasons if there were any failures. This thorough process
gave us valuable insights for further developments.

Experimental Results. Figure 12 presents the performance
of ACT [116], Diffusion Policy [17], and BAKU [39] across
45 tasks using four types of robots, evaluated in terms of the
success rate. In Figure 12, we found that ACT achieves an
average success rate of 55.3% across 15 tasks on AgileX,
outperforming Franka (30.7%), URSe (38.0%), and Tien Kung
(34.0%). Additionally, ACT also showed promising results on
several humanoid robot tasks, including a 60% success rate on
HR-CloseDrawerLowerCabinet. These results not only
illustrated that ACT shows robust performance in complex

dexterous hand manipulation tasks but also underscored the
high quality of data gathered in RoboMIND. Similarly, Dif-
fusion Policy also demonstrated its capacity to learn complex
tasks, outperforming ACT in several tasks on Franka and Tien
Kung. Therefore, we believe that the single-arm, dual-arm,
and dexterous hand datasets in RoboMIND can serve as high-
quality training sets to improve the performance of single-
task imitation learning, thereby advancing the development
of the entire imitation learning field. On the other hand,
BAKU exhibits lower success rates across most tasks. This
discrepancy could be attributed to the hyper-parameter settings
from the original BAKU paper, which is primarily optimized
for simulation environments rather than real-world robotic
platforms tested in our experiments. The significant perfor-
mance gap underscores the challenges in directly transferring
models from simulated settings to physical robots.



C. Vision-Language-Action Large Models

Experimental Task Design. This section seeks to examine
the performance of VLA large-parameter robot model when
applied to RoboMIND. We picked fifteen tasks performed
by different types of robots from the single-task imitation
learning experiments. Figure 13 illustrates the tasks we chose
for Franka single-arm robot, the Tien Kung humanoid robot,
and the AgileX dual-arm robot. For the Franka single-
arm robot, these selected tasks encompass common robotic
arm operations, such as picking and placing, pushing and
pulling, along with more nuanced tasks that require precise
manipulation, including picking objects of varying sizes and
accurately positioning the robotic arm to open a trash bin lid.
For the Tien Kung humanoid robot, the tasks are divided into
two main categories. The first category consists of tasks similar
to those performed by the single-arm Franka robot, which are
intended to evaluate the model’s performance across different
robot types. The second category involves using the humanoid
robot’s dexterous hands to perform precise operations, such
as flipping a toaster switch to toast bread, to assess the
model’s accuracy in positioning and manipulation. For the
AgileX dual-arm robot, we chose dual-arm tasks that involve
coordinated actions, such as the left arm retrieving a plate from
a rack and the right arm placing an apple on the plate. This
selection emphasizes the unique capabilities and coordination
required in dual-arm operations.

Training and Evaluation Setup. We evaluated the per-
formance of three models (OpenVLA [S51], RDT-1B [65],
and CrossFormer [24]) fine-tuned by the demonstrations from
RoboMIND in completing various real-world tasks. Given
that the VLA large model exhibits excellent generalization
performance, we employed an aggregated dataset sourced from
multitask demonstrations for fine-tuning the VLA models.
Specifically, we took the official pre-trained VLA models and
fine-tuned them on the multitask datasets for each type of
robot, and evaluated their performance on each individual
task to determine the extent of generalization achieved, by
conducting ten trials for each task. We tested ten trials for
each experiment. For OpenVLA [51], which involves fine-
tuning the Llama 2 model [98] using a large robotic dataset
and adapting it to be a 7-DoF VLA model, we only tested it on
the Franka single-arm robot, since the output of OpenVLA is
the condition of one end effector and only supports single-arm
manipulations.

