Robotics: Science and Systems XX

Demonstrating Agile Flight from Pixels without State Estimation

Ismail Geles, Leonard Bauersfeld, Angel Romero, Jiaxu Xing, Davide Scaramuzza

Abstract:

Quadrotors are among the most agile flying robots. Despite recent advances in learning-based control and computer vision, autonomous drones still rely on explicit state estimation. On the other hand, human pilots only rely on a first-person-view video stream from the drone onboard camera to push the platform to its limits and fly robustly in unseen environments. To the best of our knowledge, we present the first vision-based quadrotor system that autonomously navigates through a sequence of gates at high speeds while directly mapping pixels to control commands. Like professional drone-racing pilots, our system does not use explicit state estimation and leverages the same control commands humans use (collective thrust and body rates). We demonstrate agile flight at speeds up to 40km/h with accelerations up to 2g. This is achieved by training vision-based policies with reinforcement learning (RL). The training is facilitated using an asymmetric actor-critic with access to privileged information. To overcome the computational complexity during image-based RL training, we use the inner edges of the gates as a sensor abstraction. This simple yet robust, task-relevant representation can be simulated during training without rendering images. During deployment, a Swin-transformer-based gate detector is used. Our approach enables autonomous agile flight with standard, off-the-shelf hardware. Although our demonstration focuses on drone racing, we believe that our method has an impact beyond drone racing and can serve as a foundation for future research into real-world applications in structured environments.

Download:

Bibtex:

  
@INPROCEEDINGS{Geles-RSS-24, 
    AUTHOR    = {Ismail Geles AND Leonard Bauersfeld AND Angel Romero AND Jiaxu Xing AND Davide Scaramuzza}, 
    TITLE     = {{Demonstrating Agile Flight from Pixels without State Estimation}}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2024}, 
    ADDRESS   = {Delft, Netherlands}, 
    MONTH     = {July}, 
    DOI       = {10.15607/RSS.2024.XX.082} 
}