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Abstract—The behavior of in-home robots must be adaptable
to end-users to adequately address individual users’ needs and
preferences. Learning from Demonstration (LfD) is a common
approach for customizing robot behavior, enabling non-expert
users to teach robots how to perform tasks according to their
preferences. While LfD allows users to teach robots tasks, it can
be difficult for users to specify their individual needs a priori.
Therefore, we propose Learning Interpretable Features from
Interventions (LIFI), a user-friendly and streamlined method
for personalizing robot behavior through interventions. This
approach allows users to easily prompt the robot to adapt its
behavior by intervening when the robot’s behavior goes against
user expectations. With LIFL, 1) the user intervenes to communi-
cate that the robot is making a mistake, 2) the robot then learns
an explanatory feature that describes the failure and 3) uses it to
adjust its policy to correct the mistake, aligning with user-specific
needs. In a between-subjects evaluation experiment with 48
participants, where the robot attempts household manipulation
tasks, we demonstrate that adding features via LIFI improves
objective performance and subjective measures, i.e., perceived
workload, usability, and trust, compared to a no-feature baseline.

Index Terms—robot learning, collaborative robots, human-
robot interaction

1. INTRODUCTION

Due to an aging population, there is a shortage of caregivers
[24] [40]. Robots have the potential to offer assistance and
enable older adults to age in place [42]. Assistive robots must
be adaptable in order to meet users’ diverse environments
and changing needs as they age. Furthermore, useful assistive
robots will need to adapt to new situations and recover from
any failures or miss-steps that will inevitably happen when
operating in the real world [43]. However, many current
personalization approaches are costly or not scalable [22} |38].
Training a generalized policy that can adapt to different
scenarios a priori requires a large data set for the policy
to function well in a variety settings [44]. On the other
hand, a custom-built control policy for each scenario requires
significant time and effort from an expert roboticist [6].
Instead, users need an intuitive and sample-efficient method to
correct a robot’s behavior. Therefore, we introduce Learning
Interpretable Features from Interventions (LIFI) (Figure , a
novel framework that enables a robot to learn interpretable
features from user interventions and utilizes these features to
correct its mistakes.

*Co-First Authors.
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Fig. 1: (1) With LIFI, the human warns when the robot
may begin to fail and interrupts when the robot is concretely
failing. (2) To train LIFI, we collect a dataset of participant
interruptions, feature labels, and corrective demonstrations.
The demonstrations start from the warning to show the robot
how to avoid the failure. (3) With a new user, the robot infers
their reason for interruption and improves its behavior.

Our LIFT approach builds from Learning from Demonstra-
tion (LfD) [30]. In LfD, the robot learns from a recording of
the human demonstrating the task. The simplest form of LfD,
Behavioral Cloning (BC), mimics the human; however, BC
is susceptible to covariate shift [31]. Inverse Reinforcement
Learning (IRL) techniques attempt to understand context by



learning a reward function for the human’s goal [26]; yet, IRL
methods are not sample-efficient |3 [16]. Furthermore, most
LfD techniques are not interpretable due to their reliance on
black-box neural networks [32].

We want to enable people to teach a robot their preferences
with a method that is sample-efficient and provides semanti-
cally meaningful feedback. Therefore, we learn interpretable
features in the LIFI framework to teach the robot to correct its
mistakes. We define interpretable here as the robot outputting
semantically meaningful features in human-worded language.
With LIFI, participants intervene once during robot task exe-
cution when the robot’s behavior does not match the human’s
preference. Ideally, a user would communicate which features
are important to them, and the robot would learn to prioritize
the appropriate parts of the task, resulting in higher perfor-
mance and trust in the robot [35]. However, it can be difficult
for people to identify and communicate their preferences and
key task features a priori [13]. A more effective approach may
be for people to critique while observing a robot’s attempt to
perform a desired task. Prior work has investigated learning
features from physical interventions [l 7], but these methods
do not use interpretable features and users were told a priori
which features to pay attention to.

In our approach, we show that when people intervene during
a robot failure, there is semantic information, environmental
and temporal context clues, from which the robot can leamn.
For example, if someone stops the robot when the robot is
putting bleach on a shelf the user deems “wrong”, the robot
could observe its distance relative to objects in the environment
and learn that the important feature is to put the bleach with
the other cleaning products instead of next to the food.

In this paper, we first introduce the LIFI framework. Then,
we experimentally validate LIFI through multiple user studies,
in which the robot attempts a series of household tasks and
participants intervene when the robot fails or does not behave
as desired. Initially, we conduct a pilot study to elicit a list of
features from users. Then we collect a dataset of interventions,
feature labels, and corrective demonstrations to train LIFIL.
Lastly, we evaluate the LIFI framework compared to baselines
(i.e. without features, BC, and ablations of the method).

In this paper, we contribute the following:

1) We develop a new, user-friendly, low cognitive demand
interface for feature specification through interventions.

2) We contribute the LIFI framework, an interpretable,
feature-based approach that enables LfD policies to learn
what users want and adapt to individual user’s needs.

3) We demonstrate that LIFI’s feature prediction generalizes
to novel users and LIFI outperforms a no feature baseline
(p < .05) for performance, workload, usability, and trust.

