Robotics: Science and Systems XX
Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots
Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, Shuran SongAbstract:
We present Universal Manipulation Interface (UMI) -- a data collection and policy learning framework that allows direct skill transfer from in-the-wild human demonstrations to deployable robot policies. UMI employs hand-held grippers coupled with careful interface design to enable portable, low-cost, and information-rich data collection for challenging bimanual and dynamic manipulation demonstrations. To facilitate deployable policy learning, UMI incorporates a carefully designed policy interface with inference-time latency matching and a relative-trajectory action representation. The resulting learned policies are hardware-agnostic and deployable across multiple robot platforms. Equipped with these features, UMI framework unlocks new robot manipulation capabilities, allowing zero-shot generalizable dynamic, bimanual, precise, and long-horizon behaviors, by only changing the training data for each task. We demonstrate UMI’s versatility and efficacy with comprehensive real-world experiments, where policies learned via UMI zero-shot generalize to novel environments and objects when trained on diverse human demonstrations. UMI's hardware and software system along with our in-the-wild dataset will be open-sourced.
Bibtex:
@INPROCEEDINGS{Chi-RSS-24, AUTHOR = {Cheng Chi AND Zhenjia Xu AND Chuer Pan AND Eric Cousineau AND Benjamin Burchfiel AND Siyuan Feng AND Russ Tedrake AND Shuran Song}, TITLE = {{Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots}}, BOOKTITLE = {Proceedings of Robotics: Science and Systems}, YEAR = {2024}, ADDRESS = {Delft, Netherlands}, MONTH = {July}, DOI = {10.15607/RSS.2024.XX.045} }