Robotics: Science and Systems XII

Seeing Glassware: from Edge Detection to Pose Estimation and Shape Recovery

Cody J. Phillips, Matthieu Lecce, Kostas Daniilidis


Perception of transparent objects has been an open challenge in robotics despite advances in sensors and data- driven learning approaches. In this paper, we introduce a new approach that combines recent advances in learnt object detectors with perceptual grouping in 2D, and projective geometry of apparent contours in 3D. We train a state of the art structured edge detector on an annotated set of foreground glassware. We assume that we deal with surfaces of revolution (SOR) and apply perceptual symmetry grouping in a 2D spherical transformation of the image to obtain a 2D detection of the glassware object and a hypothesis about its 2D axis. Rather than stopping at a single view detection, we ultimately want to reconstruct the 3D shape of the object and its 3D pose to allow for a robot to grasp it. Using two views allows us to decouple the 3D axis localization from the shape estimation. We develop a parametrization that uniquely relates the shape reconstruction of SOR to given a set of contour points and tangents. Finally, we provide the first annotated dataset for 2D detection, 3D pose and 3D shape of glassware and we show results comparable to category-based detection and localization of opaque objects without any training on the object shape.



    AUTHOR    = {Cody J. Phillips AND Matthieu Lecce AND Kostas Daniilidis}, 
    TITLE     = {Seeing Glassware: from Edge Detection to Pose Estimation and Shape Recovery}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2016}, 
    ADDRESS   = {AnnArbor, Michigan}, 
    MONTH     = {June}, 
    DOI       = {10.15607/RSS.2016.XII.021}