II. RELATED WORKS

LfD seeks to enable humans to teach robots new skills via
human task demonstrations without requiring users to have
programming experience [|30]. Behavioral Cloning (BC) learns
to mimic human actions, but inherently does not understand
the human’s intent behind the demonstrations [30]. Inverse

Reinforcement Learning (IRL) methods attempt to learn a
reward function for the human’s intent, but these methods are
not sample efficient [3]. LIFI fills both gaps by adding a feature
vector to a BC policy that attempts to understand human intent,
while being sample-efficient. Unlike IRL methods, LIFI does
not need hours of training time at evaluation.

LIFT also addresses the need to know which features a user
cares about when specifying a demonstration. Without this
a priori feature knowledge, a feature mismatch may cause
the robot to fail to learn the skill, which can result in trust
degradation [20l 134! |L7]. Researchers have considered various
approaches for learning from robot failures with LfD. Our
work is inspired by Kelly et al. [21] and Spencer et al. [39]
who proposed having people take over task execution when
the robot deviates from the desired behavior. However, prior
work that learns from human interventions [21} |39} |5] do
not learn interpretable features or provide explanations for
the updated policy. LIFI improves upon state-of-the-art by
learning interpretable and semantically meaningful features.
Additionally, these methods require demonstrations from all
users, whereas LIFI only requires the intervention, not a
demonstration, from users at test time.

Prior work has also explored learning what feature prompted
an instance of user feedback [7]. Bajcsy et al. show that
learning one feature per intervention compared to all at once
improves objective and subjective results [S]. In contrast,
Levine et al. investigated learning which features to consider
by constructing features from components using logical con-
jugations [23]. While this work shows how both features and
a policy can be learned at the same time, it does not consider
whether the features selected by this method are deemed
important by the demonstrator. This could lead to a “correct”
policy that does not adhere to the demonstrator’s preferences.

We endeavor for our features to be based on human
preference, readable, human-worded, and understandable [435].
Learning-based approaches that use neural networks are not
yet guaranteed to be interpretable to a non-expert user [32].
Additionally, explainability creates more trust in a robot via
transparency about the reasoning behind its actions [33]. Das
et al. expand on learning interpretable features, showing that
presenting both the context of the failure and preceding robots
actions to be helpful [10]. As prior work has found that
querying people affords interpretable, relevant features, we
obtain our features directly from participants by soliciting
feedback as they observe the robot attempt the task [9].

III. TECHNICAL APPROACH

In this section, we introduce the LIFI framework.

A. Preliminaries

LfD can be formulated as a Markov Decision Process
without the reward function (MDP\R) which is represented
by the 4-tuple (S, A, T,~). S is the set of states and A is
the set of actions. In a model-based paradigm, the transition
function 7 : § x A x & — [0,1] represents the probability
of transitioning from state s to state, s’, via action, a. -y is
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Fig. 2: The LIFI framework predicts a feature vector, f, (the
reason that the user interrupted) with the Feature Prediction
Network, g4, (green) and an improved robot policy, hy,
(blue). g, takes in the robot trajectory, 7., the objects in the
environment (purple), 7,,, and the time of the interruption, 7,
to predict f. hy predicts the robot’s next action, a, from f,
the state of the robot, s,, and the environment objects, s,,.

the discount factor for future rewards. In an LfD paradigm,
the agent learns a policy, 7 S — A, mapping states
to actions, from a demonstrator provided set of trajectories
{(s¢,a+),¥t € {1,2,..T}}. Our approach is model-free,
meaning that we do not know the transition function a priori.

B. LIFI Framework

The LIFI model architecture (Figure Algorithm con-
sists of two parts. First, the Feature Prediction Network, g,
takes in the robot state trajectory, 7., the states of the objects
in the world, 7,,, and the time of interruption, 7, and outputs a
feature vector, f. The time of interruption 7 is used to crop 7,
so that only the robot trajectory up to the time of interruption is
given as input. Thus, g, uses the world state up to the time of
interruption to predict the feature. Second, the Policy Network,
h, takes the current robot state, s,., world object state, s,,, and
f and outputs the next robot action, a. In the LIFI framework,
the set of features, comprising f, (detailed in Section is
split into two types: 1) relational features (e.g., too high, too

close, etc.), which inform the robot of its behavior with respect
to itself or objects in the environment and 2) the environment
objects (e.g. table, dishwasher, etc.). For example, if the person
interrupts because the robot is cutting the table instead of the
food, the robot may learn the feature “too close to the table.”
To determine the features, we interview users in the Pilot Study
(Section|lV-C). We synthesize their responses to ascertain a list
of features that are generalizable across manipulation tasks.

1) Feature Prediction Network: To learn the feature vector
or reason for interruption, f, the g4 network feeds 7, 7,,, and 4
through a multi-head self-attention layer. The reasoning for the
attention layer is for the features to index on important aspects
of the trajectories. The trajectories are the Cartesian pose of
the robot end-effector and objects (position and quaternion).
The attention layer output is a classification embedding, which
is concatenated with a one-hot encoding of the domain and
fed through a linear layer. This output is an encoding, &,
and is fed through a tanh activation and a linear layer, to
predict the relational features. The relational features are then
concatenated with ¢ and fed through a linear layer to predict
the object features.