Experimental Results. Table III presents the success rates
for various robot tasks performed using the three different
VLA models. The experimental results show that the VLA
large models fine-tuned on expert demonstrations from Robo-
MIND performed well across various different robot tasks. The
fine-tuned RDT-1B, compared to CrossFormer and OpenVLA,
demonstrated significantly enhanced performance in executing
tasks across a range of robot models. This improvement is
especially notable for dual-arm manipulation tasks, where
RDT-1B excelled. Although the performance of OpenVLA
being inferior to that of RDT-1B, it nonetheless achieved a

TABLE III: Success rates of the VLA models in the fine-tuning
settings using RoboMIND. Color boxes represent the first
best performance in all tables of this paper.

Single-arm Manipulation Task \ OpenVLA [51] RDT-1B [65] CrossFormer [24]
FR-PlaceBreadPlate 4/10 710 0/10
FR-PickStrawberryInBowl 0/10 4/10 0/10
FR-OpenTrashCan 3/10 3/10 0/10
FR-SideCloseDrawer 710 6/10 2/10
FR-SideOpenDrawer 0/10 2/10 4/10
Humanoid Manipulation Tasks \ OpenVLA [51] RDT-1B [65] CrossFormer [24]
HR-OpenDrawerLowerCabinet - 5/10 5/10
HR-CloseDrawerLowerCabinet - 5/10 3/10
HR-OpenTrashBin - 2/10 0/10
HR-CloseTrashBin - 3/10 3/10
HR-PressDownToaster - 3/10 710
Bimanual Manipulation Task \ OpenVLA [51] RDT-1B [65] CrossFormer [24]
AX-TakePotato - 6/10 0/10
AX-PutPepper - 9/10 0/10
AX-AppleYellowPlate - 10/10 0/10
AX-AppleBluePlate - 6/10 0/10
AX-PackBowl - 8/10 0/10

comparable task success rate for straightforward tasks like
FR-PlaceBreadPlate and FR-SlideCloseDrawer.
CrossFormer, after being fine-tuned with RoboMIND, demon-
strated performance improvements in tasks executed by single-
arm and humanoid robots, compared with no success in all
tasks without fine-tuning.

D. Leveraging RoboMIND to Enhance VLA Large Models

Training and Evaluation Setup. Currently, most VLA
large models are trained with datasets from robots with arms
and grippers and can only be applied to the same types of
robots. It is noting that RoboMIND contains valuable data
from diverse robots including the Tien Kung humanoid robots
with dexterous hands, and we applied this dataset in the pre-
training of the RDT-1B and CrossFormer models to enhance
their ability to handle real-world dexterous manipulation tasks.
After that, we fine-tuned the VLA large models using the
expert multitask datasets, which is a small subset (about 1%)
of RoboMIND. We conducted ten tests for each model on each
task, and we compared the results with those from the official
pre-trained and expert data fine-tined models.

Experimental Results. Table IV presents the experimen-
tal results of RDT-1B and CrossFormer that were first
trained on the entire RoboMIND dataset and then fine-
tuned on the expert multitask dataset, compared to those
fine-tuned directly on the expert multitask dataset. The re-
sults show that training different VLA models using the
full RoboMIND dataset led to significant improvements in
task success rate across a variety of robot tasks. Espe-
cially for dual-arm tasks on the CrossFormer, training with
the full RoboMIND dataset significantly enhanced its per-
formance. The training effect improved from being unable
to complete each dual-arm task to achieving nearly every
test success on AX-TakePotato, AX-PutPepper, and
AX-AppleBluePlate. For HR-PressDownToaster
from humanoid manipulation tasks, training CrossFormer us-
ing RoboMIND also achieved a 100% task success rate. This
improvement underscores the robustness and versatility of
RoboMIND in facilitating more effective and reliable robotic



TABLE IV: Success rates of the VLA models before and after training with RoboMIND. The notation ‘(origin)’ indicates
models fine-tuned directly on the expert multitask dataset without training on RoboMIND, while ‘(RoboMIND)’ denotes models
first trained on the entire RoboMIND dataset and subsequently fine-tuned on the expert multitask dataset.

