Robotics: Science and Systems XIX

Few-shot Adaptation for Manipulating Granular Materials Under Domain Shift

Yifan Zhu, Pranay Thangeda, Melkior Ornik, Kris Hauser


Autonomous lander missions on extraterrestrial bodies will need to sample granular material while coping with domain shift, no matter how well a sampling strategy is tuned on Earth. This paper proposes an adaptive scooping strategy that uses deep Gaussian process method trained with meta-learning to learn on-line from very limited experience on the target terrains. It introduces a novel meta-training approach, Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa), that explicitly trains the deep kernel to predict scooping volume robustly under large domain shifts. Employed in a Bayesian Optimization sequential decision-making framework, the proposed method allows the robot to use vision and very little on-line experience to achieve high-quality scooping actions on out-of-distribution terrains, significantly outperforming non-adaptive methods proposed in the excavation literature as well as other state-of-the-art meta-learning methods. Moreover, a dataset of 6,700 executed scoops collected on a diverse set of materials, terrain topography, and compositions is made available for future research in granular material manipulation and meta-learning.



    AUTHOR    = {Yifan Zhu AND Pranay Thangeda AND Melkior Ornik AND Kris Hauser}, 
    TITLE     = {{Few-shot Adaptation for Manipulating Granular Materials Under Domain Shift}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2023}, 
    ADDRESS   = {Daegu, Republic of Korea}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2023.XIX.048}