We train this model using the labeled features from the data
collection study (Section and cross-entropy loss

r 2
Lg) = -3 flog—— 1
(4) ;fongefk (M)

The list of features are known a priori and are determined to
be common across manipulation tasks, from the Pilot Study
(Section . Using softmax, the robot can then predict the
most likely feature from the feature vector, f, and utilize
templated language, from the labels, to communicate the
feature to the user.

Algorithm 1: Training LIFI Framework

1. for each trial do
if get interruption then
collect interruptions (i, 7., 7,, ), feature labels
(f) and corrective demonstrations
(D = s, Sw)-
end
end
2. Initialize ¢, 1.
3. for (i,7,, 7w, D) do
Obtain predicted feature: f = 9o (4, Tr, Tw)
for s, sy,a € D do
Obtain predicted action: & = hy (s, 5y, I
Take one step of gradient descent on ) with
f , Sr, Sy With Equation 2
end
Take one step of gradient descent on ¢ with
i,Tr, Tw, f via Equation 1

end

2) Policy Network: The policy network learns an improved
robot policy based on user interruptions and demonstrations.
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The base policy is behavioral cloning [14], where the robot
state, s, and world object state, s,,, are mapped to the robot’s
action, a. In the LIFI framework, the feature vector, f, is
an additional input to the Policy Network, h,, resulting in
a feature-conditioned policy that adapts to user feedback.
h employs action chunking, predicting the next % actions,
to prevent the robot from stopping mid-trajectory [14], and
utilizes three linear layers with ReLU activations. The correct
action labels are derived from the combination of the robot
trajectories prior to interruption concatenated with their re-
spective corrective demonstrations. The policy network learns
via an mean-squared error loss of the predicted actions a
compared to the corrective actions a,

N
L) = 3 llag — 1P @
J
Further details (e.g., layer sizes) are in Appendix
Assumptions: The model assumes that the reason for
interruption, in a given state, is homogeneous across people.
Therefore, if two people interrupt in the same state and all
previous states were identical, the model will predict the same
feature. However, we assume that people will interrupt in
different states based on their preferences. In practice, this
is a reasonable assumption as the state space is continuous so
two identical interruptions are highly unlikely.

IV. EXPERIMENTAL DESIGN

We conduct three human-subjects experiments; an overview
is depicted in Figure We first conduct a pilot study to
elicit a list of relevant features from users. We then conduct
a data collection study where users interrupt the robot, label
features, and provide corrective demonstrations to train the
LIFI model. Third, we evaluate LIFI compared to baselines.
This section details the research questions, experimental setup,
and Institutional-Review-Board approved study procedures.

A. Research Questions

RQ1: Can we learn interpretable features from interven-
tions? We investigate if we can accurately predict features

of interest from user interventions, and if these predictions
generalize to novel users.

RQ2: Does adding features improve performance over a
baseline without features? We evaluate if learning the relevant
features improves objective and subjective robot performance.

RQ3: How does communicating to users the anticipated
feature of interest impact the users’ perceptions of the robot?
We investigate how communicating the predicted feature of
interest when a user interrupts the robot changes the user’s
perceptions of the robot.

B. Experiment Setup

We employ the Spot robot [2], a ZED camera [1], and
AprilTags [29], for object localization.

1) Domains: Prior work has shown that chore tasks are
relevant for assistive robots [37|36]. We design four household
tasks as the domains (Figure :

1) Loading the Dishwasher - the goal is to place the
plastic dish in the tabletop dishwasher.

2) Putting Bleach Away - the goal is to place the bleach
bottle on the pantry shelf.

3) Sweeping Up Glass - with a hand-held broom, the goal
is to sweep the “broken glass” into a dustpan.

4) Cutting Food - the robot must use a knife to cut the
Play-Doh cookie roll.

Additionally, each domain affords human preferences (e.g.,
where to place a dish in the dishwasher, not putting cleaning
items next to food).

2) Wizard-of-Oz Trajectories: To show the participants a
consistent set of robot behaviors, we pre-specify five trajecto-
ries in each of the four domains (20 total). To compare across
a variety of behaviors, each domain includes: one success, two
objective failures, and two subjective failures. For the failures,
we focus on system errors, in which the robot does not act as
intended, and design errors, in which the robot acts as intended
but should not have acted in that way [41]. An objective failure
occurs when the robot fails to complete the task goal (e.g.,
colliding with the dishwasher). A subjective failure is when the
robot achieves the goal without satisfying a user’s preferences



(e.g., placing the dish in the wrong orientation). To investigate
preferences, we introduce failures that are subjective. These
trajectories are used as the initial robot policy for all studies.

3) Domain and Trial Ordering: In all three studies (pilot,
data collection, and evaluation), participants watch the robot
complete the Wizard-of-Oz (WoZ) trajectories and interrupt if
the robot is making a mistake or not behaving as desired. The
frequency and timing of robot errors impact user behavior and
perception of the robot [11]. As such, the order of successes
and failures are randomized and then held constant across par-
ticipants. In the data collection phase, participants experience
one success, two objective failures, and two subjective failures
per domain. Appendix Table lists the ordering of trial
outcomes for each domain that each participant experiences
in the data collection phase. During the evaluation phase,
participants observe three trials per domain (one success,
one objective failure, and one subjective failure). Appendix
Tablelists the ordering for the evaluation phase. Which of
the two subjective and objective failures is randomized and
counterbalanced across participants.