Single-arm Manipulation Task | RDT-1B (origin)

RDT-1B (RoboMIND)

CrossFormer (origin)  CrossFormer (RoboMIND)

FR-PlaceBreadPlate 7710 9/10 0/10 10/10
FR-PickStrawberryInBowl 4/10 6/10 0/10 8/10
FR-OpenTrashCan 3/10 6/10 0/10 0/10
FR-SideCloseDrawer 6/10 8/10 2/10 8/10
FR-SideOpenDrawer 2/10 5/10 4/10 3/10
Humanoid Manipulation Tasks | RDT-1B (origin) RDT-1B (RoboMIND)  CrossFormer (origin)  CrossFormer (RoboMIND)
HR-OpenDrawerLowerCabinet 5/10 6/10 5/10 4/10
HR-CloseDrawerLowerCabinet 5/10 7710 3/10 710
HR-OpenTrashBin 2/10 4/10 0/10 4/10
HR-CloseTrashBin 3/10 4/10 3/10 3/10
HR-PressDownToaster 3/10 4/10 7/10 10/10
Bimanual Manipulation Task | RDT-1B (origin) RDT-1B (RoboMIND)  CrossFormer (origin)  CrossFormer (RoboMIND)
AX-TakePotato 6/10 8/10 0/10 10/10
AX-PutPepper 9/10 10/10 0/10 10/10
AX-AppleYellowPlate 10/10 10/10 0/10 5/10
AX-AppleBluePlate 6/10 9/10 0/10 9/10
AX-PackBowl 8/10 10/10 0/10 4/10

TABLE V: Success rates of RDT-1B pre-trained with and
without the humanoid data.

TABLE VI: Generalization results of VLA large models on
the FR-PlaceBreadPlate-related tasks.

Success Rate \ RDT-1B (w/o Humanoid) RDT-1B (w/ Humanoid)

FR-PlaceBreadPlate 9/10 9/10
FR-PickStrawberryInBowl 5/10 6/10 (1/10 1)
FR-OpenTrashCan 5/10 6/10 (1/10 1)
FR-SideCloseDrawer 8/10 8/10
FR-SideOpenDrawer 3/10 5/10 (2/10 1)

manipulations.

Ablation Studies on Humanoid Data. The standardized
data across diverse combinations of robotic platforms eases
investigations on cross-embodiment generalization and im-
provements. For example, it is worth exploring whether the
humanoid data is helpful for policy learning for other robots,
such as the single-arm Franka. We conducted an ablation
study by pre-training the RDT-1B model using an incomplete
RoboMIND dataset excluding the humanoids data (19k of
107k in RoboMIND) and fine-tuning the model on the expert
multitask datasets. Table V shows that the humanoid data
enhances the performance of RDT-1B on the unimanual tasks,
especially the difficult tasks. Overall, training with the full
RoboMIND dataset obtained a 13.3% relative improvement
(0.68 v.s. 0.6) of success rates against the incomplete dataset
without humanoid data.

E. Generalization of VLA Large Models

Evaluation Setup. We conducted tests to validate the
generalization of using RoboMIND to fine-tune the VLA
large models, assessing their ability to generalize across real
task scenarios with varying backgrounds and different objects
of manipulation. Specifically, we evaluated the generalization
performance on the FR-PlaceBreadPlate task of Open-
VLA [51], RDT-1B [65], and CrossFormer [24] funetuned
on the Franka multitask dataset in Section V-C. Both RD'T-
1B and CrossFormer are trained on the entire RoboMIND
dataset and subsequently fine-tuned using the Franka expert
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multitask dataset. OpenVLA, in contrast, is directly fine-
tuned using the Franka expert multitask dataset. As shown
in Figure 14, we executed the FR-PlaceBreadPlate task
on three tablecloths with different unseen background patterns
and replaced the grasped bread object with an apple, a banana,
and a corn. We tested ten trials for each experiment.

Experimental Results. As presented in Table VI, both
RDT-1B and CrossFormer exhibited good generalizations for
manipulating objects, especially for objects like bananas that
are similar in shape to the bread-like objects in the train-
ing data. However, when it comes to generalizing across
unseen backgrounds, RDT-1B, OpenVLA, and CrossFormer
performed relatively poorly in the FR-PlaceBreadPlate
task.

