Robotics: Science and Systems XIX

Cherry-Picking with Reinforcement Learning

Yunchu Zhang, Liyiming Ke, Abhay Deshpande, Abhishek Gupta, Siddhartha Srinivasa


Grasping small objects surrounded by unstable or non-rigid material plays a crucial role in applications such as surgery, harvesting, construction, disaster recovery, and assisted feeding. This task is especially difficult when fine manipulation is required in the presence of sensor noise and perception errors; errors inevitably trigger dynamic motion, which is challenging to model precisely. Circumventing the difficulty to build accurate models for contacts and dynamics, data-driven methods like reinforcement learning (RL) can optimize task performance via trial and error, reducing the need for accurate models of contacts and dynamics. Applying RL methods to real robots, however, has been hindered by factors such as prohibitively high sample complexity or the high training infrastructure cost for providing resets on hardware. This work presents CherryBot, an RL system that uses chopsticks for fine manipulation that surpasses human reactiveness for some dynamic grasping tasks. By integrating imprecise simulators, suboptimal demonstrations and external state estimation, we study how to make a real-world robot learning system sample efficient and general while reducing the human effort required for supervision. Our system shows continual improvement through 30 minutes of real-world interaction: through reactive retry, it achieves an almost 100% success rate on the demanding task of using chopsticks to grasp small objects swinging in the air. We demonstrate the reactiveness, robustness and generalizability of CherryBot to varying object shapes and dynamics (e.g., external disturbances like wind and human perturbations). Videos are available at



    AUTHOR    = {Yunchu Zhang AND Liyiming Ke AND Abhay Deshpande AND Abhishek Gupta AND Siddhartha Srinivasa}, 
    TITLE     = {{Cherry-Picking with Reinforcement Learning}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2023}, 
    ADDRESS   = {Daegu, Republic of Korea}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2023.XIX.021}