Participants also experience multiple domains in all three
studies. Appendix Table E| lists four domain orders, obtained
via a Latin square. Each participant experiences one domain
ordering condition. The domain orders are randomly assigned
and counterbalanced across participants.

C. Pilot Study

The pilot study has two goals: 1) to elicit a list of features
from participants and 2) to assess our study design. Since the
robot behavior is WoZ, we need to determine whether par-
ticipants perceive each trajectory as intended (i.e., successful
trajectories are perceived as successes, objective failures as
failures, and subjective failures are sometimes perceived as
failures). Past experiments have shown that participants do
not intervene, even if the robot is colliding with objects [27].
As such, we evaluate and improve the instructions to ensure
participants intervene when observing objective robot failures.

1) Pilot Study Procedure: Participants observe each trajec-
tory in each domain (as specified in Section . After
each trial, participants are asked to rate the success of the
trajectory on a scale of 1 (unsuccessful) to 10 (successful).
Participants also answer why they did or did not interrupt the
robot. We transcribe the interviews and conduct a thematic
content analysis with two reviewers [4] to determine a core set
of important features across domains. This yields a dataset of
features of importance from the population rather than using
an experimenter-defined dataset. Based on our findings, we
design a Graphic User Interface (GUI) for users to choose
which feature reflects their reason for interruption.

2) Pilot Study Results: The pilot study consisted of 13
participants with a mean age of 23.8 and standard deviation
(SD) of 3.58 (30.8% Female, 69.2% Male). On average,
participants rated successes with a score of 7.8 out of 10,
subjective failures with 5.8, and objective failures with 4.0. On
the dishwasher task, participants rated successes lower than
expected: 5.9, due to the robot releasing the dish from too

high. On the bleach task, the objective failures were rated
higher than expected: 5.6, due to not all participants rating
collisions negatively. Therefore, for the data collection study,
we redesigned the dishwasher task and told participants that
the robot should complete the tasks without colliding.

Additionally, many participants did not interrupt until after
the robot failed irrecoverably (e.g., wiped all the glass on the
floor). We included a warn button that does not stop the robot
so participants can indicate when the robot might be about
to make a mistake. We later use this pre-failure moment to
let people provide corrective demonstrations that show how
to avoid the failure. We found that warning the robot allowed
participants to signal to the robot, while still satisfying their
curiosity about what the robot would do next.

After each trial, we asked participants why they interrupted
the robot. The most common reasons were the orientation
of the object that the robot was holding, the position of the
object compared to other objects, and the speed of the robot.
Participants also mentioned the force applied by the robot,
specifically in the cutting task. However, we chose not to
include force due to not being able to measure force from
video demonstrations. The list of features is included in Figure
Representative quotes from participants are in Appendix

D. Data Collection Study

The goal of the data collection study is to collect a dataset
from participants to train the LIFI framework.

1) Data Collection Procedure: We conduct a within-
subjects (n = 44) data collection study where participants
observe the robot complete trials in each of the domains, akin
to the pilot study. In the data collection phase, the participant
observes the robot execute a WoZ policy for five trials per
domain, resulting in one success, two objective failures and
two subjective failures. The domains are randomized and
counterbalanced via Latin Squares (see Section |[[V-B3).

To interrupt the robot, the participants are instructed to press
a yellow warn button before the robot makes a mistake, and
the red stop button after the robot has made a mistake or the
participant thinks the robot will not recover. After interrupting,
participants indicate on our GUI which feature is their reason
for interruption. Participants can choose more than one feature
but must indicate which feature is most important. Next, we
show participants a picture of when they first pressed the
warn button. Using this image, participants then provide a
demonstration via motion-capture, starting from the position
where they first pressed the warn button, to show the robot
how it should have performed the task differently. We use this
data to train the LIFI model (Section |I1I-B).

2) Manipulation Check: The data collection study included
44 participants with a mean age of 23.2 (SD=4.01, 29.5%
Female, 70.5% Male). As with the pilot study, we first eval-
uated how participants perceived and interrupted the different
types of trials. We employed Friedman’s tests with Nemenyi-
Wilcoxon-Wilcox post-hoc tests. Out of 10, participants rated
successful trials with a mean of 8.26 (SD=.984), subjective
failures with a mean of 5.81 (SD=1.21), and objective failures
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robot were the position of the item, the orientation of the item, and the speed at which the robot was moving. Within position,
people interrupted both because the position was generally incorrect and because of an impending collision with something

else in the environment.

with a mean of 3.28 (SD=.969). There was a significant main
effect between the trial types (x%(2) = 84.0, p < .001).
Successful trials were rated significantly higher than subjective
failures (p < .001) and objective failures (p < .001), and sub-
jective failures were rated significantly higher than objective
failures (p < .001). Similarly, there was a significant main ef-
fect for interruption rate between the trial types (x2(s) = 80.0,
p < .001). Participants interrupted successful trials at a rate
of 18.8% (SD=18.1), subjective failures at a rate of 51.1%
(SD=23.2), and objective failures at a rate of 97.7% (SD=5.6).
Participants interrupted successful trials significantly less than
subjective (p < .001) and objective failures (p < .001). Lastly,
participants interrupted subjective failures significantly less
than objective failures (p < .001). Overall, the types of trials
were designed and perceived as expected.