F. Failure Case Analysis on Real-world Experiments

During the testing phase, we recorded not only whether the
model’s task execution was successful but also the reasons
for any failures. We predefined nine failure categories: (1)
Inaccurate Positioning; (2) Cannot Close Gripper; (3) Cannot
Approach Object; (4) Early Gripper Release; (5) Object Drop;
(6) Cannot Release Gripper; (7) Cannot Return to Home Pose;
(8) Collision Recovery Failure; (9) Excessive Speed.

In Figure 15, we showed the distribution of failure reasons
for the ACT across 45 single tasks performed on the four
robotic embodiments, as described in Section . We presented



Fig. 14: Unseen objects and backgrounds used to evaluate the generalization ability of the VLA large models.
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Fig. 15: Top five failure reasons for each embodiment of the
ACT algorithm. The x-axis denotes the proportion for each
failure among all unsuccessful test cases. The y-axis denotes
different embodiments.

the top five most frequent failure reasons for each robotic
embodiment. Firstly, we observe that, for ACT, “Inaccurate
Positioning” is the most common failure reason across all
rollouts. For instance, in the humanoid robot tasks, failures
due to “Inaccurate Positioning” accounted for as much as
48%. This highlights the critical importance of accurately
positioning the robotic arm in 3D space to execute skills
successfully, representing the first step toward achieving task
success. It can be noted that the improper gripper actions,
such as “Cannot Close Gripper” and “Object Drop”, were
significant contributors to overall task failures. This issue
arises because the number of frames used for gripper actions
is typically limited, thereby complicating the learning process.

From a data perspective, which is often overlooked by

researchers and developers, the reasons for failure provide
insights into improving data quality. The collected data fre-
quently fall short of the task designer’s expectations due to
various factors such as hardware limitations, physical state,
external interference, and communication issues. For instance,
inaccurate localization may stem from non-random placement
of objects in the dataset, despite instructions for random
placement. To address this, we can collect additional data
from previously neglected locations to better represent the
task environment and improve the success rate. Similarly,
gripper non-closure is likely due to the data collector moving
too quickly when closing the jaws, resulting in insufficient
frames being captured. This makes training more challenging.
To mitigate this, we can instruct collectors to slow down
during jaw closure to ensure adequate data capture. By refining
data collection practices, we can enhance the robustness and
reliability of the imitation learning algorithms, ultimately
leading to better performance in real-world applications.

G. Real and Simulation Data

To validate the effectiveness of simulation data in Robo-
MIND, we conducted two sets of experiments.

Co-training with Real and Simulation Data. Firstly,
we combined both real-world and simulation data for train-
ing. We selected a complex Franka robotic arm task,
FR-UprightBlueCup, which requires the robotic arm to
rotate nearly 90 degrees, insert its gripper horizontally into
the cup’s opening, and restore an overturned cup to its upright
position. As shown in Figure 16, we constructed a digital
twin simulation environment that closely mirrors the real-
world setup, including the robotic arm, table surface, objects,
and cameras. We collected 100 real-world trajectories and 500
trajectories in the simulation. We then trained and evaluated
the ACT model using different ratios of real-world to simula-
tion data, including real-world data only, simulation data only,
and mixed ratios of 100:100, 100:200, 100:300, 100:400, and
100:500. Notably, we did not employ any simZ2real transfer
techniques but instead directly combined both types of data for
co-training. Figure 17 shows the success rates of ACT in both
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Fig. 16: Experimental setup in real-world and simulation
environments. The top and bottom rows show observations
from the left view, right view, and top view in the real-
world and simulation environments, respectively. We can see
that the two environments are very similar, as the simulation
environment was constructed to mirror the real environment.
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Fig. 17: Success rates of models trained with different ratios
of real-world and simulation data.