E. Evaluation Study

1) Conditions: In our third experiment, after our pilot study
(Section [IV-C) and data collection study (Section , we
manipulate the independent variable, Feature Condition, with
the following conditions:

LIFI - Learned Feature (Ours): The robot infers the
highest probability feature and then attempts the task using
the learned feature (Section [l1I-B). Then the robot communi-
cates the feature (using templated language, e.g. “I think you
interrupted because of X.”) as an explanation to the user.

MI-LIFI - Mixed-Initiative (Ours): The robot infers the
best feature and then communicates the feature to the user. If
the user feels that the robot should have chosen a different
feature, the user can input the correct feature using the GUIL
The robot then utilizes the learned, or corrected feature, as an
input to the policy network, and attempts the task again.

BC - No Feature: The robot learns how to accomplish
the task via BC, does not predict a feature, and does not
communicate with the user.

Adv-LIFI — Adversarial Feature: This condition is the
same as LIFI, except the robot infers the worst feature (mini-
mum probability). Adv-LIFI accounts for bias when working

with interactive systems.

2) Evaluation Study Procedure: We conduct a 4x4
between-subjects experiment (n = 12 per condition), where
each participant experiences one Feature Condition (Section
IV-E1). Participants experience three trials for each of the four
domains. The domains are randomized and counterbalanced
via Latin Squares (see Section. In the evaluation phase,
the number of trials was reduced because the BC policy
performed similarly across trials, due to BC not personalizing
to individual participant’s interruptions. It may have become
obvious to participants that the robot was not learning from
their interruptions if the robot performed similarly across too
many trials. Therefore, the participant observes three trials per
domain: one success, one objective failure, and one subjective
failure. The objective and subjective failure trajectory chosen,
from the two in the data collection, are randomized and
counterbalanced across participants.

Participants first fill out pre-study surveys. Then participants
observe the robot attempt a series of household tasks, and
participants are instructed to interrupt using the same proce-
dure as the data collection study. If participants interrupt a
trial, the robot attempts the task again and communicates the
feature of importance, dependent on the Feature Condition.
After each trial, participants complete the post-trial surveys.
Lastly, participants complete the post-study surveys.

F. Metrics

We now describe the metrics employed to evaluate our
framework. More details on metrics are in Appendix @

1) Framework Training Metrics: We first validate the
model offline with a holdout set from the data collection data.

Feature Accuracy: We compare the model predicted fea-
tures to the participant labeled features using an all-or-nothing
and a partial-credit metric. For both metrics, if the participant’s
top feature matched the model’s predicted feature, we scored
that as a 1. For the all-or-nothing metric, if the model’s feature
differed at all from the top feature given by the participant,
we gave it a score of 0. For the partial-credit metric, if the



predicted feature was a feature given by the participant but
was not the top feature, we gave it a score of 0.75. If the
model guessed a feature or object that the participant input,
we gave a score of 0.5.

Policy Error: We define Policy Error as the difference
between the policy generated trajectories and the successful
WoZ trajectories to measure error. Additionally, to quantify
personalization from the features, we compare the generated
trajectories to the participant demonstrations. We calculate
error by aligning trajectories using dynamic time warping [25]]
and measuring the absolute pose error (APE) [15]. To gain
further insight into the policy error, we also separate out the
error into orientation and position error.

2) Pre-Study Metrics: At the beginning of the evaluation
study, we collect the following metrics.

(a) Demographics: We collect participant age and gender.
(b) Personality: We employ the Mini-IPIP [[12].
(c) Negative Attitudes Towards Robots (NARS): We
measure the three NARS subscales [28]].
3) Post-Trial Metrics: After each trial, we measure the
accuracy of the features and robot policy. All scales from 1 to
10 are from 1 (not successful) to 10 (successful).

(a) Feature Ratings: Participants rate the robot’s predicted

feature on a scale from 1 to 10.

Feature Accuracy: We compare participant-provided

feature(s) to the model-predicted feature as described

in the Framework Training Metrics.

(c) Perceived Policy Accuracy: Users rate the robot’s

performance on a scale from 1 to 10.

Policy Error: We compare the robot’s trajectory to

a successful trajectory using the same method as the

framework training metric.

(e) Qualitative Interview: We interview participants to
understand why they did or did not interrupt.

(b)

(d)

4) Post-Study Metrics: After the evaluation study, we col-
lect the following metrics:

(a) Interruption Rate: We measure how often participants
intervened across trials.

(b) Usability: We employ the System Usability Scale [8].

(¢) Workload: We measure workload via the NASA Task
Load Index [18].

(d) Trust: We employ the trust scale by Jian et al. [19].

(e) Qualitative Interview: We interview participants about
the process of working with the robot.

V. RESULTS AND DISCUSSION

In the results, for each statistical test, we compared condi-
tions using an Analysis of Variance (ANOVA). To check for
confounding factors on subjective metrics, we systematically
added the demographic variables as covariates to each model
(i.e., age, gender, personality, and attitudes towards robots),
only keeping the covariate if adding it lowered the model’s
AlCc (Akaike Information Criterion for small sample sizes).
Additionally, each parametric model was tested for normality
and homoscedasticity. If assumptions failed, a non-parametric
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Fig. 5: LIFI outperforms baselines in offline model validation.
In Figure El LIFI is significantly closer to a successful
trajectory compared to the trajectories generated by BC and
Adv-LIFL. In Figure LIFI is significantly closer to the
participants’ demonstrated trajectories compared to the tra-
jectories generated by BC and Adv-LIFI. Also, Adv-LIFI is
significantly closer to participant trajectories than BC. The
LIFI framework better personalizes to user preferences for the
held-out test set.

version of the test was employed. Further details on models
and tests for assumptions are in the Appendix Table

A. Data Collection Study: Model Validation

We first conduct an offline validation of the model on the
data collection dataset. We split the dataset into an 80/20
training and test set with 5-fold cross-validation. After training
the LIFI framework on the training set, we evaluated the model
on the test set using feature accuracy and policy error metrics.

1) Feature Accuracy: We compared the predicted features
to the labeled features in the test dataset. The model predicted
the user-specified most important feature with 67% accuracy.
While this accuracy may seem low, there is ambiguity in
the feature labels and participants often chose more than one
label. One participant might say the “knife was too close
to the table,” while another would say the “knife was too
low compared to the table,” and a third may choose both
options. After inspecting where the model guessed “wrong,’
many incorrect guesses were due to ambiguity (e.g., choosing
object orientation instead of object alignment). Therefore, we
determine the utility of our feature predictions in the evaluation
study, and discuss positive results on the accuracy of our fea-
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Fig. 6: (a): LIFI plans a more accurate policy than BC and Adv-LIFL. (b) LIFI outperforms BC during policy execution. (c)
After separating orientation and position error of the executed policy, LIFI outperforms BC and Adv-LIFI on position error.

ture prediction (Section [V-B). Takeaway: Combining results
from the data collection and evaluation studies, LIFI learns
an informative relationship between user interruptions and
the semantic concept of that failure (RQ1).

2) Policy Error: We generated trajectories for the LIFI,
Adv-LIFL, and BC conditions, and compared using Friedman’s
tests with Nemenyi-Wilcoxon-Wilcox post-hocs. In Figure
EI we found a significant difference in the error between
the generated trajectories and WoZ successful policies across
conditions (x?(2) = 69.3, p < .001). LIFI had significantly
lower error than BC (p < .001), as did Adv-LIFI (p < .001).

We also calculate the error between the generated tra-
jectories and the participants’ demonstrations. There was a
significant main effect for the policy error across the con-
ditions (x2(2) = 89.1, p < .001). As shown in Figure
LIFI had significantly lower error than BC (p < .001) and
Adv-LIFI (p < .001), showing that adding correct features
better personalized to users. Also, Adv-LIFI had significantly
lower error than BC (p < .001), meaning that providing
the incorrect feature still personalized better than no features.
Takeaway: On the hold-out set, adding features improved
performance over a baseline without features (RQ2).

B. Evaluation Study

The evaluation study included 48 participants with a mean
age of 24.2 and an SD of 3.24 (33.3% Female, 64.6% Male,
and 2.1% Other). We conducted ANOVAs with Tukey post-
hocs (or Kruksal-Wallis tests with Dunn’s post-hoc, for non-
parametric tests). We report effect sizes from Tukey post-hoc
as T'D and effect sizes from Dunn’s post hoc as 7.

1) Manipulation Check: We checked interruption rates to
ensure that the WoZ trajectories were not perceived differently
across conditions. There was no significant difference in
interruption rate between conditions (x2(3) = 1.18,p = .758).

We next analyzed how participants perceived the features
inferred by LIFI and MI-LIFI compared to Adv-LIFI. We
found a significant main effect for perceived success between
feature conditions (F'(2,33) = 23.0, p < .001). Participants
perceived features inferred by LIFI (p < .001,7TD = 2.27)
and MI-LIFI (p < .001,7T'D = 2.83) as significantly more
correct than features from Adv-LIFL.

When comparing between LIFI’s guess and the features
labeled by participants, LIFI and MI-LIFI combined had an av-
erage all-or-nothing score of 0.43 (SD=.50) and a partial-credit
score of 0.64 (SD=.36). Comparatively, Adv-LIFI had an all-
or-nothing score of 0.17 (SD=.38) and a partial-credit score of
0.23 (SD=.39). We found a statistically significant difference
in score between LIFI, MI-LIFI, and Adv-LIFI for the all-or-
nothing metric (x? = 15.11,p < .001) and the partial-credit
metric (x? = 41.24,p < .001). For the all-or-nothing metric,
LIFT outperformed Adv-LIFI (p = .04,r = 0.21) and MI-LIFI
outperformed Adv-LIFI (p < .001,7 = 33). In the partial
credit metric, LIFI outperformed Adv-LIFI (p < .001,r =
0.45) as did MI-LIFI (p < 0.001,7 = 0.51). Takeaway:
LIFI and MI-LIFI were better at picking a feature that
matched participant expectations than Adv-LIFIL. The LIFI
framework can adequately predict correct and incorrect
features intentionally, providing further evidence for RQ1.