real-world and simulation environments under different exper-
imental settings. Our observations revealed that increasing the
proportion of simulation data improved success rates in both
real-world and simulation environments, thanks to our highly
accurate simulation environment that closely resembles real-
world conditions. However, we also discovered that simulation
data alone is insufficient for real-world performance, with
real-world data playing a crucial role. For instance, while the
combination of 100 real-world trajectories and 500 simulation
trajectories achieved a 90% success rate in the simulated en-
vironments, using simulation data alone resulted in a dramatic
decrease to a 10% success rate in the real world. The primary
cause of failure was the cup slipping from the gripper during
rotation due to insufficient grip closure. This suggests that
significant disparities exist between simulated and real-world
physics, particularly for contact-rich tasks, indicating room for
improvement in simulation fidelity.

Performance Correlations between Real and Simula-
tion Environments. We further experimented to validate the
correlations between performance in the real and simulation
environments of the same model We selected five tasks, trained
single-task ACT and Diffusion Policy with real-world data,
and evaluated them in both the real world and the digital twin
simulation environment. Table VII shows positive correlations
of the sim-real test results. This aligns with findings in prior
research [59] and confirms the positive correlation between

TABLE VII: Success rates of ACT and Diffusion Policy tested
in real and simulation environments.

P . ACT Diffusion Policy

Tests in Different Environments Sim  Real ‘ Sim Real
FR-PickStrawberryInBowl 3/10  9/10 | 0/10 5/10
FR-PlaceBreadPlate 2/10 7/10 | 3/10 8/10
FR-SlideCloseDrawer 2/10  4/10 | 7/10 10/10
FR-PlacePearBowl 0/10  4/10 | 4/10 10/10
FR-PlaceBlockPlate 0/10  3/10 | 2/10 7710
Pearson Correlation Coefficient | 0.83 | 091

simulation and real-world results.

VI. DISCUSSION AND FUTURE WORK

In this work, we introduce RoboMIND, a large-scale, multi-
embodiment dataset for robot manipulation. RoboMIND in-
cludes four distinct embodiments, 107k high-quality demon-
strations across 479 tasks, 96 objects, and 38 unique skills,
collected through an intelligent data platform with a carefully
designed quality assurance process.

We present quantitative analyses of RoboMIND, highlight-
ing its heterogeneous embodiments, diverse episode lengths,
broad task coverage, and a wide range of objects drawn from
five common scenarios: domestic, industrial, kitchen, office,
and retail. We also compare RoboMIND qualitatively with the
Open X-Embodiments dataset, considering factors such as uni-
form settings, multiple viewpoints, and embodiment diversity.
These analyses underscore the richness of RoboMIND and its
potential to advance research in robot manipulation.

We conduct experiments on several popular imitation learn-
ing robot models, assessing their pre-training performance and
generalization capabilities on RoboMIND. Our results indicate
an urgent need to enhance accurate positioning and precise
control in current algorithms, especially for long-horizon tasks.
For potential investigations, we suggest that the high-quality,
diverse data of RoboMIND is especially suited—but not lim-
ited—to fostering cross-embodiment generalization, adapting
imitation learning models to downstream tasks, and exploring
data augmentation strategies for improved visual- and task-
level generalization.

As an ongoing research project, we continue to expand
RoboMIND using standardized collection and quality assur-
ance procedures. Therefore, we believe RoboMIND can serve
as a ready-to-use dataset and consistently boost progress in
embodied Al research.

VII. LIMITATIONS

One limitation of RoboMIND is the relatively simple back-
ground environments. While our primary focus has been on
constructing a large-scale, high-quality set of robotic trajecto-
ries, we plan to investigate in the future whether incorporating
more complex backgrounds can enhance the model’s manip-
ulation performance, either through data generation or further
collection efforts. Additionally, although RoboMIND covers
a broad range of robot tasks and environments, it currently
lacks data from mobile manipulation scenarios. However, since
two of our robotic embodiments are mobile, we plan to



expand RoboMIND to include mobile manipulation tasks in
the future. Additionally, RoboMIND can be further enriched
by adding more informative annotations such as high-level
planning instructions and annotations of trajectory quality.
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