2) Objective Metrics (Policy Error): We compare the tra-
jectories generated by the policy for each condition to the WoZ
successful trajectory (Figure . We found a significant main
effect for planned policy error between conditions (F'(3,44) =
70.1, p < .001). The planned policy error for BC is signif-
icantly higher than Adv-LIFI (p < .001, 7D = 0.47), LIFI
(p <.001,TD = 0.75), and MI-LIFI (p < .001,TD = 0.71).
Furthermore, error for Adv-LIFI is significantly higher than
LIFI (p < .001,TD = 0.27) and MI-LIFI (p < .001,TD =
0.24). The trajectories for LIFI and MI-LIFI are significantly
closer to success compared to BC and Adv-LIFI, and Adv-
LIFI is significantly closer to success than BC.

The planned trajectory was sent to the robot, however, the
robot may have been unable to complete the trajectory due
to infeasible kinematics or the experimenter interrupting the
trajectory early due to a collision. Therefore, we also calculate
error between the robot’s executed trajectory and the WoZ
successful trajectory across conditions. We found a main effect
across feature conditions (F'(3,44) = 19.1, p < .001). BC has
significantly higher executed policy error compared to Adv-
LIFI (p < .001,TD = 0.35), LIFI (p < .001,TD = 0.36),
and MI-LIFI (p = .001,TD = 0.30). Figure shows that
LIFI, MI-LIFI, and Adv-LIFI are all significantly closer to
success than BC. Takeaway: LIFI outperforms BC, even



a) Original Robot Trajectory

b) Interruption below obstacle by Person 1

c) Interruption above obstacle by Person 2

1

"

Original Robot
Trajectory

= N
N 8%
\
\
Interrupt Corrective
Demonstration
Warning
[ ]

T

Jnterrupt

Corrective
Demonstration

Warning

d) BC Result with Person 3 Interruption

e) Adv-LIFI Result with Person 3 Interruption

) LIFI Result with Person 3 Interruption

BC Trajectory

Adv-LIFI
Trajectory

Robot Trajectory
Participant Warn

Robot Trajectory
Post-Interrupt

Participant hits
Warn Button

Participant hits
Interrupt Button

Participant
Demonstration

Adv-LIFI Predicted

s‘ s Trajectory
LIFI Predicted
Trajectory
) Executed Robot
LIFI Trajectory Trajectory
@ Warning
® [ ]

T

Fig. 7: This figure shows the differences between the BC, Adv-LIFI, and LIFI results. An original robot trajectory in panel (a)
is interrupted twice, once below the obstacle in panel (b) and once next to the obstacle in panel (c). As shown in panels (d),
(e), and (f), the three algorithms have differing results, even when interrupted at the same point. In panel (d), the BC baseline
averages the two demonstrated trajectories in (b) and (c), producing a trajectory that collides with the obstacle. In panel (e),
Adv-LIFI follows the path from the interruption above the obstacle instead of the one below the obstacle (green dashed line).
It does not collide with the obstacle but may not have been what the user intended, as Person 1, who interrupted at a similar
point, gave a different demonstration than what the robot produced. In panel (f), LIFI correctly replicates the demonstration
of what to do when interrupted below the obstacle as shown in panel (b).

when using the wrong feature.

Due to the unexpected similarities between the Adv-LIFI,
MI-LIFI, and LIFI errors, we further analyzed the executed
policy error by comparing the position and orientation error
separately (Figure . There was a significant main effect for
position error across conditions (x2(3) = 22.0, p < .001).
LIFI had significantly less position error than BC (p <
001, = —0.94) and Adv-LIFI (p = .029,r = —0.55).
MI-LIFI also had significantly less position error than BC
(p = .026,r = —0.57). For orientation error, we found a
significant main effect between conditions (x2(3) = 19.1,
p < .001). The orientation error followed the same trends as
the overall executed policy error. BC had significantly higher
orientation error compared to Adv-LIFI (p < .001,7 = 0.72),
LIFI (p < .001,r = 0.79), and MI-LIFI (p = .001,r = 0.64).

Remark: While it may seem counterintuitive that BC would
perform worse than Adv-LIFL, this difference in performance
could be attributed to a mode collapse that is present in
BC but not in Adv-LIFI. Participants’ demonstrations varied
widely, yielding multiple “modes.” As shown in Figure m
BC combines all corrective demonstrations, ignoring distinct
“modes” or interruption points, resulting in an averaged tra-
jectory that performs poorly as it tries to address all reasons
for interruption at once. Adv-LIFI, as with all LIFI models,
still learns to distinguish modes and, even though Adv-LIFI

chooses the wrong mode at test time, the result is better than
BC suffering from mode collapse.

While the overall executed policy error did not show sig-
nificant differences between LIFI and Adv-LIFI, LIFI outper-
formed Adv-LIFI with respect to position error. Furthermore,
from observations, the robot performed distinct behaviors (ex-
ample trajectories are depicted in Appendix ﬂ For example,
LIFI successfully places the bleach on the shelf, however,
the robot first stops mid-trajectory and spins the bottle in
place before succeeding. BC and Adv-LIFI both drop the
bleach bottle on the ground after spinning. This demonstrates
how LIFI could have lower position error than Adv-LIFI, but
not significantly different orientation error. Takeaway: LIFI
outperformed both Adv-LIFI and BC in terms of position
error (RQ2).

3) Subjective Metrics: We compared participants’ per-
ceived success of the learned trajectories and perceived work-
load, usability, and trust ratings across feature conditions, to
answer RQ3. Participant quotes are included in Appendix

a) Perceived Improvement: Due to the between-subjects
experiment design, some participants’ baseline ratings were
higher than others. We subtracted the success ratings of the
trial that participants interrupted from the learned trajectory to
determine which conditions improved perceived performance.
In Figure LIFI and MI-LIFI have ratings above 0, meaning
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Fig. 8: Participants perceive that LIFI improves after interrup-
tion better than BC and Adv-LIFIL.

that performance improved, whereas BC and Adv-LIFI usually
degraded performance. We found a main effect for perceived
improvement between conditions (F'(3,42) = 4.40, p = .009).
LIFI had significantly better perceived improvement compared
to BC (p = .027,TD = 1.43) and Adv-LIFI (p = .027,TD =
1.43). Takeaway: LIFI and MI-LIFI show improvement,
while BC and Adv-LIFI usually worsen. Participants rated
LIFI with significantly more improvement than BC and
Adv-LIFI.

b) Workload: We found a significant main effect for
perceived workload between conditions (F'(3,42) = 4.89,
p = .005). Participants perceived BC to be significantly
more workload than LIFI (p = .012,7D = 21.7) and
MI-LIFI (p = .008,TD = 22.8). Additionally, the NARS
subscale for social influence of robots positively impacted
perceived workload (F(1,42) = 5.02, p = .030). People
who feel more negatively towards the social influence of
robots perceived interacting with the robot as more workload.
Takeaway: Participants perceived conditions with correct
feature explanations (LIFI and MI-LIFI) as significantly
less workload than BC.

c) Usability: There was a significant main effect for
usability across feature conditions (F'(3,41) = 3.53, p =
.023). LIFI had significantly higher usability scores compared
to BC (p = .040,7D = 16.7). The NARS subscale for
social influence of robots negatively impacted usability scores
(F(1,41) = 14.1, p < .001). Participants who were more wary
of robot social influence thought the robot was less usable.
Takeaway: Participants perceived LIFI as significantly
more usable than BC.

d) Trust: We found a significant main effect for trust
across feature conditions (F'(3,41) = 4.68, p = .007).
LIFI had significantly higher trust scores compared to BC
(p =.004,TD = 9.41). Trust and usability can be correlated
with performance [[17], therefore, we posit that MI-LIFI was
not perceived as highly due to lower performance than LIFI.
The personality trait agreeableness positively impacted trust
(F(1,41) = 4.41, p = .042). Furthermore, the NARS
subscale for social influence negatively impacted trust scores
(F(1,41) = 17.0, p < .001). Participants who are more
agreeable were more likely to trust the robot, whereas par-
ticipants who are more wary of robot social influence were
less likely to trust the robot. Takeaway: Participants trusted

LIFI significantly more than BC.

VI. LIMITATIONS AND FUTURE WORK

This work presents a promising framework for learning from
interventions. We would like to now acknowledge areas for
growth in future work. Our experiments included relatively
small sample sizes (n = 44, 48). Therefore, the data collection
phase did not adequately cover the distribution of possible
responses, resulting in some out-of-distribution features having
lower performance in the evaluation study. In the future, we
will recruit a more diverse population, including older adults
and users of assistive robots, to improve our model.

Another limitation is that participants selected from a pre-
defined set of features. When participants felt the options were
lacking, they produced a broader variety of responses, resulting
in lower feature success ratings. There is some ambiguity or
overlap between some of the features. the robot attempts to
place the bleach on the shelf, the options “too low compared
to middle shelf”” and “too close to middle shelf” have different
meanings. However, in the case where the robot cuts the
table instead of the cookie dough on the cutting board, the
labels “too close to table” and “too low compared to table”
are similar. During the evaluation, the robot often predicted
“too far from cutting board.” Some participants agreed with
the robot, some gave the robot partial credit, and others said
the robot should have said a feature involving the table. The
LIFI framework assumes that if two participants interrupt at
the same point in the trajectory, it is for the same reason;
however, the way participants describe the problem is not
always homogeneous. During data collection, participants did
not provide homogeneous labels, which added noise to the
dataset. Additionally, during evaluation, participants were not
homogeneous in their interpretation of the features. Incorporat-
ing these multiple types of heterogeneity is an exciting avenue
for future work. We plan to incorporate natural language
reasons for interruption instead of choosing from a list to cover
a wider range of features and heterogeneity of responses.

Furthermore, the pre-defined errors in the WoZ trajectories
may have biased the dataset. Therefore, we plan to collect
data using a wider variety of initial policies as well as with
a wider variety of tasks to further demonstrate how LIFI
can generalize. We also plan to improve the framework for
generalization to new domains.

Additionally, our framework currently only uses one in-
terruption. A more natural flow could include more of a
conversational interaction, with multiple interactions as needed
to correct the robot’s behavior if the first correction is not
successful or does not fully correct the behavior. In future
work, we plan to incorporate these multiple interactions.

VII. CONCLUSION

We introduced LIFI, a novel framework for learning in-
terpretable features from user interventions. We conducted a
pilot experiment to obtain relevant features for our tasks, a
data collection experiment to collect corrective demonstrations
that we used to train our model, and an evaluation experiment



to investigate the efficacy of the LIFI framework. The model
learns features, from these corrective interruptions, that im-
prove a robot’s policy. The LIFI framework outperformed a
no feature baseline on objective metrics including executed
policy error as well as on subjective metrics such as perceived
improvement, workload, usability, and trust.
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